
تعداد نشریات | 21 |
تعداد شمارهها | 301 |
تعداد مقالات | 3,173 |
تعداد مشاهده مقاله | 3,211,864 |
تعداد دریافت فایل اصل مقاله | 2,380,313 |
اثرات کلاتآهن و نانوذرات اکسیدآهن بر برخی ویژگیهای فیزیولوژیکی گیاه یونجه (Medicago sativa L.) | ||
تنشهای محیطی در علوم زراعی | ||
مقاله 19، دوره 11، شماره 2، تیر 1397، صفحه 449-458 اصل مقاله (445.25 K) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22077/escs.2017.522.1104 | ||
نویسندگان | ||
مهری عسکری* 1؛ فریبا امینی1؛ سیدمهدی طالبی1؛ معصومه شفیعی گواری2 | ||
1استادیار فیزیولوژی گیاهی، گروه زیستشناسی، دانشکده علوم، دانشگاه اراک. | ||
2دانشجوی کارشناسی ارشد فیزیولوژی گیاهی، گروه زیستشناسی، دانشکده علوم، دانشگاه اراک. | ||
چکیده | ||
آهن یک عنصر کممصرف مغذی و ضروری برای رشد گیاهان است که در متابولیسم گیاهان نقش مهمی را ایفا میکند. بهمنظور بررسی اثرات کمبود آهن و سطوح مختلف نانوذرات اکسیدآهن (0، 5، 10، 20 و 25 میکرومولار) در مقایسه با کلات آهن بر رشد برگ، رنگیزههای فتوسنتزی و فعالیت آنتیاکسیدانی گیاه یونجه رقم همدانی، آزمایشی بر پایه طرح کاملاً تصادفی در سه تکرار در دانشگاه اراک سال 1394 انجام شد. تیمار آهن بر پارامترهای رشد و رنگیزههای فتوسنتزی اثر مثبت داشت. بیشترین و کمترین مقدار رشد برگ و رنگیزههای فتوسنتزی به ترتیب در سطح ٢۵ و صفر میکرومولار نانوذرات اکسیدآهن به دست آمد. تیمار نانو کود آهن در غلظتهای مختلف، حتی غلظت 5 میکرومولار، سبب افزایش معنیدار رشد برگ و مقادیر رنگیزههای فتوسنتزی در مقایسه با کلات آهن شد. بیشترین مقدار آنتیاکسیدانها و پرولین در غلظت صفر میکرومولار نانوذرات اکسید آهن اندازهگیری شد؛ بنابراین غلظت صفر آهن برای گیاه یونجه تنش محسوب میشود. هیچ اختلاف معنیداری بین سطوح مختلف نانوذرات اکسید آهن و کلات آهن بر اساس مقادیر پرولین و فعالیت آنتیاکسیدانها وجود نداشت؛ بنابراین نوع مناسب کود آهن برای گیاه یونجه نانو کود آهن است و غلظت 25 میکرومولار نانوذرات اکسید آهن مقدار مطلوب و بهینه است. | ||
کلیدواژهها | ||
پرولین؛ رنگیزههای فتوسنتزی؛ فعالیت آنتیاکسیدانها؛ کمبود آهن؛ نانو کود | ||
مراجع | ||
Abe, N., Murata, T., Hirota A., 1998. Novel 1,1-diphenyl-2-picryhy-drazyl- radical scavengers, bisorbicillin and demethyltrichodimerol, from a fungus. Bioscience, Biotechnology and Biochemistry. 62, 661-662.
Apel, K., Hirt, H., 2004. Reactive oxygen species: Metabolism, oxidative stress and signal transduction. Plant Biology. 55, 373-379.
Armin, M., Akbari, S., Mashhadi, S., 2014. Effect of time and concentration of nano-Fe foliar application on yield components of wheat. International Journal of Biosciences. 4(9), 69-75.
Arnon, D.I., 1949. Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiology. 24, 1-15.
Ashraf, M., Foolad, M.R., 2007. Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environmental and Experimental Botany. 59, 206-216.
Bakhtiari, M., Moaveni, P., Sani, B., 2015. The effect of iron nanoparticles spraying time and concentration on wheat. Biological Forum-An International Journal. 7(1), 679-683.
Bates, L.S., Waldren, R.P., Teare, I. D., 1973. Rapid determination of free proline for water stress studies. Plant and Soil. 29, 205-207.
Briat, J. F., Dubos, C., Gaymard, F., 2015.Iron nutrition, biomass production, and plant product quality. Trends in Plant Science. 20(1), 33-40.
Bybordi, A., 2012. Study effect of salinity on some physiologic and morphologic properties of two grape cultivars. Life Science Journal. 9(4), 1092-1101.
Cakmak, I., Marschner, H., 1992. Magnesium deficiency and high light intensity enhance activities of superoxide dismutase, ascorbate peroxidase, and glutathione reductase in bean leaves. Plant Physiology. 98, 1222-1227.
Chinnamuthu, C.R., Boopathi, M.P., 2009. Nanotechnology and agroecosystem. Plant Nutrition and Soil Science. 168, 558-573.
Delic, D., Stajkovic-Srbinovic, O., Radovic, J., Kuzmanovic, D., Rasulic, N., Simic, A., Knezevic-Vukcevic, N., 2013.Difference in symbiotic N2 fixation alfalfa, Medicago sativa L. cultivars and Sinorhizobium spp. strains in field conditions. Romanian Biotechnological Letters. 18(6), 8743-8750.
Dokhe, S. A., Mahajan. P., Kamble, R., Khanna, A., 2013. Effect of nanoparticles suspension on the growth of mung (Vigna radiata) seedlings by foliar spray method. Nanotechnology Development. 3(1), 1-5.
Foyer, C.H., Noctor, G., 2005. Redox homeostats and antioxidant signaling: a metabolic interface between stress perception and physiological responses. Plant Cell. 17, 1866-1875.
Hoagland, D.R., Arnon, D.I., 1950. The water-culture method for growing plants without soil. California Agricultural Experiment Station Circular. 347, 1-32.
Gohari, A., Niyaki, A.N., 2010. Effect of iron and nitrogen fertilizers on yield and yield components of peanut (Arachis hypogaea L.) in Astaneh Ashrafiyeh, Iran. American-Eurasian Journal Agriculture and Environmental Science. 9(3), 256-262.
Giannopolitis, C.N., Ries, S.K., 1997. Superoxide dismutases: I. occurrence in higher plants. Plant Physiology. 59, 309-314.
Kosova'a, K., Vita'mv'sa, P., Pra'sila, I.T., Renautb, J., 2011. Plant proteome changes under abiotic stress-contribution of proteomics studies to understanding plant stress response. Proteomics. 74(8), 1301-1322.
Lichtenthaler, H.K., Wellburn, A.R., 1983. Determinations of total carotenoids and chlorophylls a and b of leaf extract in different solvents. Biochemical Society Transactions. 11, 591-592.
Mazaherinia, M.A., Astaraei, R., Fotovat, A., Monshi, A., 2010. Effect of Nano iron oxide particles and on Fe, Mn, Zn, Cu concentrations in wheat plants.W orld Applied Science. 7(1), 156-162.
Mazlomi-Mamyandi, M. Pirzad, A. Zardoshti, M.R., 2012. Effect of Nano-iron spraying at varying growth stage of sugar beet (Beta vulgaris L.) on the size of different plant parts. International Journal of Agriculture and Crop Sciences.4 (12), 740-745.
Mirza Masoumzadeh, B., Imani, A.A., Khayamaim, S., 2012. Salinity stress effect on proline and chlorophyll rate in four beet cultivars. Scholars Research Library. 3(12), 5453-5456.
Mohamadipoor, R., Sedaghathoor, S., Mahboub-Khomami, A., 2013.Effect of application of iron fertilizer in two methods foliar and soil application on growth characteristics of Spathyphyllum illusion. European Journal of Experimental Biology. 3(1), 232-240.
Naderi, M.R., Abedi, A., 2012. Application of nanotechnology in agriculture and refinement of environmental pollutants. Journal of Nanotecnology. 11(1), 18-26.
Peyvandi, M., Parande, H., Mirza, M., 2011. Comparison of nano Fe chelate with Fe chelate effect on growth parameters and antioxidant enzymes activity of Ocimumbasilicum. New Cellular and Molecular Biotechnology Journal. 4, 89-99. [In Persian with English Summary].
Pii, Y., Penn, A., Terzano, R., Crecchio, C., Mimmo, T., Cesco, S., 2015. Plant-microorganism-soil interactions influence the Fe availability in the rhizosphere of cucumber plants. Plant Physiology and Biochemistry. 87, 45-52.
Polle, A., Otter, T., Seifert, F., 1994. Apoplastic peroxidases and lignification in needles of Norway spruce (Picea abies L.). Plant Physiology. 106, 53-56.
Prasad, T.N.V., Sreeprasad, T.S., Sajanlal, P.R., Pradeep, T., 2012. Effect of nanoscales zinc oxide on the germination, growth and yield of peanut. Journal of Plant Nutrition. 35, 905-927.
Ranjbar, M. Shams, G.A., 2009. Study of nanotechnology applications. Sabz Zist. 3, 28-34. [In Persian].
Roosta, H. R., Jalali, M., Vakili Shahrbabaki, M. A., 2015. Effect of nano-chelate, Fe-Eddha and FeSO4 on vegetative growth, physiological parameters and some nutrient elements concentration of four varieties of lettuce (Lactuca sativa L) in NFT system. Journal of Plant Nutrition. 38(14), 2176-2184.
Rose, H., Benzon, L., Rosnah, M., Rubenecia, U., Ultra, V., Lee, S.C., 2015. Nano-fertilizer affects the growth, development and chemical properties of rice. International Journal of Agronomy and Agricultural Research. 7(1), 105-117.
Rout, G.R., Das, A.B., Sahoo, S., 2014. Screening of iron toxicity in rice genotypes on the basis of morphological, physiological and biochemical analysis. Journal of Experimental Biology Agricultural Science. 2, 567-582.
Sajedi, N., Ardakani, M.R., 2008. Effect of different levels of nitrogen, iron and zinc on physiological indices and forage yield of maize (Zea mays L.) in Markazi province. Iranian Journal of Field Crops Research. 6(1), 99-110. [In Persian with English Summary].
Tan, J., Zhao, H., Hoang, J., Han, Y., Li, H., Zhao, W., 2008. Effects of exogenous nitric oxide on photosynthesis, antioxidant capacity and proline accumulation in wheat seedlings subjected to osmotic stress. Agricultural Sciences. 4, 307-313.
Wang, Y.X., Oyaizu, H., 2009. Evaluation of the phytoremediation potential of four plant species for dibenzofuran-contaminated soil. Journal of Hazardous Materials, 168, 760-764.
Vasconsuelo, A., Boland, R., 2007. Molecular aspects of the early stages of elicitation of secondary metabolites in plants. Plant Science. 172, 861-875.
Vendruscolo, E.C.G., Schuster, I., Pilegg, M., Scapim, C.A., Molinari, H.B.C., Marur, C.J., Vieira, L.G.E., 2007.Stress-induced synthesis of proline confers tolerance to water deficit in transgenic wheat. Journal of Plant Physiology. 164(10), 1367-1376.
Vigani, G., 2012. Does a similar metabolic reprogramming occur in Fe-deficient plant cell and animal tumor cells? Frontiers in Plant Science. 3, 47-51.
Yadav, S.K., 2010. Heavy metals toxicity in plants: An overview on the role of glutathione and phytochelatins in heavy metal stress tolerance of plants. South Africa Journal Botany. 76, 169-179.
| ||
آمار تعداد مشاهده مقاله: 1,663 تعداد دریافت فایل اصل مقاله: 1,428 |