| تعداد نشریات | 21 |
| تعداد شمارهها | 349 |
| تعداد مقالات | 3,671 |
| تعداد مشاهده مقاله | 4,787,740 |
| تعداد دریافت فایل اصل مقاله | 3,200,925 |
مطالعه تنوع ژنتیکی و روابط بین صفات مورفولوژیک در لاینهای ذرت (.Zea mays L) تحت شرایط بهینه و تنش کمبود فسفر | ||
| تنشهای محیطی در علوم زراعی | ||
| مقالات آماده انتشار، پذیرفته شده، انتشار آنلاین از تاریخ 07 دی 1404 اصل مقاله (1.84 M) | ||
| نوع مقاله: مقاله پژوهشی | ||
| شناسه دیجیتال (DOI): 10.22077/escs.2025.8392.2318 | ||
| نویسندگان | ||
| مریم رزمجو1؛ رضا درویش زاده* 2؛ هادی علیپور3؛ ابراهیم سپهر4 | ||
| 1دانشجوی سابق دکتری، گروه تولید و ژنتیک گیاهی، دانشکده کشاورزی، دانشگاه ارومیه، ارومیه، ایران | ||
| 2استاد، گروه تولید و ژنتیک گیاهی، دانشکده کشاورزی، دانشگاه ارومیه، ارومیه، ایران | ||
| 3دانشیار، گروه تولید و ژنتیک گیاهی، دانشکده کشاورزی، دانشگاه ارومیه، ارومیه، ایران | ||
| 4استاد، گروه خاک، دانشکده کشاورزی، دانشگاه ارومیه، ارومیه، ایران | ||
| چکیده | ||
| فسفر یک منبع ضروری و غیر قابل تجدید است که برای بهرهوری محصولات در سراسر جهان حیاتی است. فسفر در طبیعت غیر متحرک است و بنابراین، شناسایی ژنوتیپهای جدید با جذب و استفاده کارآمد از فسفر در یک محیط با فسفر ناکافی بسیار مهم است. در این تحقیق، تنوع ژنتیکی 93 لاین خالص ذرت با استفاده از صفات مورفولوژیک تحت شرایط بهینه و تنش کمبود فسفر در قالب طرح کاملاً تصادفی با سه تکرار در شرایط گلدانی بررسی شد. نتایج نشان داد که تنش کمبود فسفر باعث کاهش معنیدار میانگین صفات مورفولوژیک شد. نتایج رگرسیون گام به گام و تجزیه علیت نشان داد که تحت شرایط بهینه؛ صفات وزن بلال بدون غلاف، وزن چوب بلال، قطر بلال، قطر چوب بلال، طول بلال و تعداد برگ بالای بلال و تحت شرایط تنش کمبود فسفر؛ صفات وزن بلال بدون غلاف، طول بلال، قطر بلال، وزن صد دانه و عملکرد بیولوژیک مهمترین صفات مؤثر بر عملکرد دانه بودند. در تجزیه خوشهای، لاینهای ذرت در شرایط بهینه در سه خوشه و تحت شرایط تنش کمبود فسفر در دو خوشه گروهبندی شدند. در هر دو شرایط بهینه و تنش کمبود فسفر، خوشه اول شامل لاینهایی با عملکرد بالا بود که میتوان در پروژههای تولید هیبریدهای ذرت متحمل به تنش کمبود فسفر استفاده نمود. بر اساس نتایج حاصل از تحلیل عاملی، صفات عملکرد دانه، وزن بلال با غلاف، وزن بلال بدون غلاف و ارتفاع تا تاسل که میزان اشتراک بالایی در هر دو شرایط بهینه و تنش کمبود فسفر داشتند، به-عنوان صفات کلیدی جهت انتخاب لاینهای متحمل به تنش کمبود فسفر معرفی میشوند. | ||
| کلیدواژهها | ||
| تحلیل عاملی؛ تجزیه خوشهای؛ تنش کمبود فسفر؛ ذرت | ||
| مراجع | ||
|
Acquah, G.M., Adamas, W., Kelly, J.D., 1992. A factor analysis of plant variables associated with architectur and seed size in dry bean. Euphytica. 60(3), 171-177. https://doi.org/10.1007/BF00039395 Adeyemi, O., Keshavarz-Afshar, R., Jahanzad, E., Battaglia, M.L., Luo, Y. Sadeghpour, A., 2020. Effect of wheat cover crop and split nitrogen application on corn yield and nitrogen use efficiency. Agronomy. 10(8), 1081. https://doi.org/10.3390/agronomy10081081 Afzal, A., Bano, A., 2008. Rhizobium and phosphate solubilizing bacteria improve the yield and phosphorus uptake in wheat (Triticum aestivum). International Journal of Agriculture and Biology. 10 (1), 1560-1566. https://doi.org/07-092/MFA/2008/10–1–85–88 Ahmad Hisham, A.R, Ch’ng, H.Y., Rahman, M.M., Mat, K. Zulhisyam, A.K., 2021. Effects of zinc on the growth and yield of maize (Zea mays L.) cultivated in a tropical acid soil using different application techniques. Earth and Environmental Science. 756, 01205. http://doi.org/10.1088/17551315/756/1/012056 Ahmadi, J., Vaezi, B., Pour-aboughadareh A., 2016. Analysis of variability, heritability, and interrelationships among grain yield and related characters in barley advanced lines. Genetika. 48 (1), 73-85. http://doi.org/10.2298/GENSR1601073A Akshaya, M., Shantakumar, G., Sridevi, O., Sangamesh, N., 2022. Correlation and path coefficient analysis for determining interrelationships among grain yield and yield related characters in maize hybrids (Zea mays L.). Pharma Innovation. 11(3), 1343-1346. http://doi.org/10.22271/tpi.2022.v11.i3r.11471 Ali, A., Adnan, M., Abbas, A., Javed, M.A., Safdar, M.E., Asif, M., Imran, M., Iqbal, T., Rehman, F.U., Ahmad, R., 2020. Comparative performance of various maize (Zea mays L.) cultivars for yield and related attributes under semi-arid environment. AGBIR. 36(4), 63-66. Al-Naggar, A.M.M., Shafik, M.M., Musa, R.Y.M., 2020. Genetic diversity based on morphological traits of 19 maize genotypes using principal component analysis and GT biplot. Annual Research & Review in Biology. 35(2), 68-85. http://doi.org/10.9734/ARRB/2020/v35i230191. Ansari, M., 2004. Effect of biological fertilizer on corn yield in different climates. Report of monitoring and Support Unit of Green Biotech Company. Jahade-Daneshgahi Tehran. [In Persian]. Azimi, S.M., Nabati, E., Lak, M., Shaban, M., 2015. Effect of N and P fertilizers on yield components of barley. Internatunal Journal Advanced Biology and Biomedical Research. 2(2), 365-370. Bayuelo-Jiménez, J.S., Gallardo-Valdéz, M., Pérez-Decelis, V.A., MagdalenoArmas, L., Ochoa, I., Lynch, J.P., 2011. Genotypic variation for root traits of maize (Zea mays L.) from the Purhepecha Plateau under contrasting phosphorus availability. Field Crops Research. 121(3), 350– 362. https://doi.org/10.1016/j.fcr.2011.01.001 Beiragi, M.A., Khavari Khrasani, S., Shojaei, S.H., Dadresan, M., Mostafavi, K.h., Golbashy, M., 2011. A study on effects of planting dates on growth and yield of 18 corn hybrids (Zea mays L.). American Journal of Experimental Agriculture. 1(3), 110-120. http://doi.org/10.9734/AJEA/2011/339 Beyaert, R.P., Roy, R.C., 2005. Influence of nitrogen fertilization on multi-cut forage sorghum – sudangrass yield and nitrogen use. Agronomy Journal. 97(6), 1493-1501. http://doi.org/10.2134/agronj2005.0079 Bieleski, R.L., 1973. Phosphate pools, phosphate transport, and phosphate availability. Annual Review in Plant Physiology. 24, 225–252. https://doi.org/10.1146/annurev.pp.24.060173.001301 Cadot, S., Bélanger, G., Ziadi, N., Morel, C., Sinaj, S., 2018. Critical plant and soil phosphorus for wheat, maize, and rapeseed after 44 years of P fertilization. Nutrient Cycling in Agroecosystems. 112, 417–433. https://doi.org/10.1007/s10705-018-9956-0 Calderón-Vázquez, C., Alatorre-Cobos, F., Simpson-Williamson, J., Herrera-Estrella, L., 2009. Maize under phosphate limitation. In J.L. Bennetzen, Hake, S.C. (Eds.), Handbook of Maize: Its Biology, (pp: 381–404). Springer Link. https://doi.org/10.1007/978-0-387-9418-1-19 Chen, Y.L., Rengel, Z., Palta, J., Siddique, K.H., 2018. Efficient root systems for enhancing tolerance of crops to water and phosphorus limitation. Indian Journal of Plant Physiology. 23, 689–696. https://doi.org/10.1007/s40502-018-0415-3 Cordell, D., White, S., 2013. Sustainable phosphorus measures: strategies and technologies for achieving phosphorus security. Agronomy. 3(1), 86–116. https://doi.org/10.3390/agronomy3010086 Das, H., Devi, N.S., Venu, N., Borah, A., 2023. Chemical fertilizer and its effects on the soil environment. Research and Review in Agriculture Sciences. 7, 31-51. Devasree, S., Ganesan, K.N., Ravikesavan, R., Senthil, N., Paranidharan, V., 2020. Relationship between yield and its component traits for enhancing grain yield in single cross hybrids of maize (Zea mays L.). Electronic Journal of Plant Breeding. 11(3), 796-802. https://doi.org/10.37992/2020.1103.131 Fatemi, R., Kahraryan, B., Ghanbary, A., Valizadeh, M., 2006. The evaluation of different irrigation regimes and water requirement on yield and yield component of corn. Journal of Agricultural Science. 1, 133-141. [In Persian]. Fathi, A., Zeidali, E., 2021. Conservation tillage and nitrogen fertilizer: a review of corn growth and yield and weed management. Central Asian Journal of Plant Science Innovation. 1(3), 121-142. https://doi.org/10.22034/CAJPSI.2021.03.01 Ghaffari Azar, A., Darvishzadeh, R., Molaii, B., Kahrizi, D., Darvishi, B., 2019. Classification of maize inbred line based on agromorphological traits in order to produce hybrid seed. Modares Journal of Biotechnology. 10, 297-304. [In Persian]. https://dor.org/20.1001.1.23222115.1398.10.2.17.1 Grant, C.A., Flaten, D.N., Tomasiewicz, D.J., Sheppard, S.C., 2001. The importance of early season phosphorus nutrition. Canadian Journal of Plant Science. 81, 211-224. https://doi.org/10.4141/P00-093 Hebbali, A., 2020. R package ‘olsrr’. Ver. 0.5.3. Tools for building OLS regression models. Hosseini, S.M.S., Mostafavi, Kh., Shiri, M.R., Mohammadi, A., Miri, S.M., 2021. Genetically analysis of grain yield and some agro -morphological characteristics of selected early maturity maize lines using diallel analysis. Cereal Research. 11(3), 269 -280 [In Persian]. https://doi.org/10.22124/CR.2021.20851.1694 Huqe, M.A.S., Haque, M.S., Sagar, A., Uddin, M.N., Hossain, M.A., Hossain, A.Z., Rahman, M.M., Wang, X., Al-Ashkar, I., Ueda, A., El-Sabagh, A., 2021. Characterization of maize hybrids (Zea mays L.) for detecting salt tolerance based on morpho-physiological characteristics, ion accumulation and genetic variability at early vegetative stage. Plants. 10, 2549. https://doi.org/10.3390/plants10112549 Islam, N.U., Ali, G., Dar, Z.A., Maqbool, S., Baghel, S., Bhat, A., 2020. Genetic variability studies involving drought tolerance related traits in maize (Zea mays L.) in breds. International Journal of Chemical Studies. 8(1), 414-419. https://doi.org/10.22271/chemi.2020.v8.i1f.8282 Jackson, J.E., 1991. A user’s guide to principal components. Wiley Interscience. New York U.S.A. 569 pp. https://doi.org/10.1002/0471725331 Jayaraman, K., 1999. A Statistical Manual For Forestry Research. Food and Agricultural Organization of the United Nations Regional Office for Asia and the Pacific Bangkok. 234pp. Jones, C.A., Jacobsen, J.S., Wraith, J.M., 2003. The effects of P fertilization on drought tolerance of malt barley. In "Western Nutrient Management Conference. 5, 88-93. Kafi Ghasemi, A., Esfahani, M., 2005. Effects of nitrogen fertilizer levels on yield and yield components of dent corn (Zea mays L.) in Guilan. Journal of Science and Technology of Agriculture and Natural Resources. 12(5), 55-62. Kansur Fırıncıoglu, H., Unal, S., Erbektas, E. Dogruyol, L., 2010. Relationships between see yield and yield components in common vetch (Vicia sativa ssp. sativa) populations sown in spring and autumn in central Turkey. Field Crops Research. 116, 30–37. https://doi.org/10.1016/j.fcr.2009.11.005 Kassambara, A., Mundt, F., 2020. R package ‘factoextra’. Ver. 1.0.7. Extract and visualize the results of multivariate data analyses. https://rpkgs.datanovia.com/factoextra/#factoextra-extract-and-visualize-the-results-of-multivariate-data-analyses Ketterings, Q., Czymmek, K., Removal of Phosphorus by Field Crops; Agronomy Fact Sheet Series; Fact Sheet #28; Nutrient Management Spear Program, Cornell University: Ithaca, NY, USA; Available online: http://nmsp.cals.cornell.edu/publications/factsheets/factsheet28.pdf (accessed on 25 July 2020). Khan, T.A., Ashraf, I., Mahmood, A., Ilyas, M., Cheema, S.A., Iqbal, M.M., Hassan, M.U., 2023. Exploring the phosphorus efficient maize genotypes on the base of growth and yield traits. Pakistan Journal of Agricultural Research. 36(2), 161-168. https://dx.doi.org/10.17582/journal.pjar/2023/36.2.161.168 Khayatnezhad, M., Zaefizadeh, M., Gholamain, R., 2011. Factor analysis of yield and other traits of Durum wheat under drought stress and non stress conditions. Plant Ecophysiology. 3, 23-2. [In Persian]. Leilah, A.A., Al-Khateeb, S.A., 2005. Statistical analysis of wheat yield under drought conditions. Journal Arid Environ. 61, 483–496. https://doi.org/10.1016/j.jaridenv.2004.10.011 Li, K., Xu, Z., Zhang, K., Yang, A., Zhang, J., 2007. Efficient production and characterization for maize inbred lines with low-phosphorus tolerance. Plant Science. 172 (2), 255–264. https://doi.org/10.1016/j.plantsci.2006.09.004 Maleki, A., Fathi, A., Bahamin, S., 2020. The effect of gibberellin hormone on yield, growth indices, and biochemical traits of corn (Zea mays L.) under drought stress. Journal of Iranian Plant Ecophysiological Research. 15(59), 1-16. [In Persian]. https://dor.org/20.1001.1.76712423.1399.15.59.1.8 Mardi, M., Taleei, A., Omidi, M., 2003. A study of genetic diversity and identification of yield components in Desi chickpea. Iranian Journal of Agriculture Sciences. 34(2), 345-351. [In Persian]. Maschibahoosh, M., Abbaskokht, H., Rabiee, B., 2015. Diversity among new maize hybrids for quantitative and morphological traits. Iranian Journal of Field Crop Science. 46(3), 351 -367. [In Persian]. Masjibahoosh, M., Rabiee, B., Abasdokht, H., Kaf ghasemi, A., Jahandide, H., 2006. Analysis of correlation coefcients between grain yield and its components in corn hybrids. Iranian Journal of Crop Sciences. 2, 215-223. [In Persian]. Masood, M., Ahsan, M., Sadaqat, H.A., Awan, F., 2020. Screening of maize (Zea mays L.) inbred lines under water deficit conditions. Biological and Clinical Sciences Research Journal. p.e 007. https://doi.org/10.54112/bcsrj.v2020i1.7 Mollasadeghi, V., Imani, A.A., Shahryari, R., Khayatnezhad, M., 2011. Classifying bread wheat genotypes by multivariable statistical analysis to achieve high yield under after anthesis drought. Middle-East Journal of Scientific Research. 7, 217-220. Mousavi, S., Nagy, J., 2021. Evaluation of plant characteristics related to grain yield of FAO410 and FAO340 hybrids using regression models. Cereal Research Communications. 49(1), 161-169. https://doi.org/10.1007/s42976-020-00076-3. Naghavi, M.R., Jahansouz, M.R., 2005. Variation in the agronomic and morphological traits of Iranian chickpea accessions. Journal of Integrative Plant Biology. 47(3), 375-379. https://doi.org/10.1111/j.17447909.2005.00058.x Naruee Rad, M.R., Farzanjoo, M., Fanaei, H.R., Arjmandi nejad, A.R., Ghasemi, A, Pol shekan Pahlavan, M.R., 2006. Evaluation of genetic diversity and factor analysis for morphological traits of Sistan and Baluchestan landraces accessions of wheat. Journal of Construction Research in Agriculture and Horticulture. 73, 50-57. [In Persian]. Nikkhoy, F., Shiri, M., 2017. Genetic diversity analysis of maize hybrids through morphological traits and simple sequence repeat markers. Journal Plant Molecular Breeding. 5(1), 49–60. https://doi.org/10.22058/jpmb.2017.31701.1081 Panigrahy, M., Rao, D.N., Sarla, N., 2009. Molecular mechanisms in response to phosphate starvation in rice. Biotechnology Advances. 27(4), 389-97. https://doi.org/10.1016/j.biotechadv.2009.02.006 Pradhan, P., Thapa, B., Ghosh, A., Subba, V., Kundagrami, S., 2022. Trait association and principal component analysis in maize (Zea mays L.) inbred lines. Environment and Ecology. 40(4C), 2527-2531. Priyanto, S.B., Prayitno, O.D., Efendi, R., 2023. Correlation and path analysis maize hybrid yield. Journal of Suboptimal Lands. 12(1), 80-87. https://doi.org/10.36706/JLSO.12.1.2023.629 Qiao, B., He, X., Liu, Y., Zhang, H., Zhang, L., Liu, L., Reineke, A.-J., Liu, W., Müller, J., 2022. Maize characteristics estimation and classification by spectral data under two soil phosphorus levels. Remote Sens. 14, 493. https://doi.org/10.3390/rs14030493 Qureshi, M.A., Ahmad, Z.A., Akhtar, N., Iqbal, A., Mujeeb, F., Shakir, M.A., 2012. Role of phosphate solubilizing bacteria (PSB) in enhancing P availability and promoting cotton growth. Journal of Animal and Plant Sciences. 22, 204–210. Rahimi, Y., Bihamta, M.R., Taleei, A.R., Alipour, H., 2019. Genetic variability assessment of Iranian wheat landraces in term of some agronomic attributes under normal irrigation and rain -fed conditions. Iranian Journal of Field Crop Science. 50(3), 1 -16 [In Persian]. https://doi.org/10.22059/IJFCS.2018.258294.654471 Salimpour, S., Khavazi, K., Nadian, H., Besharati, H., Miransari, M., 2010. Enhancing phosphorous availability to canola (Brassica napus L.) using P solubilizing and sulfur oxidizing bacteria. Australian Journal of Crop Sciences. 4, 330–334. Sanchez, J.J., Goodman, M.M., 1992. Relationships among Mexican and some North American and South American races of maize. Maydica. 37, 41-51. https://doi.org/10.1007/BF02985256 Sandana, P., 2016. Phosphorus uptake and utilization efciency in response to potato genotype and phosphorus availability. European Journal of Agronomy. 76, 95-106. https://doi.org/10.1016/j.eja.2016.02.003 Seyedzavar, J., Norouzi, M., Aharizad, S., Tahmasebpour, S., 2014. Evaluation of correlation among traits in corn hybrids under drought stress conditions. International Journal of Farming and Allied Sciences. 3(10), 1088-1091. Shahbazi, K., Bisharti, H., 2014. An overview of the fertility status of Iran's agricultural soils. Journal of Land Management. 1(1), [In Persian]. https://doi.org/10.22092/lmj.2013.100072 Shoa Hosseini, M., Golbashy, M., Farsi, M., Khavari Khorasani, S., Ashofte Beiragi, M., 2009. Evaluation of correlation between yield and its dependent trait in single cross corn hybrids under drought stress. Abstract Book of 1st Regional Conference on Tropical Crops Production under Environmental Stresses Condition. Islamic Azad University, Khozestan sciences and research branch, Iran. P, 72. [In Persian]. Shoa Hosseyni, S.M., Farsi, M., Khavari Khorasani, S., 2008. Investigation of water deficit stress effect on yield and yield components using path analysis. Journal of Agriculture Science. 18(1), 71-85. [In Persian]. Simpson, R.J., Oberson, A., Culvenor, R.A., Ryan, M.H., Veneklaas, E.J., Lambers, H., Lynch, J.P., Ryan, P.R., Delhaize, E., Smith, F.A., Smith, S.E., Harvey, P.R., Richardson, A.E., 2011. Strategies and agronomic interventions to improve the phosphorus-use efficiency of farming systems. Plant and Soil. 349, 89–120. https://doi.org/10.1007/s11104-011-0880-1 Singh, R., Reddy, M.D., Pandey, G., Kumar, A., 2020. Effect of different levels of phosphorus on performance of barley (Hordeum vulgare L.). Journal of Pharmacognosy and Phytochemistry. 9(3), 363-366. https://doi.org/10.22271/phyto.2020.v9.i3f.11292 Sun, Y., Mu, C., Chen, Y., Kong, X., Xu, Y., Zheng, H., Zhang, H., Wang, Q., Xue, Y., Li, Z., Ding, Z., Liu, X., 2016. Comparative transcript profiling of maize inbreds in response to long-term phosphorus deficiency stress. Plant Physiology and Biochemistry. 109, 467–481. https://doi.org/10.1016/j.plaphy.2016.10.017.Epub 2016 Oct 22. Tang, H., Chen, X., Gao, Y., Hong, L., Chen, Y., 2020. Alteration in root morphological and physiological traits of two maize cultivars in response to phosphorus deficiency. Rhizosphere. 14, 100201. https://doi.org/10.1016/j.rhisph.2020.100201 Valipour, N., Alipour, H., Darvishzadeh, R., 2023. Evaluation of phenotypic diversity of cumulative growing degree-days (GDD) and grain yield in spring wheat cultivars under optimal and zinc deficiency conditions. Plant Productions. 46. [In Persian]. https://doi.org/10.22055/ppd.2022.39617.2003 Valizadeh, H., Aharizad, S., Shiri, M.R., Mohammadi, S.A., Farahmand, Kh., Bahrampur, T., 2014. Grouping of new maize (Zea mays L.) hybrids using yield and morphological traits. Iranian Journal of Agronomy and Plant Breeding. 9(4), 27-38. [In Persian]. Van de Wiel, C.C.M., van der Linden, C.G., Scholten, O.E., 2016. Improving phosphorus use efficiency in agriculture: opportunities for breeding. Euphytica. 207, 1-22. Vance, C.P., Uhde-Stone, C., Allan, D.L., 2003. Phosphorus acquisition and use: Critical adaptations by plants for securing a nonrenewable resource. New Phytologist. 157(3), 423–447. Varalakshmi, S., Wali, M.C., Deshpande, S.K., Harlapur, S.I., 2018. Correlation and path coefficient analysis of single cross hybrids in maize (Zea mays L.). International Journal of Current Microbiology and Applied Sciences. 7, 1840-1843. Von Uexküll, H.R., Mutert, E., 1995. Global extent, development and economic impact of acid soils. Plant and Soil. 171, 1–15. Wei, T., Simko, V., 2021. R package ‘corrplot’. Ver. 0.92. Visualization of a correlation matrix. https://github.com/taiyun/corrplot Wen, Z., Li, H., Shen, J., Rengel, Z., 2017. Maize responds to low shoot P concentration by altering root morphology rather than increasing root exudation. Plant and Soil. 416, 377–389. https://doi.org/10.1007/s11104-017-3214-0 Westerman, R.L., 1990. Soil Testing and Plant Analysis. (3rd Edition). American Society of Agronomy and Soil Science of America, Madison, Wisconsin. Yao, Q.l., Yang, K.ch., Pan, G.t., Rong, T.zh., 2007. The effects of low phosphorus stress on morphological and physiological characteristics of maize (Zea mays L.) Landraces. Agricultural Sciences in China. 6(5), 559-566. https://doi.org/10.1016/S1671-2927(07)60083-2 Yaseen, M., Malhi, S.S., 2009. Differential growth performance of 15 wheat genotypes for grain yield and phosphorus uptake on a low phosphorus soil without and with applied phosphorus fertilizer. Journal of Plant Nutrition. 32(6), 1015–1043. https://doi.org/10.1080/01904160902872818 Yazdandoost Hamedani, M., Rezai, A., 2001. A study of morphological and nphysiological basis of corn yield through path analysis. Iranian Journal of Agricultural Science. 32 (3), 671-680. [In Persian]. Yousaf, M.I., Hussain, K., Hussain, S., Ghani, A., Arshad, M., Mumtaz, A., Hameed, R.A., 2018. Characterization of indigenous and exotic corn hybrids for grain yield and quality traits under heat stress. International Journal of Agriculture & Biology. 20, 333-337. https://doi.org/10.17957/IJAB/15.0493 Zabet, M., Bahamin, S., Qureshi, P., Sadeghi, H., Mousavi, S.Gh., 2014. Effect of low irrigation and nitrogen fertilizer on the low yield of forage millet in Birjand. Environmental Stresses in Crop Sciences. 7, 187-194. [In Persian]. https://doi.org/10.22077/escs.2015.175 Zeinali, H., Nasr, Abadi, A., Hossein Zadeh, H., Choukan, R., Sabokdast, M., 2005. Factor analysis of hybrid corn seed varieties. Journal of Agrecultural Sciences. 36(4), 895-902. Zhang, H., Xu, R., Xie, C., Huang, C., Liao, H., Xu, Y., Wang, J., Li, W., 2015. Large-scale evaluation of maize germplasm for low-phosphorus tolerance. PLoS One. 10(5), e0124212. https://doi.org/10.1371/journal.pone.0124212 Zhang, X.Y., Yue-Yu, S.U.I., Zhang, X.D., Kai, M.E.N.G., Herbert, S.J., 2007. Spatial variability of nutrient properties in black soil of northeast China. Pedosphere. 17(1), 19-29. https://doi.org/10.1016/S10020160(07)600034 Zuffo, A.M., Oliveira, A.M.d., Aguilera, J.G., Ratke, R.F., Steiner, F., Abreu, C.M.d., Fonseca, W.L., Santos, A.S.d., Argentel-Martínez, L., Morales-Aranibar, L., Gonzales, H.H.S., 2023. Correlations and path analysis of second-crop corn hybrids for maximum grain yield performance. Australian Journal of Crop Science. 17(8), 639-644. https://doi.org/10.21475/ajcs.23.17.08.p3911
| ||
|
آمار تعداد مشاهده مقاله: 7 تعداد دریافت فایل اصل مقاله: 1 |
||