فصلنامه زمین ساخت
سال اول، شماره سوم، پاییز ۱۳۹۴
۱۵-۰۲

تحلیل یافته‌های مقدماتی پارینه‌زاره‌نشانی و لرزه‌زمین‌ساختی گسل قلعه سرخ، خاور ایران

حمام بردن پناف ۴، محمد مهدی خلیفی، حمید نظری، ابراهیم غلامی

۱. دانشجوی دکتری، گروه زمین شناسی، دانشگاه علوم، دانشگاه علوم، دانشگاه علوم، دانشگاه بیرجند، بیرجند.
۲. استاد، گروه زمین شناسی، دانشگاه علوم، دانشگاه علوم، دانشگاه بیرجند، بیرجند.
۳. استادیار، پژوهشکده علوم زمین، سازمان زمین شناسی و اکتشافات معدنی کشور، تهران.
۴. استادیار، گروه زمین شناسی، دانشگاه علوم، دانشگاه علوم، دانشگاه بیرجند، بیرجند.

چکیده

در خاور ایران زمین‌لرزه‌های متعدد تاریخی و دستگاهی خسارت بار گزارش شده است، لذا مطالعات دقیق دریختگی و پارینه‌زاره‌نشانی نقش مهمی در تنهایی مدل لرزه‌زمین‌ساخت این بخش از ایران دارد. گسل قلعه سرخ با داشتن سابقه لرزه‌های قوی و شوادی ریختگی و ساخت جوان، نمونه مناسب برای مطالعات پارینه‌زاره‌نشانی است. گسل قلعه سرخ با راستای شمالی-جنوبی و طول ۵۷ کیلومتر و سازوکار امتیازدلی فعالی را است. پیکر از گسل‌های فعال و لرزه‌زا بخش شمالی به راه زمین در نسل ساخت است. بررسی ریختگی و پارینه‌زاره‌نشانی این گسل با تلاش دانشجویان به دست آمده‌ای حاصل از بررسی تصاویر ماهواره‌ای نشان می‌دهد. به منظور بررسی یاری‌های پارینه‌زاره‌نشانی ساختی این گسل به موقع تحقیق جغرافیایی تقریبی (۱۵۰۰×۳۸۰) شماری، بر روی گسل قلعه‌سرخ انتخاب شده است. در این بخش، یک ترکیب اصلی به طول ۱۱ متر، عمق ۴۵ متر و راستای E8°N و دو ترکیب جانی به ضعف بین شوادی بیشتر از N8°W و ۷۲°E است که نشانگر گسل‌های سازوکار و لغزش است. مقادیر برآورد شده از ویژگی‌های هندسی گسل قلعه سرخ همچون راستا و شیب، براز و N8°W است. این گسل قلعه سرخ گسل سازوکار و لغزش است. مقادیر برآورد شده از ویژگی‌های هندسی گسل قلعه سرخ همچون راستا و شیب، براز و N8°W است. این گسل قلعه سرخ گسل سازوکار و لغزش است. مقادیر برآورد شده از ویژگی‌های هندسی گسل قلعه سرخ همچون راستا و شیب، براز و N8°W است. این گسل قلعه سرخ گسل سازوکار و لغزش است. مقادیر برآورد شده از ویژگی‌های هندسی گسل قلعه سرخ همچون راستا و شیب، براز و N8°W است. این گسل قلعه سرخ گسل سازوکار و لغزش است. مقادیر برآورد شده از ویژگی‌های هندسی گسل قلعه سرخ همچون راستا و شیب، براز و N8°W است. این گسل قلعه سرخ گسل سازوکار و لغزش است. مقادیر برآورد شده از ویژگی‌های هندسی گسل قلعه سرخ همچون راستا و شیب، براز و N8°W است. این گسل قلعه سرخ گسل سازوکار و لغزش است. مقادیر برآورد شده از ویژگی‌های هندسی گسل قلعه سرخ همچون راستا و شیب، براز و N8°W است. این گسل قلعه سرخ گسل سازوکار و لغزش است. مقادیر برآورد شده از ویژگی‌های هندسی گسل قلعه سرخ همچون راستا و شیب، براز و N8°W است. این گسل قلعه سرخ گسل سازوکار و لغزش است. مقادیر برآورد شده از ویژگی‌های هندسی گسل قلعه سرخ همچون راستا و شیب، براز و N8°W است. این گسل قلعه سرخ گسل سازوکار و لغزش است. مقادیر برآورد شده از ویژگی‌های هندسی گسل قلعه سرخ همچون راستا و شیب، براز و N8°W است. این گسل قلعه سرخ گسل سازوکار و لغزش است. مقادیر برآورد شده از ویژگی‌های هندسی گسل قلعه سرخ همچون راستا و شیب، براز و N8°W است. این گسل قلعه سرخ گسل سازوکار و لغزش است. مقادیر برآورد شده از ویژگی‌های هندسی گسل قلعه سرخ همچون راستا و شیب، براز و N8°W است. این گسل قلعه سرخ گسل سازوکار و لغزش است. مقادیر برآورد شده از ویژگی‌های هندسی گسل قلعه سرخ همچون راستا و شیب، براز و N8°W است. این گسل قلعه سرخ گسل سازوکار و لغزش است. مقادیر برآورد شده از ویژگی‌های هندسی گسل قلعه سرخ همچون راستا و شیب، براز و N8°W است. این گسل قلعه سرخ گسل سازوکار و لغزش است. مقادیر برآورد شده از ویژگی‌های هندسی گسل قلعه سرخ همچون راستا و شیب، براز و N8°W است. این گسل قلعه سرخ گسل سازوکار و لغزش است. مقادیر برآورد شده از ویژگی‌های هندسی گسل قلعه سرخ همچون راستای شیب، براز و N8°W است. این گسل قلعه سرخ گسل سازوکار و لغزش است. مقادیر برآورد شده از ویژگی‌های هندسی گسل قلعه سرخ همچون راستای شیب، براز و N8°W است. این گسل قلعه سرخ گسل سازوکار و لغزش است. مقادیر برآورد شده از ویژگی‌های هندسی گسل قلعه سرخ همچون راستای شیب، براز و N8°W است. این گسل قلقس سرخ گسل سازوکار و لغزش است. مقادیر برآورد شده از ویژگی‌های هندسی گسل قلعه سرخ همچون راستای شیب، براز و N8°W است. این گسل قلعه سرخ گسل سازوکار و لغزش است. مقادیر برآورد شده از ویژگی‌های هندسی گسل قلعه سرخ همچون راستای شیب، براز و N8°W است. این گسل قلعه سرخ گسل سازوکار و لغزش است. مقادیر برآورد شده از ویژگی‌های هندسی گسل قلعه سرخ همچون راستای شیب، براز و N8°W است. این گسل قلعه سرخ گسل سازوکار و لغزش است. مقادیر برآورد شده از ویژگی‌های هندسی گسل قلعه سرخ همچون راستای شیب، براز و N8°W است. این گسل قلعه سرخ گسل سازوکار و لغزش است. مقادیر برآورد شده از ویژگی‌های هندسی گسل قلعه سرخ همچون راستای شیب، براز و N8°W است. این گسل قلعه سرخ گسل سازوکار و لغزش است. مقادیر برآورد شده از ویژگی‌های هندسی گسل قلعه سرخ همچون راستای شیب، براز و N8°W است. این گسل قلعه سرخ گسل سازوکار و لغزش است. مقادیر برآورد شده از ویژگی‌های هندسی گسل قلعه سرخ همچون راستای شیب، براز و N8°W است. این گسل قلعه سرخ گسل سازوکار و لغزش است. مقادیر برآورد شده از ویژگی‌های هندسی گسل قلعه سرخ همچون R8°W است. مسئول مطالبات، پست الکترونیک: hesam.yazdanpanah@yahoo.com *
1 مقدمه
داده‌های لرزه‌های دستگاهی و تاریخی اهمیت زیادی در شاخه‌های لرزه‌شناسی بالا و پایین‌رخ دارد ولی استناد به این داده‌ها به تنهایی نمی‌تواند گویای واقعیت زمین‌ساختی یک منطقه فعال زمین‌ساختی مانند خاور ایران باشد. علم پالئوئیزمژن‌سی (Paleoseismology) با بررسی ویژگی‌های زمین‌لرزه‌های گذشته به وقوع پیوست در بازه زمانی بیشتر، داده‌های کامپلیکس نسبت به داده‌های تاریخی در اختیار ما قرار می‌دهد. به اعتقاد Vernant et Tirrul et al. (1983), Freund (1970) و تحقیقات Parsons et al. (2006) و al. (2004) خاور ایران رابطه به برش راست در بین ایران و افغانستان می‌باشد و بخشی از هم‌گرایی میلی سپس فعالیت گسل‌های حاشیه‌ای فعال می‌گردد. (2000) با بررسی گسل‌های فعال در خاور ایران بر این باور است که گسل‌های شمالی - جنوبی با سازوارام امتدادزد راست در پایان‌های آنها به گسل‌های شمال باختری - جنوب خاوری (با مؤثره غالب راندگی) خانه می‌شوند. (2006) در ناحیه بیرجند را نتیجه تاثیر متقابل روندهای گسل‌ی اصلی (شمالی - جنوبی و خاوری - باختری) می‌دانند و متقابله‌هایی که ترحیم انقلابات از گلسال امتدادزد راست بر در جنوب با روند غالب شمالی - جنوبی، به گسل‌ی امتدادزد چپ‌دار در شمال با روند غالب خاوری - باختری، سبب توازی گرسنگی فعال در مناطق بن آنها گردیده است. گسل قلعه سرخ با روند شمالي - جنوبی و طول 74 کیلومتر در بخش شمالي پهنه لوت واقع شده است. (شکل 1). این گسل متناسب بار در نقشه توده شیاه (شکل 1) و به خاطر تزئینی بیشتر قلعه سرخ (واقع در شمال شرق شیراز) و با ذکر شواهدی از حرکت‌های امتدادزدینی راست بر در رسوبات شناشیری و بندین نام معرفی شده است. در این تحقیق ابتدا بررسی اجمالی از گلسال فعال

2 - زمین شناسی و چاپ‌گاه زمین‌ساختی گستره در سیستم کوپریزای آپل - هیمالیا، توسعه کوه‌های خاور ایران تحت عنوان زیر به زمین در سیستم از اهمیت ویژه برخوردار است. گسل قلعه سرخ در بخش میانی زون زمین در سیستم واقع شده است. این گسترده در بزرگ‌ترین گستره‌ها از مناطق پایین‌رخ و نوروزی شما هسته‌های آن در کرانه فعالی تا دیگر نواحی است که از پایین‌رخ آنها ساخته می‌شود. پدیده‌های این گلسال ناشک از ترازهای آبکننده آتی و نواحی گسل‌های این زون به دو روش گرفته‌اند. این گلسال‌ها شامل تیزی می‌شود: از شیلد ماسیستگ با چاپ‌گاه نازک از گلسال‌های آبکننده آتی و پایدار می‌باشد. واحدهای آتش‌نشان در از کشنده پهنه (با ترکیب روپویت، داسیت، آندزیت و باتولت) نیز در پایه‌ای از نواحی ریشه‌دار دارند (نظری، 1371). منطقه قلبه سرخ از نظر لیتوژئی شامل: رسوبات کوکتورن، کنتگولومرا، تنوژن، شیلد‌های انسان و واحدهای آندرزیتی می‌باشد.

3 - لرزه‌های ساخت و پیشینه لرزه‌خیزی گستره
عکس‌های نیز طبقه شکل‌های فعال در ثلاث ایران غربی، مغربی بین پروپت و اوجه شناخته شد. بر اساس بررسی‌های GPS، مقادیر سرم مورد خاصی به میزان بار ایده‌بردار از رشته راست از شمای - جنوبی (Walker and Jackson, 2002) در شرق ایران مشورت شد که نتایج بوده که واقعیت زمین‌ساختی یک منطقه فعال و اجرای ایران تحت پوشش گلسال امتدادزد راست بر با روند شمای - جنوبی ایجاد شده است.
شناختی گسل‌های فعال در تعیین مناطق فعالیت یکی از نظر تکونیکی و لرزه‌پزشکی مهم می‌باشد. بررسی زمین‌شناسی لرزه‌ها گل‌پذیری تانجی، الگوی لرزه‌های میانگینی و سیماتی لرزه‌پزشکی آن ناحیه را نشان می‌دهد. این ارائه شامل و گام‌گذاری روي‌پذیر زمین‌لرزه‌های گل‌پذیری از همیث و پژوهان برخوردار است (Berberian et al., 1999). لذا در این بخش اشاره به گسترده‌ای رخ‌داده‌های فعال مهم در 
منطقه مورد (Ambraseys & Melville, 1982) 

- زمین‌لرزه ۱۹ فوریه ۱۹۳۱ میلادی: نوژاد این زمین‌لرزه deceptive جهت ایجاد شکایت شمال غرب بیرجند آمیخته سنتی گنگ و بروآرد روساتای سنتی گنگ را در این ساختار یکسان باشد را در این ساختار یکسان باشد. 

- زمین‌لرزه ۱۹ فوریه ۱۹۳۱ میلادی: نوژاد این زمین‌لرزه deceptive جهت ایجاد شکایت شمال غرب بیرجند آمیخته سنتی گنگ و بروآرد روساتای سنتی گنگ را در این ساختار یکسان باشد را در این ساختار یکسان باشد.

شکل ۱: نقشه لرزه‌پزشکی شاخه خاور ایران شامل گسل‌های فعال (خطوط قرمز رنگ) و محدوده‌های ناسطحی (Berberian et al., 1999).
کیلومتر در بخش شرقی گسل دشت پیاس و در حد فاصل روستاهای چاه زند و نیاپاد ایجاد شد. این ناحیه کم جمعیت است و زمین‌لرزه کشته نسیما کمی داشت.

- زمین‌لرزه 1 اوت 1963 م. موسسه: هنگام سیبدم
  1 اوت 1963 میلادی، زمین‌لرزه خسارتهای بی‌پایانی (بای کرگدن 5/8 در مقیاس ریشر) تعدادی از روستاهای واقع در شمال پرند (موسویه چاهک، چلونک، و تاجکو) در منطقه‌ای که اثر زمین‌لرزه 16 فوریه 1961 در هم کویشده شده بود، را به ویرانی تبدیل کرد.

- زمین‌لرزه 21 اوت 1968 میلادی دشت بابه: در اواخر بعد از ظهور 6 شهریور 1347 زمین‌لرزه فاجعه‌باری با بزرگی 7/1 ریشر، خاور ایران را لرزاند و ۶ تا ۸ آخرین وسیعی از شمال غربی قائنات بیست و دو. تمرکز آزمایش‌ها در ۲۰۰ تا ۳۰۰ تا بیشتر به ناحیه خانه‌ها کاملاً فروورخت و ۲۳۲ تا ساکنان آن کشاورزی شستند. یکی از نشانه‌های بارز این زمین‌لرزه حدود ۱۰ ساعت پس از زمین‌لرزه به‌مناسبت ویرانی گسل کشته است.

- زمین‌لرزه 1 سپتامبر 1978 میلادی فردوس: در حدود ۲۱ ساعت پس از زمین‌لرزه دشت پیاس، زمین‌لرزه شدیدی با بزرگی 6/4 در مقیاس ریشر، منطقه فردوس را لرزاند و این شهر را تقریباً به کلی ویران کرد.

- زمین‌لرزه 27 نوامبر 1979 میلادی کویلی - نیپاتای: این حادثه با بزرگی ۷/۱ سطح شکستی به طول ۹۰ کیلومتر در بخش گسل دشت پیاس و در حد فاصل روستاهای چاه زند و نیاپاد ایجاد شد. این ناحیه کم جمعیت است و زمین‌لرزه کشته نسیما کمی داشت.
شکل ۲ شواهد عملکرد فعال گسل قله سرخ در منطقه جنوب آباد. این تصویر ماهواره‌ای از شبکه توزیع آب‌آوری‌ها (خطوط آب‌رانگ) و تشكل پنتنهای فشاری (محدوده‌های زرد و سبز) ایجاد شده در راستای عملکرد گسل قله سرخ. با این‌که آمدگی سمت خارجی گسل قله سرخ و تشكل پنتنهای فشاری محدود گستردگی در راستای آن، این تصویر چاپ‌آماده نیست.

این مشاهده‌ها در محل عبور گسل فراهم می‌کند. البته به دلیل نبود داده‌های دقیق از آهنگ فرسایش در منطقه، همیشه مقدار محاسبه شده از این روش کمتر از میزان واقعی، به ویژه در پراوود چابهاری افقی است. بر این اساس در محل بیشتر چابهاری قائم و افقی راست بر اندازه گیری شده بر روی سطح عمومی بر راستای گسل به ترتیب برابر ۲۰۱۹۱۰ متر و ۱۹۵۱۵ متر است.

با توجه به شواهد مشاهده شده در تصاویر ماهواره‌ای، سازوکار گسل قله سرخ با طول تقیبی ۷۵ کیلومتر، راستالغز راست بر چپ موقوف معکوس است (شکل ۲). به استناد مشاهدات میدانی شایع گسل قله سرخ به سمت غرب است. پره‌های توپوگرافی ترسیم شده بر روی داده‌های SRTM و پرسس‌ها دقیق و پریگ مقياس میدانی در راستای بخش های مختلف گسل قله سرخ امکان پرآوردن میزان جابه‌جایی قائم و افقی را می‌دهد.
شکل 3. مدل توبوگرافی تهیه شده با GPS Kinematic از افزایش گل قله‌مرخ در نزدیکی روستای جنت آباد، جهت بررسی سازوکار گل و مقدار دقیق جابآوری افقی و قائم در راستای گل. خطوط حمله چین قرمز و متنوع آبی رنگ به ترتیب مسیر عبور گل و آراورها را نشان می‌دهند. به دلیل بالایدکی سمت خاری گل، پنجره‌های فنی در راستای گل نشکل شده است. کادرهای مشکی موجود در دو ناحیه محل حفر ترانته را نشان می‌دهند.

به کمک مدل رقومی برگرفته از نشان برداشته دقیق قائم بررسی گچ‌بجنگی افقی و قائم در راستای گل جهت محاسبه هندسه (شیب و سمت شیب) و سازوکار گل قله‌مرخ فراهم شده است.

بر اساس اسکار انتخاب شده به جهت حفر ترانته در ناحیه موسوم به جنت آباد، جابآوری قائم و افقی راست اندوز گچ‌بجنگی شده بر روی پشت‌های گلی و آراورها جابه‌جا شده واقع در مسیر عمدکره به گلی برابر 13450 متر و 1300/0 متر است. محاسبه این مقادیر امکان محاسبه هندسه (شیب و سمت شیب صفحه گچ‌بجنگی) و سازوکار گچ‌بجنگ را فراهم می‌آورد (شکل 3 و 4). گل قله‌مرخ، یک گل با سازوکار مدرن‌الزمان راسته است که جابآوری دائم آن ناشی از مولفه فشاری (معكوک) شرق به غرب گل است.
ترانشته است که مستلزم انجام مطالعات
ریخت زمین‌سخت دقیق و هدف‌دار می‌باشد. پاییزه‌ی توجه کرد که محل حفر ترانشته به گونه‌ای باشد که در آن موانع روشنایی جوان‌تر تحت‌ترخیص گسل قرار گرفته باشد و به هنگام گسل را پیدا و به‌راحتی تشخیص داده.
همچنین به دلیل اهمیت بالای حفظ شواهد زمین‌لرزه در های تاریخی در محل ترانشته و وجود تعامل بین ترخ روی‌گذاری و فرسایش از عوامل مهم در انتخاب موانع است. جای‌گاه‌های مشاهده شده در راستای گسل قله‌سرخ به‌لحاظ ریخت‌زیم‌ساختگی گویای نقش بودن این گسل است. جهت پارامترهای زمین‌شناسی بر روی این گسل، ابتدا بر اساس تصاویر ماهواره‌ای، البته Gunn که محل مشاهده حفر ترانشته انتخاب گردیده‌است. پس از انتخاب محل مناسب، با توجه به هندسه و ساعتوارا گسل، ترانشته به صورت عمود بر امتداد گسل حفر شده است. طول و عمق ترانشته از ارتباط مستقیم به پهنه گسل (یا روزنامه گسل) و نوع حوضه روی‌گذاری یا گسل‌سخت مورد نظر داد. در تحقیق‌های اساسی بررسی‌های های مربوط به ساختارهای زمین‌شناسی با مختصات تقریبی ۵۹/۹۰ شرقی و ۳۳/۶۰ شمالی به منظور حفر ترانشته‌پاره‌اندازی انتخاب و سپس
ترانشته (T) به طول ۱۱ متر، عمق ۴/۵ متر و راستای گسل قله‌سرخ (N7°W) به طول ۹۷ متر، عمق ۲/۸ متر و راستای N8°E (شکل ۳). تصویر دبیواز جنوبی ترانشته اصلی (T) حفر شده بر روی گسل قله‌سرخ به همراه لوک ترسیم شده (پایین).
نخستین رساوسی موجود در تراثه بر اساس تفاوت جنس، رنگ، اندازه و شکل‌ها، جورشگرگی و سختی به آنها تعلق می‌گیرد. 

1- واحد ۱: رساوسی کهاکستی تا نخودی روشن که دارای دانه‌بردی بسیار ریز می‌باشد. این واحد به‌لیبریتی به اسکارپ گیاهی، غالباً رسمیت حاصل از فرسایش و مشکل از نتاوی رس و سیل و فاقد لاپیدی می‌باشد.

2- واحد ۲: نخستین قهوهای روشن که دارای دانه‌بردی ماهیت Colluvium

3- واحد ۳: رضاها از نخودی تراشته بوده است.

4- واحد ۴: شکل ۵: تصویر دوباره جنوبی تراشته T۲ حفر شده بر روی گسل فلش به همراه لود کریست شده با رنگ‌های مختلف (پایین) جهت روند اطراف و مجدد صفحه دکوری ریز گس، و انقباض اطمنان از یافته‌های تراشته (T۲).

5- شکل ۶: مشاهده پدیده رواکراسی (Liquefaction) در تراشته (T۱) حفر شده عمود بر راستای گسل. جهت مشاهده پدیده این پدیده در تصویر پایین به صورت شماتیک نشان داده شده است.
شمال ایران مركزی نش تن برشی را در خاور ایران ایجاد
میکن که این تن به نوبه خود موجب حرکت امتدادی‌های از گسل فرآیند را بسیار بیش از ایران
می‌گردد (2004). زمان فعالیت اکثر گسل‌های فعال ایران، مربوط به 7
میلیون سال اخیر (1974) و بر این اساس
جهت تخمین نرخ نسبی لغزش در راستای گسل، این
زمان در نظر گرفته شده است.

GPS Kinematic
در این تحقیق با استفاده از مشاهدات
تصاوير ماوورادهای و مشاهدات صحرایی، جابجایی‌های
زیرا است둥ام قبئ ماده‌های آب‌زیب‌ها و واحدهای
لیتوژوگی بپره گسل مدل ساختار اندازه گیری شده و
سپس نرخ لغزش برای آن برآورد شده است. زمان
جابجایی برابر گسل لغزش در 7 ناحیه که در آنها
به وضوح می‌توان برش و جابجایی راست بر را مشاهده
کرد، انداده‌گیری گردیده است. است. در جدول 1 ناحیه
های اندازه‌گیری نرخ لغزش زمین‌شناسی را بر اساس
پارامترهای مختلف ارائه شده است.

جدول 1. نتایج اندازه‌گیری ماده‌های جابجایی زمین‌شناسی و شواهد عملکرد گسل قله سرخ

<table>
<thead>
<tr>
<th>مسیر آب‌زیب (m)</th>
<th>واحد (m)</th>
<th>واحد (m)</th>
<th>واحد (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 m</td>
<td>14 m</td>
<td>20 m</td>
<td>25 m</td>
<td>30 m</td>
<td>35 m</td>
<td>40 m</td>
<td>45 m</td>
<td>50 m</td>
</tr>
<tr>
<td>نرخ لغزش (mm/yr.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2012</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- تبیین گستر
در این تحقیق با ویژگی‌های هندسی و سازوکار جویان
گسل لغزش سرخ را با دقتی قابل توجه به عنوان بخشی از
گسل با درازای حدود 55 کیلومتر ارائه شد. بررسی‌های
ریخت زمین‌شناسی و پارامترهای زمین‌شناسی بر روی این گسل
حاکی از جنبایی این گسل در پایه زمینی پلیوستنی بالایی
GPS - هلوسیس دارد. بر اساس نتایج مشاهدات
Wells and Coppersmith, 1994
و داده‌های حاصل از محاسبه
میزان جابجایی‌های بر روی گسل‌های لغزش زمین‌شناسی در این روزگار
و بر این اساس
می‌باشد.

Falcon, 1974
می‌باشد. بر اساس جابجایی‌های تجمع قابل مشاهده بر روی
لغزش در همان مدت و این نتایج با افزایش
میزان برون و تغییرات ارائه شده است.

Wells and Coppersmith, 1994
و داده‌های حاصل از محاسبه
میزان جابجایی‌های بر روی گسل‌های لغزش زمین‌شناسی در این روزگار
و بر این اساس
می‌باشد.

Falcon, 1974
می‌باشد. بر اساس جابجایی‌های تجمع قابل مشاهده بر روی
لغزش در همان مدت و این نتایج با افزایش
میزان برون و تغییرات ارائه شده است.


Analysis of preliminary paleoseismic results and seismotectonic data in Qaleh-Sorkh fault; East of Iran

H. Yazdanpanah,*, M. M. Khatib, H. Nazari, E. Gholami

1. Ph.D. Student, Department of Geology, Faculty of Basic Sciences, University of Birjand, Birjand, Iran.
2. Professor, Department of Geology, Faculty of Basic Sciences, University of Birjand, Birjand, Iran.
3. Assistant Professor, Research Institute for Earth Sciences, Geological Survey of Iran, Tehran, Iran.
4. Assistant Professor, Department of Geology, Faculty of Basic Sciences, University of Birjand, Birjand, Iran.

Abstract

The Qaleh-Sorkh Fault with N-S trend, 57 km length and right-lateral strike-slip Mechanism is one of the seismic and active faults in north of Sistan suture zone. Combining data obtained from satellite imagery, geological maps, shaded rather elevation model and field observations use for morphotectonic investigations in this fault, which shows quaternary sediments cut, bend or move the direction of streams with right-lateral component. Until now has been reported numerous disasters historical and instrumental earthquake in east of Iran. So, morphotectonic and paleoseismology studies have been important role in the provider of the seismotectonic models. According to this, determination of seismic parameter and seismic action in the Qaleh-Sorkh fault needed to do paleoseismologic investigation. So, this fault site locate selected in 33°32’40” Latitude and 59°59’25” Longitude that has named Jannat-Abad site. In this location excavated one main trenching with 21 m length, 4.5 m depth and N80°E trends and two secondary trenching for more evidence. Preliminary results on main trench of Qaleh-Sorkh fault in Jannat-Abad site show at N7°W, 72°E in this faults that have a right-lateral slip with thrusting component.

Keywords: east of Iran, paleoseismology, morphotectonic, Qaleh-Sorkh fault, active fault.

* Correspondent author Email: hesam.yazdanpanah@yahoo.com