| تعداد نشریات | 21 |
| تعداد شمارهها | 339 |
| تعداد مقالات | 3,581 |
| تعداد مشاهده مقاله | 4,520,377 |
| تعداد دریافت فایل اصل مقاله | 3,034,345 |
مقدار بهینه فسفر در برگ کینوا در شرایط تلقیح Trichoderma harzianum و Pseudomonas fluorescens در شرایط شور | ||
| تنشهای محیطی در علوم زراعی | ||
| مقالات آماده انتشار، پذیرفته شده، انتشار آنلاین از تاریخ 20 آبان 1404 اصل مقاله (1.17 M) | ||
| نوع مقاله: مقاله پژوهشی | ||
| شناسه دیجیتال (DOI): 10.22077/escs.2025.7254.2271 | ||
| نویسندگان | ||
| امیر پرنیان* 1؛ حسین پرویزی1؛ حدیث حاتمی1؛ حسین کاری دولت آباد2؛ امیر حسن زاده3 | ||
| 1استادیار، مرکز ملی تحقیقات شوری، سازمان تحقیقات، آموزش و ترویج کشاورزی، یزد | ||
| 2استادیار، موسسه خاک و آب کل کشور، سازمان تحقیقات، آموزش و ترویج کشاورزی، کرج | ||
| 3مرکز ملی تحقیقات شوری، سازمان تحقیقات، آموزش و ترویج کشاورزی، یزد | ||
| چکیده | ||
| فسفر از عناصر ضروری برای گیاهان است و جذب آن از خاک با همیاری و گاهی همزیستی ریزجانداران افزایش مییابد. کینوا که گیاهی شورزیست اختیاری است که برای کشت در مناطق شور موردتوجه قرار دارد. اطلاعات موجود در خصوص مدیریت کودهای فسفر در محصول کینوا خصوصاً در شرایط خاکهای کشور ناکافی بوده و ضروری است تا حد بهینه فسفر در شرایط شور پس از تلقیح Trichoderma harzianum و Pseudomonas fluorescens بررسی گردد. بدین منظور آزمایش کشت گلدانی کینوا در محیط گلخانه در شرایط شور با 9 مقدار اولیه فسفر و 2 نوع تلقیح میکروبی به اجرا در آمد. در حین آزمایش از هر گلدان حدود 5 برگ بالغ برداشت و میزان فسفر کل برگ سنجش شد. نتایج نشان داد مقدار بهینه فسفر در برگ بالغ گیاه کینوا رقم تیتیکاکا در شرایط این آزمایش به ترتیب با تیمارهای قارچ تریکودرما 0.09% و باکتری سودوموناس 0.08% برگ بالغ خشک است؛ بنابراین توصیه میگردد که با توجه به این نتایج و اندازهگیری میزان فسفر برگ در مزارع کینوا نسبت به مدیریت صحیح مصرف کودهای فسفردار اقدام گردد. | ||
| کلیدواژهها | ||
| تلقیح؛ مدیریت کود؛ کینوا؛ فسفر؛ شوری. | ||
| مراجع | ||
|
Abdolahpour, H., Tohidi Nejad, E., Pasandi Pour, A., 2021. Effect of nitrogen, phosphorus and potassium fertilizers on morpho-physiological characteristics and seed yield of quinoa (Chenopodium quinoa Willd.). Journal of Crop Ecophysiology. 15, 57-72. [In Persian with English Summary]. https://doi.org/10.30495/jcep.2021.681006 Adhikari, A., Khan, M.A., Lee, K.E., Kang, S. M., Dhungana, S.K., Bhusal, N., Lee, I.J., 2020. The halotolerant rhizobacterium-Pseudomonas koreensis MU2 enhances inorganic silicon and phosphorus use efficiency and augments salt stress tolerance in soybean (Glycine max L.). Microorganisms. 8, 1256. https://doi.org/10.3390/microorganisms8091256 Alandia, G., Odone, A., Rodriguez, J.P., Bazile, D., Condori, B., 2021. Quinoa—Evolution and future perspectives. The Quinoa genome, 179-195. https://doi.org/10.1007/978-3-030-65237-1_11 Belouchrani, A.S., Latati, M., Ounane, S.M., Drouiche, N., Lounici, H., 2019. Study of the interaction salinity: phosphorus fertilization on sorghum. Plant Growth Regulation. 1-6. https://doi.org/10.1007/s00344-019-10057-4 Billah, M., Khan, M., Bano, A., Hassan, T. U., Munir, A., Gurmani, A. R., 2019. Phosphorus and phosphate solubilizing bacteria: Keys for sustainable agriculture. Geomicrobiology Journal, 36, 904-916. https://doi.org/10.1080/ 01490451.2019.1654043 Bononi, L., Chiaramonte, J. B., Pansa, C. C., Moitinho, M. A., Melo, I. S., 2020. Phosphorus-solubilizing Trichoderma spp. from Amazon soils improve soybean plant growth. Scientific Reports, 10, 1-13. https://doi.org/10.1038/s41598-020-59793-8 Bouras, H., Choukr-Allah, R., Amouaouch, Y., Bouaziz, A., Devkota, K.P., El Mouttaqi, A., Bouazzama, B., Hirich, A., 2022 How does quinoa (Chenopodium quinoa Willd.) rspond to phosphorus fertilization and irrigation water salinity? Plants. 11, 216. https://doi.org/10.3390/plants11020216 Cai, D., Xu, Y., Zhao, F., Zhang, Y., Duan, H., Guo, X., 2021. Improved salt tolerance of Chenopodium quinoa Willd. contributed by Pseudomonas sp. strain M30-35. PeerJ. 9, e10702. https://doi.org/10.7717/peerj.10702 Cate Jr, R.B., Nelson, L.A., 1971. A simple statistical procedure for partitioning soil test correlation data into two classes. Soil Science Society of America Journal. 35, 658-660. https://doi.org/10.2136/SSSAJ1971.03615995003500040048X Deng, Y., Zhao, L., Anwar, S. et al., 2002. Phosphorus fertigation conferred lodging tolerance and improved grain quality in Chenopodium quinoa via enhanced root proliferation and stalk strength. Soil Science and Plant Nutrition. 22, 5099–5110. https://doi.org/10.1007/ s42729-022-00986-7 Frew, A., 2019. Arbuscular mycorrhizal fungal diversity increases growth and phosphorus uptake in C3 and C4 crop plants. Soil Biology and Biochemistry, 135, 248-250. https://doi.org/10.1016/j.soilbio.2019.05.015 Johnston, A.E., Poulton, P.R., Fixen, P.E., Curtin, D., 2014. Phosphorus: its efficient use in agriculture. Advances in agronomy. 123, 177-228. https://doi.org/10.1016/B978-0-12-420225-2.00005-4 Jorfi, A., Alavifazel, M., Gilani, A., Ardakani, M. R., Lak, S., 2023. Quinoa (Chenopodium quinoa) root system development as affected by phosphorus and zinc sulfate application in an alkaline soil. Gesunde Pflanzen, 75, 885-897. https://doi.org/10.1007/s10343-022-00740-0 Khan, A., Lu, G., Ayaz, M., Zhang, H., Wang, R., Lv, F., Yang, X., Sun, B. Zhang, S., 2018. Phosphorus efficiency, soil phosphorus dynamics and critical phosphorus level under long-term fertilization for single and double cropping systems. Agriculture, Ecosystems & Environment. 256, 1-11. https://doi.org/10.1016/j.agee.2018.01.006 Khoshgoftarmanesh, A. H., 2007. Evaluation of Plant Nutrition Status and Optimum Fertilizer Management, First ed. Isfahan University of Technology. Isfahan, Iran. [In Persian] Kumawat, K. C., Sharma, P., Sirari, A., Sharma, B., Kumawat, G., Nair, R. M., Bindumadhava, H., 2024. Co-existence of halo-tolerant Pseudomonas fluorescens and Enterococcus hirae with multifunctional growth promoting traits to ameliorate salinity stress in Vigna radiata. Chemosphere, 349, 140953. https://doi.org/10.1016/j.chemosphere.2023.140953 Ning, Y., Xiao, Z., Weinmann, M., Li, Z., 2019. Phosphate uptake is correlated with the root length of celery plants following the association between arbuscular mycorrhizal fungi, Pseudomonas sp. and biochar with different phosphate fertilization levels. Agronomy, 9, 824. https://doi.org/10.3390/agronomy9120824 Olsen, S.R., Cole, C.V., Watanabe, F.S. Dean, L.A., 1954. In: Klute, A. (Ed), Methods of Soil Analysis: Physical Properties, Part 1, second ed. Agron Monogr, No 9. Madison WI: ASA and SSSA. pp. 403–430. Papan, P., Moezzi, A., Chorom, M., Rahnama, A., 2021. The effect of urea fertilizer application and sugarcane field drainage on some soil properties, grain yield and nutrient concentrations in quinoa seeds. Journal of Soil Management and Sustainable Production. 11, 71-90. [In Persian with English abstract]. https://doi.org/10.22069/ejsms.2021.18528.1988 Papan, P., Moezzi, A., Chorom, M., Rahnama, A., 2022. Biochemical and physiological response of quinoa to application of different levels of nitrogen and salinity irrigation water. Environmental Stresses in Crop Sciences, 15, 501-515. [In Persian with English Summary]. https://doi.org/10.22077/escs.2021.3846.1923 Poulton, P. R., Johnston, A. E., White, R. P., 2013. Plant‐available soil phosphorus. Part I: the response of winter wheat and spring barley to Olsen P on a silty clay loam. Soil Use and Management, 29, 4-11. https://doi.org/10.1111/j.1475-2743.2012.00450.x Raghothama, K. G., 2005. Phosphorus and plant nutrition: an overview. Phosphorus: Agriculture and the Environment. 46, 353-378. https://doi.org/10.2134/agronmonogr46.c11 Rathore, S., Kumar, R., 2021. Vermicompost fertilization and pinching improves the growth, yield, and quality of super food (Chenopodium quinoa Willd.) in the western Himalaya. Acta Physiologiae Plantarum. 43, 23. https://doi.org/10.1007/s11738-020-03184-z Rollano-Peñaloza, O. M., Widell, S., Mollinedo, P., Rasmusson, A. G., 2018. Trichoderma harzianum T-22 and BOL-12QD inhibit lateral root development of Chenopodium quinoa in axenic co-culture. Cogent Biology. 4, 1530493. https://doi.org/10.1080/23312025.2018.1530493 Sahrawat, K. L., 1999. Assessing the fertilizer phosphorus requirement of grain sorghum. Communications in Soil Science and Plant Analysis. 30, 1593-1601. https://doi.org/10.1080/00103629909370311 Sahrawat, K. L., 2000. Determining fertilizer phosphorus requirement of upland rice. Communications in Soil Science and Plant Analysis. 31, 1195-1208. https://doi.org/10.1080/00103620009370507 Sahrawat, K. L., 2006. Plant nutrients: sufficiency and requirements. Encyclopedia of Soil Science. 1, 1306-1310. https://www.taylorfrancis.com/chapters/edit/10.1201/NOE0849338304-120042731/plant-nutrients-sufficiency-requirements-kanwar-sahrawat Sahrawat, K. L., 2008. Direct and residual phosphorus effects on grain yield-phosphorus uptake relationships in upland rice on an ultisol in West Africa. International Journal of Plant Production. 2, 281-287. https://oar.icrisat.org/id/eprint/737 Sahrawat, K.L., Jones, M.P., Diatta, S., 1995. Response of upland rice to phosphorus in an Ultisol in the humid forest zone of West Africa. Fertilizer Research. 41, 11-17. https://doi.org/10.1007/BF00749515 Sahrawat, K. L., Wani, S. P., Girish Chander, G. C., Pardhasaradhi, G., Krishnappa, K., 2016. Soil nutrient mapping for on-farm fertility management. In Harnessing dividends from drylands: innovative scaling up with soil nutrients (pp. 59-77). Wallingford UK: CABI. https://doi.org/10.1079/9781780648156.0059 Smith, S. E., Jakobsen, I., Grønlund, M., Smith, F. A., 2011. Roles of arbuscular mycorrhizas in plant phosphorus nutrition: interactions between pathways of phosphorus uptake in arbuscular mycorrhizal roots have important implications for understanding and manipulating plant phosphorus acquisition. Plant Physiology. 156, 1050-1057. https://doi.org/10.1104/pp.111.174581 White, P. J., Brown, P. H., 2010. Plant nutrition for sustainable development and global health. Annals of Botany, 105, 1073-1080. https://doi.org/10.1093/aob/mcq085 Yadav, K. K., Sarkar, S., 2019. Biofertilizers, impact on soil fertility and crop productivity under sustainable agriculture. Environment and Ecology. 37, 89-93. Zurita-Silva, A., Fuentes, F., Zamora, P., Jacobsen, S.E., Schwember, A.R., 2014. Breeding quinoa (Chenopodium quinoa Willd.): potential and perspectives. Molecular Breeding, 34, 13-30. https://doi.org/10.1007/s11032-014-0023-5 | ||
|
آمار تعداد مشاهده مقاله: 3 |
||