
تعداد نشریات | 21 |
تعداد شمارهها | 301 |
تعداد مقالات | 3,173 |
تعداد مشاهده مقاله | 3,211,825 |
تعداد دریافت فایل اصل مقاله | 2,380,301 |
کاربرد مدل هیدروتایم در کمیسازی پاسخ جوانهزنی بذر پنیرک (Malva sylvestris L.) به پتانسیل آب | ||
تنشهای محیطی در علوم زراعی | ||
مقاله 7، دوره 10، شماره 1، فروردین 1396، صفحه 67-77 اصل مقاله (515.49 K) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22077/escs.2017.532 | ||
نویسندگان | ||
امید انصاری1؛ جاوید قرخلو* 2؛ فرشید قادریفر2؛ بهنام کامکار2 | ||
1دانشجوی دکتری رشته علوم و تکنولوژی بذر، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، ایران | ||
2دانشیار گروه زراعت، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، ایران. | ||
چکیده | ||
مقدمه جوانهزنی بذر یکی از فرآیندهای زیستی مهم است که تحت تأثیر عوامل ژنتیکی و محیطی قرارا میگیرد. دما و پتانسیل آب دو عامل اولیه مهم کنترل کننده جوانهزنی میباشند. پنیرک (Malva sylvestris L.) یکی از مهمترین علفهای هرز مهاجم در جنوب غربی ایران بوده و همچنین بهعنوان یک گیاه دارویی مهم شناخته شده است. پنیرک بومی اروپا، شمال آفریقا و جنوب غربی آسیا میباشد. این گیاه به فراوانی در باغها؛ مزرعهها، حاشیه جادهها، حاشیه مزرعهها، شهرها و مکانهای جمعآوری زبالهها مشاهده میشود و ارتفاع آن از 60 تا 120 سانتیمتر متغییر است. با استفاده از مدل هیدروتایم میتوان پاسخ جوانهزنی بذر به پتانسیل آب را کمیسازی کرد. در این پژوهش با استفاده از مدل هیدروتایم پاسخ جوانهزنی بذر پنیرک (Malva sylvestris L.) به سطوح مختلف پتانسیل آب در دماهای مختلف مورد بررسی قرار گرفت. مواد و روشها این آزمایش در سال 1394 در آزمایشگاه بذر دانشگاه کشاورزی و منابع طبیعی گرگان انجام شد. میوههای پنیرک در سال 1393 از استان خوزستان، شهرستان شوشتر (32 درجه و 2 دقیقه و 47 ثانیه شرقی) جمعآوری شد. در ادامه بذرها از میوهها خارج شدند و در تا زمان آزمایش در شرایط آزمایشگاه نگهداری شد. دمای محیط نگهداری در طی روز 30 درجه سانتیگراد و در طی شب 20 درجه سانتیگراد بود. تیمارهای آزمایشی شامل سطوح مختلف خشکی (0، 0.2-، 0.4-، 0.6-، 0.8-، 1-، 1.2-، 1.4- و 1.6- مگاپاسکال) در دماهای 15، 20 و 30 درجه سانتیگراد بود. در ابتدا، پاسخ جوانهزنی تجمعی بذرها به سطوح مختلف پتانسیل آب در دماهای مختلف با استفاده از مدل ویبول کمیسازی شد، سپس جهت محاسبه ضرایب هیدروتایم برای هر دما از مدل هیدروتایم با توزیع نرمال استفاده شد. تمامی اطلاعات با استفاده از نرم افزار SAS ver 9.2. آنالیز شدند. مدل هیدروتایم به دادههای درصد جوانهزنی تجمعی برازش داده شد. برازش مناسب مدل هیدروتایم برای تمای دادهها توسط ضریب تبیین مدل (R2)، ارتباط بین درصد جوانهزنی واقعی و پیشبینی شده و پتانسیل پایه آب واقعی و پیشبینی شده بررسی شد. یافتهها نتایج نشان داد که دما و پتانسیل اسمزی علاوه بر درصد جوانهزنی بر سرعت جوانهزنی نیز اثر گذار بود. همچنین نتایج نشان داد که با افزایش دما، درصد و سرعت جوانهزنی افزایش یافت و با افزایش پتانسیل آب، درصد جوانهزنی و سرعت جوانهزنی کاهش یافت. همچنین نتایج نشان داد که مدل هیدروتایم برازش داده شده به دادهها دارای ضریب تبیین (R2) بالایی بود. بر طبق نتایج مدل هیدروتایم، ضریب هیدروتایم (θH) با افزایش درجه حرارت بهطور معنیداری کاهش یافت بهطوری که کمترین ضریب هیدروتایم (10.01 مگاپاسپال ساعت) مربوط به دمای 30 درجه سانتیگراد بود. پتانسیل پایه با افزایش درجه حرارت بهطور معنیداری کاهش یافت و بیشترین پتانسیل پایه با میانگین 1.13- و 1.11- مگاپاسکال مربوط به دماهای 15 و 20 درجه سانتیگراد و کمترین میزان پتانسیل پایه (Ψb(50)) با میانگین 0.6 مگاپاسکال مربوط به دمای 30 درجه سانتیگراد بود. کمترین ضریب انحراف توزیع پتانسیل پایه در جمعیت (σ Ψb(50)) (0.31) مربوط به دمای 30 درجه سانتیگراد بود. نتیجهگیری استفاده از مدل هیدروتایم جهت کمیسازی پاسخ جوانهزنی بذر پنیرک به سطوح مختلف پتانسیل آب در دماهای مختلف دارای نتایج قابل قبولی بود. با استفاده از خروجی مدل هیدروتایم در دماهای مختلف میتوان درصد جوانهزنی را در پتانسیلهای مختلف پیشبینی نمود. | ||
کلیدواژهها | ||
سرعت جوانهزنی؛ توزیع نرمال؛ مدل ویبول؛ دما | ||
مراجع | ||
Alimagham, S.M., Ghaderi-Far, F., 2014. Hydrotime model: Introduction and application of this model in seed researches. Environmental Stresses in Crop Sciences. 7(1), 41-52. [In Persian with English Summary]. Ansari, O., Choghazardi, H.R., Sharif Zadeh, F., Nazarli, H., 2012. Seed reserve utilization and seedling growth of treated seeds of mountain rye (Seecale montanum) as affected by drought stress. Cercetări Agronomice în Moldova. 2(150), 43-48. Balbaki, R.Z., Zurayk, R.A., Blelk, M.M., Tahouk, S.N., 1999. Germination and seedling development of drought tolerant and susceptible wheat under moisture stress. Seed Science Technology. 27, 291-302. Baskin, C.C., Baskin, J.M., 2001. Seeds: ecology, biogeography, and evolution ofdormancy and germination. Academic Press, San Diego, California, pp. 666. Bradford, K.J., 1990. A water relation analysis of seed germination rates. Plant Physiology. 94, 840-849. Bradford, K.J., 1995. Water relations in seed germination. In: J. Kigel and G. Galili[eds.], Seed Development and Germination, 351-396.Marcel Dekker Inc. New York, New York, USA. Bradford, K.J., 1997. The hydrotime concept inseed germination and dormancy, pp 349-360. In: Ellis, R.H., Black, M., Murdoch, A.J., Hong, T.D. (eds.), Basic. Applied Aspect. Seed Biology, Boston, Kluwer AcademicPublishers. Bradford, K.J., 2002. Application of hydrothermal time to quantifying and modelingseed germination and dormancy. Weed Science. 50, 248-260. Bradford, K.J., Still, D.W., 2004. Application of hydrotime analysis in seed testing. SeedTechnology. 26, 74-85. Cardoso, V.J.M., Bianconi, A., 2013. Hydrotime model can describe the response of common bean (Phaseolus vulgaris L.) seeds to temperature and reduced water potential. Acta Scientiarum. 35(2), 255-261. Dahal, P., Bradford, K.J., 1990. Effects of priming and endosperm integrityon seed germination rates of tomato genotypes. II. Germination at reduced waterpotential. Journal of Experimental Botany. 41, 1441–1453. Del Monte, J.P., Dorado, J., 2011. Effects of light conditions and afterripening time on seed dormancyloss of Bromus diandrus Roth. Weed Research. 51, 581-590. Derakhshan, A., Gherekhloo, J., Vidal, R.B., De Prado, R., 2013. Quantitative description of the germination of littleseed canarygrass (Phalaris minor) in response to temperature. Weed Science. 62, 250-257. Dumur, D., Pilbeam, C.J., Craigon, J., 1990. Use of the Weibull Function to Calculate Cardinal Temperatures in Faba Bean. Journal of ExperimentalBotany. 41, 1423–1430. Fischer, R.A., Turner, N.C., 1978. Plant productivity in the arid and semiarid zones. Annual Review of Plant Physiology. 29, 277–317 Forcella, F., Benech-Arnold, R.L., Sanchez, R., Ghersa, C.M., 2000. Modelingseedling emergence. Field Crops Research. 67, 123-139. Ghaderi-Far, F., Soltani, A., Sadeghipour, H.R., 2009. Evaluation of nonlinear regeression models in quantifying germination rate of medicinal pumpkin (Cucurbita pepo L. subsp. pepo. Convar. pepo var. styriaca Greb), borago (Borago officinalis L.) and black cumin (Nigella sativa L.) to temperature. Journal of Plant Production. 16(4), 1-9. [In Persian with English Summary]. Grundy, A.C., 2003. Predicting weed emergence: a review of approaches and future challenges. Weed Research. 43, 1–11. Grundy, A.C., Phelps, K., Reader, R.J., Burston, S., 2000. Modelling the germination of Stellaria media using the concept of hydrothermal time. New Phytology. 148, 433–444. Guerke, W.R., Gutormson, T., Meyer, D., McDonald, M., Mesa, D., Robinson, J.C., TeKrony, D., 2004. Application of hydrotime analysis in seed testing. Seed Technology. 26 (1), 75- 85. Gummerson, R.J., 1986. The effect of constant temperature and osmotic potentials on the germination of sugar beet. Journal of Experimental of Botany. 37, 729-741. Huarte, R., 2006. Hydrotime analysis of the effect of fluctuating temperatures on seed germination in several non-cultivated species. Seed Science and Technology. 34, 533-547. Kebreab, E., Murdoch, A.J., 2000. The effect of water stress on the temperature germination rate of Orobanche aegyptiaca seeds. Journal of Experimental Botany. 50, 655-664. Leblanc, M. L., Cloutier, D.C., Stewart, K.A., Hamel, C., 2004. Calibration and validation of a common lambsquarters (Chenopodium album) seedling emergence model. Weed Science. 52, 61–66. Michel, B.E., Kaufmann, M.R., 1973. The osmotic potential of polyethyleneglycol 6000. Plant Physiology. 51, 914-916. Myers, M.W., Curran, W.S., VanGessel, M.J., Calvin, D.D., Mortensen, D.A., Majek, B.A., Karsten, H. D., Roth, G.W., 2004. Predicting weed emergence for eight annual species in the northeastern United States. Weed Science. 52, 913–919 Ni, B.R., Bradford, K.J., 1992. Quantities models characterizing seed germinationresponse to abscisic acid and osmoticum. Plant Physiology. 98, 1057-1068 Probert, R.J., 2000. The role of temperature in the regulation of seed dormancy andgermination. In: Fenner M., (Ed.), Seeds: the ecology of regeneration in plantcommunities. CABI Pub., Oxon, UK, New York, pp. 261-292. Roman, E.S., Murphy, S.D., Swanton, C.J., 2000. Simulation of Chenopodium album seedling emergence. Weed Science. 48, 217–224. Schellenberg, M.P. Biligetu, B. Wei, Y. Predicting seed germination of slender wheatgrass [Elymus trachycaulus (Link) Gould subsp.trachycaulus] using thermal and hydro time models. Canadian Journal of Plant Science. 93, 793-798. Sester, M., Dürr, C., Darmency, H., Colbach, N., 2007. Modeling the effects of cropping systems on the seed bank dynamics and the emergence of weed beet. Ecology Modeling. 204, 47–58. Sohrabi, S., Gherekhloo, J., 2015. Investigating status of the invasive weeds of Iran. Proceeding of 6th Iranian Weed Science Congress. 1-3 September, Birjand, Iran. [In Persian with English Summary]. Tabaraki, R., Yousefi, Z., Ali, H., Gharneh, 2011. Chemical Composition and Antioxidant Properties of Medicinal Plant Malva sylvestris L. Journal of Research in Agricultural Science. 8(1): 59-68. [In Persian with English Summary]. Van Assche, J.A., Vandelook, F.E.A., 2006. Germination ecology of eleven species of Geraniaceae and Malvaceae, with special reference to the effects of drying seeds. Seed Science Research. 16(4), 283-290. Windauer, L., Altuna, A., Benech-Arnold, R., 2007. Hydrotime analysis ofLesquerella fendleri seed germination responses to priming treatments. Industrial Crops Products. 25, 70-74. | ||
آمار تعداد مشاهده مقاله: 1,298 تعداد دریافت فایل اصل مقاله: 1,011 |