| تعداد نشریات | 21 |
| تعداد شمارهها | 345 |
| تعداد مقالات | 3,625 |
| تعداد مشاهده مقاله | 4,684,661 |
| تعداد دریافت فایل اصل مقاله | 3,127,680 |
تأثیر کروناتین بر خصوصیات ریختشناسی و بیوشیمیایی ریحان (.Ocimum basilicum L) در شرایط آلودگی آرسنیک | ||
| تنشهای محیطی در علوم زراعی | ||
| مقالات آماده انتشار، پذیرفته شده، انتشار آنلاین از تاریخ 10 آذر 1404 اصل مقاله (1.41 M) | ||
| نوع مقاله: مقاله پژوهشی | ||
| شناسه دیجیتال (DOI): 10.22077/escs.2025.8200.2309 | ||
| نویسندگان | ||
| علی عبدالهی1؛ بهروز اسماعیل پور* 2؛ محسن برین3؛ زهرا اصلانی4؛ موسی ترابی گیگلو5؛ علی اشرف سلطانی6؛ هانیه مرادیان7 | ||
| 1دانشآموخته دکتری، گروه علوم باغبانی، دانشکده کشاورزی و منابع طبیعی ، دانشگاه محقق اردبیلی، اردبیل | ||
| 2استاد، گروه علوم باغبانی، دانشکده کشاورزی و منابع طبیعی ، دانشگاه محقق اردبیلی، اردبیل | ||
| 3دانشیار، گروه خاکشناسی، دانشکده کشاورزی، دانشگاه ارومیه، ارومیه | ||
| 4دانشآموخته دکتری گیاهان دارویی، پژوهشگر مدعو گروه علوم باغبانی، دانشکده کشاورزی و منابع طبیعی دانشگاه محقق اردبیلی، اردبیل | ||
| 5دانشیار، گروه باغبانی، دانشکده کشاورزی و منابع طبیعی ، دانشگاه محقق اردبیلی، اردبیل | ||
| 6دانشیار، گروه خاکشناسی، دانشکده کشاورزی و منابع طبیعی، دانشگاه محقق اردبیلی، اردبیل | ||
| 7دانشجوی دکتری، گروه باغبانی، دانشکده کشاورزی و منابع طبیعی، دانشگاه محقق اردبیلی، اردبیل | ||
| چکیده | ||
| کروناتین نوعی تنظیم کننده رشد گیاهی نوین با شباهتهایی در ترکیب و کارکرد با جاسموناتها است که تجمع متابولیتهای دفاعی را در گیاهان در شرایط تنشی متاثر میسازد و در حال حاضر اطلاعات در باره نحوه اثرگذاری آن در برابر تنش فلزات سنگین ناشناخته است. هدف از انجام این تحقیق، بررسی خاصیت محافظت کنندگی کروناتین در برابر سمیت آرسنیک در ریحان (Ocimum basilicum L.) بود. بدین منظور، گیاهان ریحان در شرایط گلخانهای در دو نوع خاک آلوده و غیرآلوده به آرسنیک کشت شده و توسط غلظتهای مختلف کروناتین (0، 50 و 100 نانومول درلیتر) محلولپاشی شدند. نتایج نشان داد که تنش آرسنیک خصوصیات ریختشناسی و بیوشیمیایی ریحان را تحت تاثیر قرار داد، بهطوری که تنش آرسنیک موجب کاهش تعداد برگ، سطح برگ، وزن خشک برگ و ارتفاع بوته در گیاهان کشت شده در خاک آلوده نسبت به گیاهان کشت شده در خاک غیرآلوده شد. همچنین تنش آرسنیک سبب کاهش پارامترهای فیزیولوژیکی مانند میزان کلروفیل و محتوای نسبی آب برگ شد. امّا محلولپاشی با کروناتین موجب بهبود پارامترهای رشدی، فیزیولوژیکی و بیوشیمیایی در شرایط تنش آرسنیک گردید، بهطوریکه محلول پاشی با غلظت 100 نانو مول در لیتر کروناتین وزن خشک برگ، ارتفاع بوته و محتوای نسبی آب برگ را بترتیب به میزان 35، 32 و 33 درصد افزایش داد. بعلاوه پارامترهای بیوشیمیایی نیز تحت تاثیر تنش آرسنیک و محلولپاشی با کروناتین قرار گرفتند، بهطوری-که صفاتی مانند پرولین، فنول و فلاونوئید به میزان 91، 95 و 94 درصد در خاک آلوده به آرسنیک و محلولپاشی با غلظت 100 نانو مول در لیتر کروناتین در مقایسه با تیمار بدون آرسنیک و بدون محلول پاشی با کروناتین افزایش یافتند. بر اساس نتایج بدست آمده میتوان اظهار نمود که کروناتین از طریق فعال کردن سیستم آنتی اکسیدانی غیر آنزیمی و تنظیم اسمزی در شرایط تنش تنشزا قادر به تعدیل اثرات مخرب آرسنیک گردید. | ||
| کلیدواژهها | ||
| آنتیاکسیدان غیرآنزیمی؛ پرولین؛ تنش آرسنیک؛ ریحان؛ فنول | ||
| مراجع | ||
|
Abbasi, B., Maleki, R., Pirkharrati, H., 2017. Study effects of mining and gold extraction on amount of water contamination to As and Hg in Zarshouran area of Takab. Journal of Environmental Geology. 11, 39-48. Ali, M.A., Fahad, S., Haider, I., Ahmed, N., Ahmad, S., Hussain, S., Arshad, M., 2019. Oxidative stress and antioxidant defense in plants exposed to metal/metalloid toxicity. pp. 353-370. In: Hasanuzzaman, M., Fotopoulos, V., Nahar, K., Fujita, M. (eds.), Reactive Oxygen, Nitrogen and Sulfur Species in Plants. John Wiley & Sons. https://doi.org/10.1002/9781119468677.ch15 Ai, L., Li, Z. H., Xie, Z.X., Tian, X.L., Eneji, A. E., Duan, L.S., 2008. Coronatine alleviates polyethylene glycolinduced water stress in two rice (Oryza sativa L.) cultivars. Journal of Agronomy and Crop Science. 194, 360–368. https://doi.org/10.1111/j.1439037X.2008.00325.x Asadi Karam, E., Keramat, B., Asrar, Z., Mozafari, H., 2016. Triacontanol-induced changes in growth, oxidative defense system in coriander (Coriandrum sativum) under arsenic toxicity. Indian Journal of Plant Physiology. 21, 137-142. https://doi.org/10.1007/s40502-016-0213-8 Arnon, A. N., 1967. Method of extraction of chlorophyll in the plants. Agronomy Journal. 23, 112-121. https://doi.org/10.1139/b79-163 Arabi, Z., Zahedi, Z., 2017. Investigating the effect of industrial pollution on arsenic accumulation in soil and some physiological and biochemical reactions of the medicinal plant Malva neglecta L. Ecophytochemistry Journal of Medicinal Plants. 24, 69-84. [In Persian]. Bhat, J. A., Ahmad, P., Corpas, F. J., 2020. Main nitric oxide (NO) hallmarks to relieve arsenic stress in higher plants. Journal of Hazardous Materials. 406, 124289. https://doi.org/10.1016/j.jhazmat.2020.124289 Brooks, D.M., Bender, C.L., Kunkek, B.N., 2005. The Pseudomonas syringae phytotoxin coronatine promotes virulence by overcoming salicylic acid-dependent defences in Arabidopsis thaliana. Molecular Plant Pathology. 6, 629–639. https://doi.org/10.1111/j.1364-3703.2005.00311.x Chang, C.C., Yang, M.H., Wen, H.M., Chern, J.C., 2002. Estimation of total flavonoid content in propolis by two complementary colorimetric methods. Journal of Food and Drug Analysis. 10(3), 178-182. https://doi.org/10.38212/2224-6614.2748 Ceylan, H. A., 2023. Cornatin: A potential phytotoxin for increasing the tolerance od plants to drought stress. Eskişehir Teknik Üniversitesi Bilim ve Teknoloji Dergisi-C Yaşam Bilimleri Ve Biyoteknoloji. 12, 85-93. https://doi.org/10.18036/estubtdc.1167061 Davoudi, M., Ismailpour, B., Fatemi, H., Maleki Lejair, H., 2017. The effect of silicon fertilization on reducing the harmful effects of nickel stress in basil (Ocimum basilicum L). Plant Process and Function. 7, 25-38. [In Persian]. Đogić, S., Džubur, N., Karalija, E., Parić, A., 2017. Biochemical responses of basil to aluminium and cadmium stresses. Acta Agriculturae Serbica. 43, 57-65. https://doi.org/10.5937/AASer1743057D Fatemi, H., Esmaiel Pour, B., Rizwan, M., 2020. Isolation and characterization of lead (Pb) resistant mocrobes and their combined use with silicon nanoparticles improved the growth, photosynthesis and antioxidant capacity of coriander (Coriandrum sativum L.) under Pb stress. Environmental Pollution. 266, 114982. https://doi.org/10.1016/j.envpol.2020.114982 Fattahi, B., Arzani, K., Souri, M. K., Barzegar, M., 2019. Effects of cadmium and lead on seed germination, morphological traits, and essential oil composition of sweet basil (Ocimum basilicum L.). Industrial Crops and Products. 138, 111584. https://doi.org/10.1016/j.indcrop.2019.111584 Fahmideh, L., Qadri, A.A., Mozheri, A., Rajabi, A., 2020. The effect of salicylic acid on some morphological characteristics, photosynthetic pigments and antioxidant activity of basil plant (Ocimum basilicum L.) under arsenic toxicity. Environmental Stresses in Crop Sciences, 13, 297-312. [In Persian]. https://doi.org/10.22077/escs.2019.1841.1435 Finnegan, P. M., Chen, W., 2012. Arsenic toxicity: the effects on plant metabolism. Frontiers in Physiology. 3, 182. https://doi.org/10.3389/fphys.2012.00182. Garg, N., Singla, P., 2011. Arsenic toxicity in crop plants: physiological effects and tolerance mechanisms. Environmental Chemistry Letters. 9, 303-321. https://doi.org/10.1007/s10311-011-0313-7 Gheshlaghpour, J., Asghari, B., Khademian, R., Sedaghati, B., 2021. Silicon alleviates cadmium stress in basil (Ocimum basilicum L.) through alteration of phytochemical and physiological characteristics. Industrial Crops & Products. 163, 113338. https://doi.org/10.1016/j.indcrop.2021.113338 Gheysari, S., Nematpour, S., Safipour Afshar, A., 2016. The effect of salicylic acid and ascorbic acid on the content of photosynthetic pigments and the activity of some antioxidant enzymes in basil plant (Ocimum basilicum L) under lead stress. Journal of Plant Research. 28(4), 814-825. [In Persian]. https://dor.isc.ac/dor/20.1001.1.23832592.1394.28.4.13.4 Gill, M., 2014. Heavy metal stress in plants: a review. International Journal of Advanced Research. 2, 1043-1055. Gupta, D.K., Srivastava, S., Huang, H.G., Romero-Puertas, M.C., Sandalio, L.M., 2011. Arsenic tolerance and detoxification mechanisms in plants. In: Sherameti, I., Varma, A. (eds), Detoxification of Heavy Metals. Soil Biology, vol 30. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21408-0_9 Hao, K., Wang, Y., Zhang, J., Xie, Y., Zhang, M., Duan, L., Li, Z., 2013. Coronatine enhances drought tolerance via improving antioxidative capacity to maintaining higher photosynthetic performance in soybean. Plant Science. 210, 1–9. https://doi.org/10.1016/j.plantsci.2013.05.006 Hassan, M. J., Zhu, Z., Ahmad, B., Mahmood, Q., 2006. Influence of cadmium toxicity on rice genotypes as affected by zinc, sulfur and nitrogen fertilizers. Caspian Journal of Environmental Science. 4, 1–8. Hasanuzzaman, M., Bhuyan, M. B., Zulfiqar, F., Raza, A., Mohsin, S. M., Mahmud, J. A., Fotopoulos, V., 2020. Reactive oxygen species and antioxidant defense in plants under abiotic stress: Revisiting the crucial role of a universal defense regulator. Antioxidants. 9, 681. https://doi.org/10.3390/antiox9080681. Hayat, S., Hayat, Q., Alyemeni, M. N., Wani, A. S., Pichtel, J., Ahmad, A., 2012. Role of proline under changing environments: a review. Plant Signaling and Behavior. 7, 1456–1466. Heath, R. L., Packer, L., 1968. Phytoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Archives of Biochemistry and Biophysics. 125, 180-198. https://doi.org/10.1016/0003-9861(68)90654-1 Helmy, L., 2010. The influence of nickel sulphate on some physiological aspects of two cultivars of Raphanus Sativus L. Archives Biology Science Belgrade. 62, 683- 691. https://doi.org/10.2298/ABS1003683L Islam, E., Tahir Khan, M., Irem, S., 2015. Biochemical mechanisms of signaling: perspectives in plants under arsenic stress. Ecotoxicology and Environmental Safety. 114, 126–133. https://doi.org/10.1016/j.ecoenv.2015.01.017 Kanwar, M. K., Poonam., and Bhardwaj, R., 2015. Arsenic induced modulation of antioxidative defense system and brassinosteroids in Brassica juncea L. Ecotoxicology and Environmental Safety. 115, 119–125. https://doi.org/10.1016/j.ecoenv.2015.02.016 Kumar, V., Vogelsang, L., Schmidt, R. R., Sharma, S. S., Seidel, T., Dietz, K.J., 2020. Remodeling of root growth under combined arsenic and hypoxia stress is linked to nutrient deprivation. Frontiers in Plant Science. 11, 569687. https://doi.org/10.3389/fpls.2020.569687 Li, X., Shen, X., Li, J., Eneji, E., Li, Z., Tian, X., Duan, L., 2010. Coronatine alleviates water deficiency stress on winter wheat (Triticum aestivum L.) seedlings. Journal of Integrative Plant Biology. 52, 616-625. https://doi.org/10.1111/j.1744-7909.2010.00958.x Lutts, S., Kinet, J. M., Bouharmont, J., 1995. NaCl-induced senescence in leaves of rice (Oryza sativa L.) cultivars differing in salinity resistance. Annals of Botany. 78, 389-398. https://doi.org/10.1006/anbo.1996.0134 Matsouka, I., Beri, D., Chinou, I., Haralampidis, K. G., Spyropoulos, C., 2011. Metals and selenium induce medicarpin accumulation and excretion from the roots of fenugreek seedlings: a potential detoxification mechanism. Plant and Soil. 343, 235-245. https://doi.org/10.1006/anbo.1996.0134 Melotto, M., Mecey, C., Niu, Y., Chung, H.S., Katsir, L., Yao, J., Zeng, W., Thines, B., Staswick, P., Browse, J., Howe, G. A., He, S.Y., 2008. A critical role of two positively charged amino acids in the Jas motif of Arabidopsis JAZ proteins in mediating coronatine- and jasmonoyl isoleucine-dependent interactions with the COI1 F-box protein. The Plant Journal. 55, 979–988. https://doi.org/10.1111/j.1365-313X.2008.03566.x Mishra, S., Dubey, R.S., 2006. Inhibition of ribonuclease and protease activities in arsenic exposed rice seedlings: Role of proline as enzyme protectant. Journal of Plant Physiology. 163, 927-936. https://doi.org/10.1016/j.jplph.2005.08.003 Naghibi, F., Mosaddegh, M., Motamed, S. M., Ghorbani, A., 2005. Labiataefamily in folk medicine in Iran: fro, enthobotany to pharmacology. Iranian Journal of Pharmaceutical Research. 2, 63-79. https://doi.org/10.22037/ijpr.2010.619. Pan, R. C., Gu, H., 1995. Effect of methyl jasmonate in the growth and drought resistance in peanut seedlings. Acta Phytophysiologica Sinica. 21, 215–220. https://doi.org/10.1002/jpln.201700373 Paquin, R., Lechasseur, P., 1979. Observations sur une methode de dosage de la proline libre dans les extraits de plantes. Canadian Journal of Botany. 57, 1851–1854. https://doi.org/10.1139/b79-233 Polya, D. A., Sparrenbom, C., Datta, S., Guo, H., 2019. Groundwater arsenic biogeochemistry–Key questions and use of tracers to understand arsenic-prone groundwater systems. Geoscience Frontiers. 10, 1635-1641. https://doi.org/10.1016/j.gsf.2019.05.004. Poursaeid, M., Iranbakhsh, A., Ebadi, M., Fotokian, M.H., 2020. Morpho-physiological and phytochemical responses of basil (Ocimum basilicum L.) to toxic heavy metal cadmium. Botanicae Horti Agrobotanici. 49, 11902. https://doi.org/10.15835/nbha49411902. Prasad, K., Saradhi, P. P., Sharmila, P., 1999. Concerted action of antioxidant enzymes and curtailed growth under zinc toxicity in Brassica juncea. Environmental and experimental Botany. 42, 1-10. https://doi.org/10.1016/S0098-8472(99)00013-1. Saydpour, F., Sayyari, M., 2016. Impact of methyl jasmonate on enhancing chilling tolerance of cucumber (Cucumis sativus L.) seedlings. Journal of Crop Production and Processing. 6, 47-59. [In Persian]. https://doi.org/10.18869/acadpub.jcpp.6.21.47. Shanker, K. A., Cervantes, C., Loza-Taversa, H., Avudainayagam, S., 2005. Chromium toxicity in plants. Environment International. 31, 739-753. https://doi.org/10.1016/j.envint.2005.02.003. Sil, P., Das, P., Biswas, S., Mazumdar, A., Biswas, A.K., 2019. Modulation of photosynthetic parameters, sugar metabolism, polyamine and ion contents by silicon amendments in wheat (Triticum aestivum L.) seedlings exposed to arsenic. Environmental Science and Pollution Research. 26(13), 13630-13648. https://doi.org/10.1007/s11356-019-04896-7. Singleton, V.L., Orthofer, R., Lamuela-Raventós, R.M., 1999. Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods in Enzymology, 299, 152-178. http://dx.doi.org/10.1016/S0076-6879(99)99017-1. Soltani, F., Ghorbani, M., Manouchehri- kalantari, K., 2006. Effect of cadmium on photosynthetic pigments, sugars and malondealdehyde content in Brassica napus. Journal of Biology. 2, 136- 145. [In Persian]. Szabados, L., Savour´e, A., 2010. Proline: a multifunctional amino acid. Trends in Plant Science. 15, 89–97. https://doi.org/10.1016/j.tplants.2009.11.009. Turner, N.C., 1981. Techniues and experimental approaches for measurement of plant water status. International Journal of Plant-Soil Relationships. 58, 339-366. https://doi.org/10.1007/BF02180062. Turkezban, A., 2017. Effect of foliar spraying of nitric oxide and feeding with selenium on growth, physiology, biochemical indicators and secondary metabolites of fenugreek plant (Trigonella foenum-graecum L.) under heavy arsenic stress conditions. Master's thesis, Mohaghegh Ardabili University, Ardabil, Iran. [In Persian]. Uppalapati, S. R., Ayoubi, P., Weng, H., Palmer, D. A., Mitchell, R. E., Jones, W., Bender, C.L., 2005. The phytotoxin coronatine and methyl jasmonate impact multiple phytohormone pathways in tomato. The Plant Journal. 42, 201–217. https://doi.org/10.1111/j.1365-313X.2005.02366.x Wankhede, D. P., Gupta, M., Singh, A.K. 2013. Arsenic toxicity in crop plants: approaches for stress resistance. In: Tuteja, N., Gill, S.S., (eds.) Crop Improvement Under Adverse Conditions Pp. 347-360. Springer Science+Business Media New York. Wang, B., Li, Z., Egrinya Eneji, A., Tian, X., Zhai, Z., Li, J., Duan, L., 2008. Effects of coronatine on growth, gas exchange traits, chlorophyll content, antioxidant enzymes and lipid peroxidation in maize (Zea mays L.) seedlings under simulated drought stress. Plant Production Science. 11, 283―290. https://doi.org/10.1626/pps.11.283 Wang, L., Chen, W. J., Wang, Q., Eneji, A. E., Li Z. H., Duan, L.S., 2009. Coronatine enhances chilling tolerance in cucumber (Cucumis sativus L.) seedlings by improving the antioxidative defence system. Journal of Agronomy and Crop Science. 195, 377–383. https://doi.org/10.1111/j.14 Watanabe, F. S., Olsen, S.R., 1965. Test of an ascorbic acid method for determining phosphorus in water and NaHCO3 extracts from the soil. Soil Science Society America Journal. 29, 677-678. https://doi.org/10.2136/sssaj1965.03615995002900060025x Wu, H., Wu, X., Li, Z., Duan, L. Zhang, M., 2012. Physiological evaluation of drought stress tolerance and recovery in cauliflower (Brassica oleracea L.) seedlings treated with methyl jasmonate and coronatine. Journal of Plant Growth Regulation. 31, 113–123. Xie, Z.X., Duan, L.S., Tian, X.L., Wang, B.Q., Eneji, A.E., Li, Z.H., 2008. Coronatine alleviates salinity stress in cotton by improving the antioxidative defense system and radical-scavenging activity. Journal of Plant Physiology. 165, 375–384. https://doi.org/10.1007/s00344-011-9224-x. Xie, Z.X., Duan, L.S., Li, H., Wang, X.D., Liu, X., 2015. Dose-dependent effects of coronatine on cotton seedling growth under salt stress. Plant Growth Regulation. 34, 651-664. https://doi.org/10.1007/s00344-015-9501-1. Xu, J., Zhou, Y., Xu, Z., Chen, Z., Duan, L., 2020. Physiological and transcriptome profiling analyses reveal important roles of coronatine in improving drought tolerance of tobacco. Journal of Plant Growth Regulation. 39, 1346-1358. https://doi.org/10.1007/s00344-020-10074-8 Yan, Z., Chen, J., Li, X. 2013. Methyl jasmonate as modulator of Cd toxicity in Capsicum frutescens var. fasciculatum seedlings. Ecotoxicology and Environmental Safety. 98, 203–209. https://doi.org/10.1016/j.ecoenv.2013.08.019 Youssef, N. A., 2020. Changes in the morphological traits and the essential oil content of sweet basil (Ocimumbasilicum L.) as induced by cadmium and lead treatments. International Journal of Phytoremediation. 23, 291-299. https://doi.org/10.1080/15226514.2020.1812508 Zare Dehabadi, S., Shoushtari, A., Asrar, Z., 2013. Modulation of arsenic toxicity-induced oxidative damage by coronatine pretreatment in sweet basil (Ocimum basilicum) seedlings. Botany 91, 442–448. https://doi.org/10.1139/cjb-2012-0296 Zare Dehabadi, S., Asrar, Z., Shoushtari, A., 2014. Investigation of synergistic action between coronatine and nitric oxide in alleviating arsenic-induced toxicity in sweet basil seedlings. Plant Growth Regulation. 74, 119-130. https://doi.org/10.1007/s10725-014-9903-2 Zhang, J., Kirkham, M.B., 1992. Drought-stress-induced changes in activities of superoxide dismutase, catalase, and peroxidase in wheat species. Plant and Cell Physiology. 35, 785-791. https://doi.org/10.1093/OXFORDJOURNALS.PCP.A078658 Zhou, Y., Liu, Y., Peng, C., Li, X., Zhang, M., Tian, X., Duan, L., 2018. Coronatine enhances drought tolerance in winter wheat by maintaining high photosynthetic performance. Journal of plant physiology. 228, 59-65. https://doi.org/10.1016/j.jplph.2018.05.009 Zhou, Y., Zhang, M., Li, J., Li, Z., Tian, X., Duan, L., 2015. Phytotoxin coronatine enhances heat tolerance via maintaining photosynthetic performance in wheat based on electrophoresis and TOF-MS analysis. Scientific Reports. 5, 1-13. https://doi.org/10.1038/srep13870 | ||
|
آمار تعداد مشاهده مقاله: 30 تعداد دریافت فایل اصل مقاله: 17 |
||