| تعداد نشریات | 21 |
| تعداد شمارهها | 338 |
| تعداد مقالات | 3,573 |
| تعداد مشاهده مقاله | 4,491,954 |
| تعداد دریافت فایل اصل مقاله | 3,024,859 |
Enhancing fresh-cut pineapple shelf-life: exploring the impact of ultrasonic-homogenized alginate coatings | ||
| Journal of Horticulture and Postharvest Research | ||
| مقالات آماده انتشار، اصلاح شده برای چاپ، انتشار آنلاین از تاریخ 16 آبان 1404 اصل مقاله (2.08 M) | ||
| نوع مقاله: Original Article | ||
| شناسه دیجیتال (DOI): 10.22077/jhpr.2025.8646.1464 | ||
| نویسندگان | ||
| Sonu Sharma1؛ Ramana Rao V. Tadapaneni* 1، 2؛ Prakash R. Patel3 | ||
| 1Department of Biosciences, Sardar Patel University, Vallabh Vidyanagar - 388120, Gujarat, India | ||
| 2Department of Food Technology, School of Agriculture and Food Technology, VIGNAN’s Foundation for Science, Technology and Research, Vadlamudi, Guntur - 522213, Andhra Pradesh, India | ||
| 3Dr. APJ Abdul Kalam Govt. College, Silvassa – 396230, U.T. of Darda and Nagar Haveli, India | ||
| چکیده | ||
| Purpose: This study investigates the influence of ultrasonic-homogenized alginate-based coatings on the quality and shelf-life of fresh-cut pineapple. As preservation of fresh-cut produces is still a challenging task for both producers and distributors. Research method: Alginate emulsion was prepared using sodium alginate, distilled water and glycerol. The primary emulsion was formulated by adding olive oil, citral and cinnamic acid into sodium alginate solution and subjected to ultrasonic homogenization for varying durations (0, 20, 40, and 60 minutes) at a fixed amplitude of 20 kHz. Changes in physicochemical properties, microbial activity, browning enzymes and sensory evaluation were studied after application of emulsions followed by storage under refrigeration. Findings: The viscosity of the resulting solutions decreased significantly from 110.84±25.67 mPa×s to 17.75±1.59, 10.41±0.54, and 7.74±0.39 mPa×s, respectively, while the average droplet diameter decreased to approximately 300 nm, indicating a shift from heterogeneous to homogeneous particle size distribution. Application of alginate-based coating effectively preserved freshness of pineapple, maintaining color and firmness, minimizing hydrogen peroxide and malondialdehyde accumulation and reducing weight loss percentage. Furthermore, it retained levels of ascorbic acid and total phenolics, delayed enzymatic activities such as polyphenol oxidase, peroxidase and phenylalanine ammonia-lyase and inhibited growth of mesophilic bacteria, yeasts and molds compared to control and primary emulsion coated samples. Research limitations: There were no limitations. Originality/Value: The study extended shelf-life of fresh-cut pineapple up to 12 days when stored at 5°C±1°C. The findings underscore the efficacy of ultrasonic-homogenized alginate coatings in improving coating solution homogeneity, thereby enhancing functionality as an edible coating for fresh-cut pineapple preservation. | ||
| کلیدواژهها | ||
| Antimicrobial؛ Edible coating؛ Emulsion؛ Fruit firmness؛ Storage | ||
| مراجع | ||
|
Aiamlaor, S., Mikkhunthod, K., Pandoi, S., Sangsawad, P., Tiraumphon, A., & Wissanee Pola. (2025). Influence of UV-b and UV-c irradiation on postharvest quality of parthenocarpic cucumbers under ambient conditions. Horticulturae, 11(2), 192. https://doi.org/10.3390/horticulturae11020192
Akhter, A., Shirazi, J. H., Khan, H. M. S., Hussain, M. D., & Kazi, M. (2024). Development and evaluation of nanoemulsion gel loaded with bioactive extract of Cucumis melo var. Agrestis: A novel approach for enhanced skin permeability and antifungal activity. Heliyon, 10, e35069. https://doi.org/10.1016/j.heliyon.2024.e35069
Amerine, M. A., Pangborn, R. M., & Roessler, E. B. (2013). Principles of Sensory Evaluation of Food, Elsevier, United State of America.
Amodio, M. L., Derossi, A., & Colelli, G. (2014). Modeling phenolic content during storage of cut fruit and vegetables: A consecutive reaction mechanism. Journal of Food Engineering, 140, 1-8. https://doi.org/10.1016/j.jfoodeng.2014.04.006
Azarakhsh, N., Osman, A., Ghazali, H. M., Tan, C. P., & Adzahan, M. N. (2012). Optimization of alginate and gellan-based edible coating formulations for fresh-cut pineapples. International Food Research Journal, 19(1), 279–285.
Bal, E. (2021). Storage life extension of cherry tomato by alginate-based edible coating in combination with UV-C treatment. Journal of Horticulture and Postharvest Research, 4(4), 453-466. https://doi.org/10.22077/jhpr.2021.4390.1215
Becerra-Moreno, A., Redondo-Gil, M., Benavides, J., Nair, V., Cisneros-Zevallos, L., & Jacobo-Velázquez, D. A. (2015). Combined effect of water loss and wounding stress on gene activation of metabolic pathways associated with phenolic biosynthesis in carrot. Frontiers in Plant Science, 6, 837. https://doi.org/10.3389/fpls.2015.00837
Brand-Williams, W., Cuvelier, M. E., & Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. Lebensmittel-Wissenschaft und-Technologie Food Science and Technology 28(1), 25-30. https://doi.org/10.1016/S0023-6438(95)80008-5
Burnette, F. (1977). Peroxidase and its relationship to food flavor and quality: a review. Journal of Food Science, 42, 1-6.
Cice, D., Ferrara, E., Pecoraro, M. T., Capriolo, G., & Petriccione, M. (2024). An innovative layer-by-layer edible coating to regulate oxidative stress and ascorbate–glutathione cycle in fresh-cut melon. Horticulturae, 10(5), 465. https://doi.org/10.3390/horticulturae10050465
Deutsch, J. C. (2000). Dehydroascorbic acid. Journal of Chromatography A, 881(1-2), 299–307. https://doi.org/10.1016/S0021-9673(00)00166-7
Dickinson, E. (2009). Hydrocolloids as emulsifiers and emulsion stabilizers. Food Hydrocolloids 23(6), 1473–1482. https://doi.org/10.1016/j.foodhyd.2008.08.005
Fan, F., Tao, N., Jia, L., & He, X. (2014). Use of citral incorporated in postharvest wax of citrus fruit as a botanical fungicide against Penicillium digitatum. Postharvest Biology and Technology, 90: 52–55. https://doi.org/10.1016/j.postharvbio.2013.12.005
González-Aguilar, G. A., Ruiz-Cruiz, S., Cruz-Valenzuela, R., Rodriguez-Félix, A., & Wang, C. Y. (2004). Physiology and quality changes of fresh-cut pineapple treated with antibrowning agents. LWT-Food Science and Technology, 37, 369-376. https://doi.org/10.1016/j.lwt.2003.10.007
Guerreiro, A. C., Gago, C. M. L., Faleiro, M. L., Miguel, M. G. C., & Antunes, M. D. C. (2015). Raspberry fresh fruit quality as affected by pectin and alginate-based edible coatings enriched with essential oils. Scientia Horticulture, 194, 138–146. https://doi.org/10.1016/j.scienta.2015.08.004
Haqbeen, N. A., Sagar, V. R., Rudra, S. G., & Prasad, K. (2019). Effect of pre-treatments and drying methods on the quality attributes of dehydrated pineapple slices. Journal of Horticulture and Postharvest Research, 2(2), 157-166. https://doi.org/10.22077/jhpr.2018.1570.1025
Hodges, D. M., & Forney, C. F. (2000). The effects of ethylene, depressed oxygen and elevated carbon dioxide on antioxidant profiles of senescing spinach leaves. Journal of Experimental Botany, 344(51), 645-655. https://doi.org/10.1093/jexbot/51.344.645
Huck-Iriart, C., Rincón-Cardona, J. A., & Herrera, M. L. (2014). Stability of whey protein concentrate/sunflower oil emulsions as affected by sucrose and xanthan gum. Food and Bioprocess Technology, 7, 2646–2656. https://doi.org/10.1007/s11947-014-1290-1
Iacovino, S., Cofelice, M., Sorrentino, E., Cuomo, F., Messia, M. C., & Lopez, F. (2024). Alginate-Based Emulsions and Hydrogels for Extending the Shelf Life of Banana Fruit. Gels, 10(4), 245. https://doi.org/10.3390/gels10040245
ICMSF - International Commission on Microbiological Specifications for Foods (1978). Microorganisms in foods. I. Their significance and methods of enumeration. 2nd Ed. University of Toronto Press.
Jadhav, H. B., Choudhary, P., Gogate, P., Ramniwas, S., Mugabi, R., Ahmad, Z., Asdaq, S. M. B., & Nayik, G. A. (2024). Sonication as a potential tool in the formation of protein-based stable emulsion – Concise review. Ultrasonics Sonochemistry, 107, 106900. https://doi.org/10.1016/j.ultsonch.2024.106900
Javanmardi, Z., Saba, M. K., Nourbakhsh, H., & Amini, J. (2023). Efficiency of nanoemulsion of essential oils to control Botrytis cinerea on strawberry surface and prolong fruit shelf life. International Journal of Food Microbiology, 384, 109979. https://doi.org/10.1016/j.ijfoodmicro.2022.109979
Jena, A. B., Samal, R. R., Bhol, N. K., & Duttaroy, A. K. (2023). Cellular Red-Ox system in health and disease: The latest update. Biomedicine & Pharmacotherapy, 162, 114606. https://doi.org/10.1016/j.biopha.2023.114606
Li, H., Huang, Z., Addo, K. A., & Yu, Y. (2022). Evaluation of postharvest quality of plum (Prunus salicina L. cv. ‘French’) treated with layer-by-layer edible coating during storage. Scientia Horticulturae, 304, 111310. https://doi.org/10.1016/j.scienta.2022.111310
Lim, Y. Y., Lim, T. T., & Tee, J. J. (2006). Antioxidant properties of guava fruit: comparison with some local fruits. Sunway Academic Journal, 3, 9-20.
Loay, A. A., Rabie, M. M., Alhaithloul, H. A. S., Alghanem, S. M. S., Ibrahim, A. M., Abdein, M. A., & Abdelgawad, Z. A. (2021). On the Biochemical and Physiological Responses of “Crimson Seedless” Grapes Coated with an Edible Composite of Pectin, Polyphenylene Alcohol, and Salicylic Acid. Horticulturae, 7, 498. https://doi.org/10.3390/horticulturae7110498
Lu, X. H., Sun, D. Q., Wu, Q. S., Liu, S. H., & Sun, G. M. (2014). Physico-chemical properties, antioxidant activity and mineral contents of pineapple genotypes grown in China. Molecules, 19(6), 8518-8532. https://doi.org/10.3390/molecules19068518
Magri, A., Rega, P., Capriolo, G., & Petriccione, M. (2023). Impact of Novel Active Layer-by-Layer Edible Coating on the Qualitative and Biochemical Traits of Minimally Processed ‘Annurca Rossa del Sud’ Apple Fruit. International Journal of Molecular Sciences, 24(9), 8315. https://doi.org/10.3390/ijms24098315
Malik, C. P. & Singh, M. B. (1980). Plant enzymology and histo-enzymology. Kalyani Publishers, New Delhi, India.
Mantilla, N., Castell-Perez, M. E., Gomes, C., & Moreira, R. G. (2013). Multilayered antimicrobial edible coating and its effect on quality and shelf-life of fresh-cut pineapple (Ananas comosus). LWT-Food Science and Technology, 51(1), 37–43. https://doi.org/10.1016/j.lwt.2012.10.010
Mazumdar, B. C., & Majumder, K. (2003). Determination of Chemical Constituents. In: Methods on physico-chemical analysis of fruits. Daya Publishing House, Delhi.
Metha, C., Pawar, S., & Suvarna, V. (2024). Recent advancements in alginate-based films for active food packaging applications. Sustainable Food Technology, 2, 1246-1265. https://doi.org/10.1039/D3FB00216K
Mirshekari, A., & Madani, B. (2021). Effects of hot water and calcium lactate treatments on fresh-cut quality of papaya. Journal of Horticulture and Postharvest Research, 4, 81-90. https://doi.org/10.22077/jhpr.2021.4721.1242
Namin, A. H., Abbaszadeh, R., & Pouraghdam, A. (2021). Investigation of the effect of non-thermal plasma on increasing the shelf life of fresh-cut pears. Journal of Horticulture and Postharvest Research, 4, 91-102. https://doi.org/10.22077/jhpr.2021.3907.1185
Papadakis, S. E., Abdul-Malek, S., Kamdem, R. E., & Yam, K. L. (2000). A versatile and inexpensive technique for measuring color of foods. Food Technology, 54(12), 48-51.
Prakash, A., Baskaran, R., & Vadivel, V. (2019). Citral nanoemulsion incorporated edible coating to extend the shelf life of fresh cut pineapples. LWT – Food Science and Technology, 118, 1–9. https://doi.org/10.1016/j.lwt.2019.108851
Quiles, A., Hernando, I., Pérez-Munuera, I., & Lluch, M. A. (2007). Effect of calcium propionate on the microstructure and pectin methylesterase activity in the parenchyma of fresh-cut Fuji apples. Journal of Science of Food and Agriculture, 87(3), 511–519. https://doi.org/10.1002/jsfa.2749
Rao, T. V. R., Dave, P. K., Payal, A., Pandya, J. B., Patel, P. R., & Pareek, N. (2025) Gumghatti based composite coating improves postharvest quality and nutritional value of black plums. Journal of Applied Biology and Biotechnology, 13(1), 75-82. https://doi.org/10.7324/JABB.2024.159375
Reyes, L. F. Villarreal, J. E., & Cisneros-Zevallos, L. (2007). The increase in antioxidant capacity after wounding depends on the type of fruit or vegetable tissue. Food Chemistry, 101(3), 1254−1262. https://doi.org/10.1016/j.foodchem.2006.03.032
Roe, J. H., & Oesterling, M. J. (1944). The determination of dehydroascorbic acid and ascorbic acid in plant tissues by the 2, 4-dinitrophenylhydrazine method. Journal of Biological Chemistry, 152(3), 511-517. https://doi.org/10.1016/S0021-9258(17)32566-8
Salvia-Trujillo, L., Rojas-Graü, A., Soliva-Fortuny, R., & Martín-Belloso, O. (2013). Physicochemical characterization of lemongrass essential oil–alginate nanoemulsions: Effect of ultrasound processing parameters. Food and Bioprocess Technology, 6(9), 2439–2446. https://doi.org/10.1007/s11947-012-0881-y
Salvia-Trujillo, L., Rojas-Graü, M. A., Soliva-Fortuny, R., & Martín-Belloso, O. (2015). Use of antimicrobial nanoemulsions as edible coatings: Impact on safety and quality attributes of fresh-cut ‘Fuji’ apples. Postharvest Biology and Technology, 105, 8-16. https://doi.org/10.1016/j.postharvbio.2015.03.009
Sharma, S., & Rao, T. V. R. (2015). Xanthan gum based edible coating enriched with cinnamic acid prevents browning and extends the shelf-life of fresh-cut pears. LWT - Food Science and Technology, 62(1), 791-800. https://doi.org/10.1016/j.lwt.2014.11.050
Tapia-Rodriguez, M. R., Bernal-Mercado, A. T., Palomares-Navarro, J. J., Sugich-Miranda, R., Enciso-Martinez, Y., Cruz-Valenzuela, M.R., Oliveira, L. S., Ayala-Zavala, F., & Ayala-Zavala, J. F. (2021). Citric acid and CaCl2 extended the shelf life, maintained antioxidant capacity, and improved sensory attributes of fresh-cut kiwifruit. Journal of Horticulture and Postharvest Research, 4, 67-80. https://doi.org/10.22077/jhpr.2021.4725.1243
Thirukumaran, R., Nimbkar, S., Mahalakshmi, L., Leena, M. M., Moses, J. A., & Anandharamakrishnan, C. (2023). Impact of different emulsification techniques on the stability of coconut milk. Journal of Agriculture and Food Research, 12, 100608. https://doi.org/10.1016/j.jafr.2023.100608
Toivonen, P. M. A., & Brummell, D. A. (2008). Biochemical bases of appearance and texture changes in fresh-cut fruit and vegetables. Postharvest Biology and Technology, 48(1), 1-14. https://doi.org/10.1016/j.postharvbio.2007.09.004
Uslu, N. & Ozcan , M. M. (2024). Determination of bioactive properties and quantitative values of phenolic components of different layers of pineapple fruit. Journal of Food Safety and Food Quality, 75(3), 65–92. https://doi.org/10.53194/0003-925X-75-86
Velikova, V., Yordanov, I., & Edreva, A. (2000). Oxidative stress and some antioxidant systems in acid rain-treated bean plants protective role of exogenous polyamines. Plant Science, 151(1), 59–66. https://doi.org/10.1016/S0168-9452(99)00197-1
Xing, Y., Liao, X., Wu, H., Qiu, J., Wan, R., Wang, X., Yi, R., Xu, Q., & Liu, X. (2022). Comparison of different varieties on quality characteristics and microbial activity of fresh-cut pineapple during storage. Foods, 11(18), 2788. https://doi.org/10.3390/foods11182788
Yousuf, B., Wu, S., & Siddiqui, M. W. (2021). Incorporating essential oils or compounds derived thereof into edible coatings: Effect on quality and shelf life of fresh/fresh-cut produce. Trends in Food Science & Technology, 108, 245-257. https://doi.org/10.1016/j.tifs.2021.01.016
Zhu, Z. J., & Zhan, L. J. (2010). Characterization of polyphenoloxidase from water Caltrop (Trapa acornis Nakano) fruits. Journal of Food Biochemistry, 34(6), 1125-1140. https://doi.org/10.1111/j.1745-4514.2010.00353.x | ||
|
آمار تعداد مشاهده مقاله: 7 تعداد دریافت فایل اصل مقاله: 6 |
||