| تعداد نشریات | 21 |
| تعداد شمارهها | 338 |
| تعداد مقالات | 3,573 |
| تعداد مشاهده مقاله | 4,492,113 |
| تعداد دریافت فایل اصل مقاله | 3,024,963 |
Optimizing L-DOPA production in velvet bean (Mucuna pruriens) through photoperiod and growth regulator manipulation | ||
| Journal of Horticulture and Postharvest Research | ||
| مقالات آماده انتشار، اصلاح شده برای چاپ، انتشار آنلاین از تاریخ 16 آبان 1404 اصل مقاله (1.64 M) | ||
| نوع مقاله: Original Article | ||
| شناسه دیجیتال (DOI): 10.22077/jhpr.2025.8774.1468 | ||
| نویسندگان | ||
| Elahe Ghafourian Hozouri Esfahan1، 2؛ Majid Azizi* 1، 2؛ Hassan Rakhshandeh3؛ Hamid Sadeghian4 | ||
| 1Department of Horticultural Science, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran | ||
| 2Research Institute of Medicinal Plants, Ferdowsi University of Mashhad, Mashhad, Iran | ||
| 3Department of Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran | ||
| 4Department of Laboratory Sciences, School of Paramedical Sciences, Mashhad University of Medical Sciences, Mashhad, Iran | ||
| چکیده | ||
| Purpose: Due to the short-day nature of the velvet bean, which triggers flowering in the autumn with decreasing day length, its production in temperate and high-latitude regions under greenhouse conditions requires modifications in its flowering and fruiting habits. Therefore, this study aimed to optimize L-DOPA production by investigating photoperiod changes and hormonal regulation to encourage flowering and fruiting under greenhouse conditions. Research Method: Treatments included photoperiod at two levels (13-hour darkness and natural day length) as the first factor and growth regulators at seven levels (50 and 100 mg of gibberellin, 20 and 50 mg of paclobutrazol, 50 and 100 mg of cytokinin, and a control treatment) as the second factor. Findings: the effects of photoperiod, growth regulators, and their interaction were significant for all traits except for internode length. The natural light treatment resulted in a 3% delay in flowering compared to the 13-hour dark treatment, whereas the 13-hour dark treatment exhibited higher fruit weight, seed yield, and L-DOPA content (18%) compared to the natural light. Moreover, the application of 50 mg paclobutrazol reduced the days to flowering by 55 days compared to the control. On the other hand, the 50 mg paclobutrazol treatment showed significant increases in fruit weight (59%), seed yield (65%), and L-DOPA content (31%) compared to the control. Research limitations: No limitations were found. Originality/Value: Overall, extending the dark period improved velvet beans' yield and yield components. Furthermore, paclobutrazol enhanced yield more effectively than gibberellin and cytokinin. Based on the experiment, the best treatment for achieving maximum quantitative yield and L-DOPA content was 13-hour darkness combined with 50 mg of paclobutrazol. | ||
| کلیدواژهها | ||
| Cytokinin؛ Gibberellin؛ Medicinal plants؛ Paclobutrazol | ||
| مراجع | ||
|
Addo, P. W., Brousseau, V. D., Morello, V., MacPherson, S., Paris, M., & Lefsrud, M. (2021). Cannabis chemistry, post-harvest processing methods and secondary metabolite profiling: A review. Industrial Crops and Products, 170, 113743. https://doi.org/10.1016/j.indcrop.2021.113743 Araghi, A. M., Nemati, H., Azizi, M., Moshtaghi, N., Shoor, M., & Hadian, J. (2019). Assessment of phytochemical and agro-morphological variability among different wild accessions of Mentha longifolia L. cultivated in field condition. Industrial Crops and Products, 140, 111698. https://doi.org/10.1016/j.indcrop.2019.111698
Behdad, A., Mohsenzadeh, S., & Azizi, M. (2021). Growth, leaf gas exchange and physiological parameters of two Glycyrrhiza glabra L. populations subjected to salt stress condition. Rhizosphere, 17, 100319. https://doi.org/10.1016/j.rhisph.2020.100319
Behdad, A., Mohsenzadeh, S., Azizi, M., & Moshtaghi, N. (2020). Salinity effects on physiological and phytochemical characteristics and gene expression of two Glycyrrhiza glabra L. populations. Phytochemistry, 171, 112236. https://doi.org/10.1016/j.phytochem.2019.112236
Bi, D., Chen, D., Khayatnezhad, M., Hashjin, Z. S., Li, Z., & Ma, Y. (2021). Molecular identification and genetic diversity in Hypericum L.: A high value medicinal plant using RAPD markers. Genetika, 53(1), 393-405. https://doi.org/10.1134/S1022795421030125
Castro-Camba, R., Sánchez, C., Vidal, N., & Vielba, J. M. (2022). Plant development and crop yield: The role of gibberellins. Plants, 11(19), 2650. https://doi.org/10.3390/plants11192650
Chen, M., Zhang, T.-L., Hu, C.-G., & Zhang, J.-Z. (2023). The role of drought and temperature stress in the regulation of flowering time in annuals and perennials. Agronomy, 13(12), 3034. https://doi.org/10.3390/agronomy13123034
Chen, Z., Tao, X., Khan, A., Tan, D. K., & Luo, H. (2018). Biomass accumulation, photosynthetic traits and root development of cotton as affected by irrigation and nitrogen-fertilization. Frontiers in Plant Science, 9, 173. https://doi.org/10.3389/fpls.2018.00173
Chrétien, L. T., Khalil, A., Gershenzon, J., Lucas‐Barbosa, D., Dicke, M., & Giron, D. (2022). Plant metabolism and defence strategies in the flowering stage: Time‐dependent responses of leaves and flowers under attack. Plant, Cell & Environment, 45(9), 2841-2855. https://doi.org/10.1111/pce.14373
Deli, M., Nguimbou, R. M., Djantou, E. B., Tatsadjieu Ngoune, L., & Njintang Yanou, N. (2020). Bioactive compounds of velvet bean (Mucuna pruriens L.) seeds. Bioactive Compounds in Underutilized Vegetables and Legumes, 1-19. https://doi.org/10.1016/B978-0-12-818453-2.00001-5
Desta, B., & Amare, G. (2021). Paclobutrazol as a plant growth regulator. Chemical and Biological Technologies in Agriculture, 8, 1-15. https://doi.org/10.1186/s40538-021-00211-5
Dufková, H., Greplová, M., Hampejsová, R., Kuzmenko, M., Hausvater, E., Brzobohatý, B., & Černý, M. (2023). Secondary Metabolites, Other Prospective Substances, and Alternative Approaches That Could Promote Resistance against Phytophthora infestans. Agronomy, 13(7), 1822. https://doi.org/10.3390/agronomy13071822
Duta-Cornescu, G., Constantin, N., Pojoga, D.-M., Nicuta, D., & Simon-Gruita, A. (2023). Somaclonal variation—Advantage or disadvantage in micropropagation of the medicinal plants. International Journal of Molecular Sciences, 24(1), 838. https://doi.org/10.3390/ijms24010838
Ebadi, M. T., Sefidkon, F., Azizi, M., & Ahmadi, N. (2017). Packaging methods and storage duration affect essential oil content and composition of lemon verbena (Lippia citriodora Kunth.). Food Science & Nutrition, 5(3), 588-595. https://doi.org/10.1002/fsn3.469
Ezegbe, C. C., Onyeka, J. U., & Nkhata, S. G. (2023). Physicochemical, amino acid profile and sensory qualities of biscuit produced from a blend of wheat and velvet bean (Mucuna pruriens) flour. Heliyon, 9(4), e14738. https://doi.org/10.1016/j.heliyon.2023.e14738
Fadilaturahmah, F., Rahayu, R., & Santoso, P. (2023). Anti-inflammatory effects of velvet bean (Mucuna pruriens L. (DC.), Fabaceae) leaf ethanolic extract against carrageenan in male mice. Journal of Research in Pharmacy, 27(4), 1524-1533. https://doi.org/10.12991/jrp.2023.711
Flores-López, R., Martínez-Gutiérrez, R., López-Delgado, H. A., & Marín-Casimiro, M. (2016). Periodic application of low concentrations of paclobutrazol and salicylic acid in potatoes in greenhouse. Revista mexicana de ciencias agrícolas, 7(5), 1143-1154.
Franks, S. J., Sim, S., & Weis, A. E. (2007). Rapid evolution of flowering time by an annual plant in response to a climate fluctuation. Proceedings of the National Academy of Sciences, 104(4), 1278-1282. https://doi.org/10.1073/pnas.0608379104
Gerdakaneh, M., Hoseini, F., & Eftekharinasab, N. (2018). Effect of paclobutrazol and NAA on sex determination and seed yield of medicinal pumpkin (Cucurbita pepo L.). International Journal of Horticultural Science and Technology, 5(2), 209-217.
Heidari, S., Azizi, M., Soltani, F., & Hadian, J. (2014). Foliar application of Ca(NO3)2 and KNO3 affects growth, essential oil content, and oil composition of French tarragon. Industrial Crops and Products, 62, 526-532. https://doi.org/10.1016/j.indcrop.2014.09.013
Heuzé, V., Tran, G., Hassoun, P., Renaudeau, D., & Bastianelli, D. (2015). Velvet bean (Mucuna pruriens). Feedipedia, a programme by INRAE, CIRAD, AFZ and FAO. Retrieved from https://www.feedipedia.org/node/248
Hossain, S. M. Y., Caspersen, J. P., & Thomas, S. C. (2017). Reproductive costs in Acer saccharum: Exploring size-dependent relations between seed production and branch extension. Trees, 31, 1179-1188. https://doi.org/10.1007/s00468-017-1572-5
Jain, S., Nidhi, N., Kale, S., Rathod, M., Dhurve, L., Mehara, H., & Baidya, B. K. (2023). A comprehensive review on role of bio-regulators in the growth and development of fruit and vegetable crops. International Journal of Environment and Climate Change, 13(11), 2879-2892. https://doi.org/10.9734/ijecc/2023/v13i1130641
Kehrberger, S., & Holzschuh, A. (2019). How does timing of flowering affect competition for pollinators, flower visitation and seed set in an early spring grassland plant? Scientific Reports, 9(1), 15593. https://doi.org/10.1038/s41598-019-52082-6
Kumar, A., Ram, S., Bist, L., & Singh, C. (2021). Paclobutrazol boost up for fruit production: A review. Annals of the Romanian Society for Cell Biology, 25(6), 963-980.
Lampariello, L. R., Cortelazzo, A., Guerranti, R., Sticozzi, C., & Valacchi, G. (2012). The magic velvet bean of Mucuna pruriens. Journal of Traditional and Complementary Medicine, 2(4), 331-339. https://doi.org/10.1016/S2225-4110(16)60012-4
Le Bris, M. (2017). Hormones in growth and development. Comptes Rendus Biologies, 340(9-10), 521-527. https://doi.org/10.1016/j.crvi.2017.05.009
Liu, B., Long, S., Liu, K., Zhu, T., Gong, J., Gao, S., Wang, R., Zhang, L., Liu, T., & Xu, Y. (2022). Paclobutrazol ameliorates low-light-induced damage by improving photosynthesis, antioxidant defense system, and regulating hormone levels in Tall Fescue. International Journal of Molecular Sciences, 23(17), 9966. https://doi.org/10.3390/ijms23179966
Muniandi, S. K. M., Hossain, M. A., Abdullah, M. P., & Ab Shukor, N. A. (2018). Gibberellic acid (GA3) affects growth and development of some selected kenaf (Hibiscus cannabinus L.) cultivars. Industrial Crops and Products, 118, 180-187. https://doi.org/10.1016/j.indcrop.2018.03.041
Nagatani, A. (2017). Photomorphogenesis. Plant Physiology, 175(2), 530-535. https://doi.org/10.1104/pp.17.00224
Nord, E. A., Shea, K., & Lynch, J. P. (2011). Optimizing reproductive phenology in a two-resource world: a dynamic allocation model of plant growth predicts later reproduction in phosphorus-limited plants. Annals of Botany, 108(2), 391-404.
Novita, A. (2022, May). The effect of Gibberellin (GA3) and Paclobutrazol on growth and production on Tomato (Lycopersicum esculentum Mill.). In IOP Conference Series: Earth and Environmental Science (Vol. 1025, No. 1, p. 012037). IOP Publishing.
Osnato, M., Cota, I., Nebhnani, P., Cereijo, U., & Pelaz, S. (2022). Photoperiod control of plant growth: flowering time genes beyond flowering. Frontiers in Plant Science, 12, 805635. https://doi.org/10.3389/fpls.2021.805635
Paltridge, G., & Denholm, J. (1974). Plant yield and the switch from vegetative to reproductive growth. Journal of Theoretical Biology, 44(1), 23-34. https://doi.org/10.1016/0022-5193(74)90162-2
Peng, L.-C., & Ng, L.-T. (2022). Impacts of nitrogen and phosphorus fertilization on biomass, polyphenol contents, and essential oil yield and composition of Vitex negundo Linn. Agriculture, 12(6), 859. https://doi.org/10.3390/agriculture12060859
Qin, F., Shen, Y., Li, Z., Qu, H., Feng, J., Kong, L., Teri, G., Luan, H., & Cao, Z. (2022). Shade delayed flowering phenology and decreased reproductive growth of Medicago sativa L. Frontiers in Plant Science, 13, 835380. https://doi.org/10.3389/fpls.2022.835380
Rai, K. K. (2022). Integrating speed breeding with artificial intelligence for developing climate-smart crops. Molecular Biology Reports, 49(12), 11385-11402. https://doi.org/10.1007/s11033-022-07850-4
Raihan, T., Geneve, R. L., Perry, S. E., & Rodriguez Lopez, C. M. (2021). The regulation of plant vegetative phase transition and rejuvenation: miRNAs, a key regulator. Epigenomes, 5(4), 24. https://doi.org/10.3390/epigenomes5040024
Resentini, F., Orozco-Arroyo, G., Cucinotta, M., & Mendes, M. A. (2023). The impact of heat stress in plant reproduction. Frontiers in Plant Science, 14, 1271644. https://doi.org/10.3389/fpls.2023.1271644
Ritonga, F. N., Zhou, D., Zhang, Y., Song, R., Li, C., Li, J., & Gao, J. (2023). The roles of gibberellins in regulating leaf development. Plants, 12(6), 1243. https://doi.org/10.3390/plants12061243
Sari, N. L., Sasmita, E. R., & Irawati, E. B. (2023). Application of NPK fertilizer and Paclobutrazol on growth. In BIO Web of Conferences (Vol. 69, p. 01010). EDP Sciences.
Shahrajabian, M. H., Kuang, Y., Cui, H., Fu, L., & Sun, W. (2023). Metabolic changes of active components of important medicinal plants on the basis of traditional Chinese medicine under different environmental stresses. Current Organic Chemistry, 27(9), 782-806. https://doi.org/10.2174/1385272827666230316142310
Small, C. C., & Degenhardt, D. (2018). Plant growth regulators for enhancing revegetation success in reclamation: A review. Ecological Engineering, 118, 43-51. https://doi.org/10.1016/j.ecoleng.2018.04.020
Springthorpe, V., & Penfield, S. (2015). Flowering time and seed dormancy control use external coincidence to generate life history strategy. eLife, 4, e05557. https://doi.org/10.7554/eLife.05557
Tabatabaie, S., Gregory, P., & Hadley, P. (2004). Uneven distribution of nutrients in the root zone affects the incidence of blossom end rot and concentration of calcium and potassium in fruits of tomato. Plant and Soil, 258, 169-178. https://doi.org/10.1023/B:PLSO.0000019504.87299.92
Taha, A. M., & Srour, M. A.-E. (2016). Effect of paclobutrazol and its method of application on the growth of Pentas lanceolata plants. Journal of the Advances in Agricultural Researches, 24(4), 686-703.
Tesfahun, W. (2018). A review on: Response of crops to paclobutrazol application. Cogent Food & Agriculture, 4(1), 1525169. https://doi.org/10.1080/23311932.2018.1525169
Wu, W., Du, K., Kang, X., & Wei, H. (2021). The diverse roles of cytokinins in regulating leaf development. Horticulture Research, 8, 124. https://doi.org/10.1038/s41438-021-00639-8
Yamamoto, S., Misumi, M., & Nawata, E. (2008). Effects of photoperiod on vegetative growth, flowering and fruiting of Capsicum frutescens L. and C. annuum L. in Japan. Environmental Control in Biology, 46(1), 39-47. https://doi.org/10.2525/ecb.46.39
Zahir, Z., Asghar, H., & Arshad, M. (2001). Cytokinin and its precursors for improving growth and yield of rice. Soil Biology and Biochemistry, 33(3), 405-408. https://doi.org/10.1016/S0038-0717(00)00155-5
Zarei, M., Shabala, S., Zeng, F., Chen, X., Zhang, S., Azizi, M., Rahemi, M., Davarpanah, S., Yu, M., & Shabala, L. (2020). Comparing kinetics of xylem ion loading and its regulation in halophytes and glycophytes. Plant and Cell Physiology, 61(2), 403-415. https://doi.org/10.1093/pcp/pcz190
Zürcher, E., & Müller, B. (2016). Cytokinin synthesis, signaling, and function—advances and new insights. International Review of Cell and Molecular Biology, 324, 1-38. https://doi.org/10.1016/bs.ircmb.2016.02.001 | ||
|
آمار تعداد مشاهده مقاله: 6 تعداد دریافت فایل اصل مقاله: 4 |
||