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Purpose: Fruit species are essential for nutritional and health 
security, rich in micronutrients, antioxidants, and bioactive 
compounds. Recognized as functional foods, they meet current and 
future dietary requirements. Traditional breeding techniques have 
successfully enhanced various traits, including quality, aroma, 
antioxidant content, yield, and nutritional value. However, challenges 
such as climate change and the need for enhanced stress resistance 
require innovative solutions. Findings: Biotechnology has significantly 
expanded the potential for the large-scale propagation of elite clones 
through advancements in tissue culture, mutagenesis, and genetic 
transformation. Cutting-edge tools, such as CRISPR-Cas9, RNA 
interference (RNAi), genome-wide association studies (GWAS), and 
smart sensors, have revolutionised the development of novel 
germplasms with enhanced agronomic and nutritional traits. These 
technologies enable precise genetic modifications in the fruit species, 
boosting nutritional quality and stress tolerance. Metabolic pathway 
engineering allows for targeted manipulation of biochemical 
pathways to increase bioactive compounds, such as antioxidants and 
vitamins. Additionally, these innovations enhance resilience to 
environmental stressors such as drought, salinity, and temperature 
extremes, ensuring stable yields. Limitations: Despite significant 
progress, fully harnessing the potential of biotechnological tools to 
improve fruit quality and nutrition remains a work in progress. 
Challenges, such as limited genetic resources, regulatory barriers, 
high costs, and variable consumer acceptance, continue to limit their 
widespread application. Directions for future research: Creation of 
novel fruit products through biotechnology underscores the potential 
for trait-based enhancements, thereby opening new avenues for the 
development of genetically superior fruit cultivars. This review 
highlights the extensive applications of biotechnological approaches 
for improving fruit quality and nutritional value, and addressing the 
dynamic challenges in fruit crop enhancement. 
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INTRODUCTION 

 

Fruit, a distinctive organ found in angiosperms, plays a crucial role in providing humans with 

dietary fibre, vitamins, and essential nutrients, as well as in global food security (Ahmed et 

al., 2024; Farooq et al., 2020; Li et al., 2020). According to projections, the global population 

is expected to attain a staggering 10 billion by 2050, presenting a formidable predicament for 

agriculturists and breeders to effectively address the escalating need for sustenance (Hou & 

Wan, 2021). However, complex genetic and environmental factors frequently affect fruit 

quality attributes such as colour, flavour, and nutritional value. Although traditional breeding 

techniques have proven effective in improving fruit harvest, they are often accompanied by 

the loss of genetic diversity and fitness, and the management of complex characteristics 

remains a challenging task (Lee et al., 2024; Meyer et al., 2013; Saini et al., 2020). However, 

traditional plant breeding has struggled to enhance fruit production because of several 

constraints. These include a lengthy juvenile period that can extend breeding programs across 

multiple generations of scientists. In addition, challenges arise from the erosion of natural 

genetic variability, unplanned transfer of undesirable genes along with desirable traits, and 

reproductive barriers that hinder the transfer of beneficial alleles from diverse genetic 

resources (Rai et al., 2014). 

 Some fruit crops have also been subjected to tissue culture-based technologies for crop 

improvement, such as somatic hybridization (Dambier et al., 2022; Liu et al., 2024), in vitro 

selection (Rai et al., 2014; Zhong et al., 2022), haploid and double haploid production (Jin et 

al., 2022), and encapsulation technology. Therefore, novel biotechnological innovations are 

essential to meet the growing consumer demand. In recent years, several biotechnological 

approaches have emerged as potential tools for understanding and modifying the features of 

fruit crops. Biotechnology has significantly broadened the horizons and potential of 

conventional approaches to crop improvement, crop protection, crop quality improvement, 

and enhancement of various horticultural traits (Campa et al., 2024). It has opened up 

amazing opportunities for fruit production by facilitating the development of new genotypes 

for breeding purposes, ensuring the availability of healthy and disease-free planting materials, 

and elevating fruit quality. Moreover, biotechnology plays a vital role in extending the shelf 

life of fruits and providing access to biopesticides, biofertilizers, and other beneficial products 

(Mihrete et al., 2024). Biotechnology facilitates the enhancement of fruit crops with vital 

vitamins and minerals, thereby addressing the challenges of malnutrition. Additionally, 

improved storage technologies stemming from biotechnological advancements contribute to 

minimizing postharvest losses and ensuring enhanced food security (Abdallah et al., 2025). In 

addition, advancements in biotechnology have enabled the integration of specifically desired 

traits via genetic enhancement using techniques such as genetic engineering, CRISPR-Cas9, 

genome editing, RNA interference, and marker-assisted selection, thereby revolutionising the 

landscape of fruit production and nutritional quality. These advancements contribute to a 

longer shelf life and enrich the nutritional composition of fruits, thereby promoting greater 

health benefits for consumers (Gouthu et al., 2022; Irfan et al., 2023; Penna & Jain, 2023). 

Genetic engineering has facilitated the development of transgenic fruit crops with improved 

pest resistance and nutritional value (Sushmitha et al., 2024). This approach enables isolation 

and incorporation of specific genes of interest in horticultural crops. The process involves 

ligating the target gene with a suitable vector to construct a recombinant DNA molecule, 

which is then introduced into the plant genome to improve traits, such as flavour, texture, and 

appearance (Adaskaveg et al., 2023; Brummell et al., 2022). This approach has shown 

promise in minimizing post-harvest losses by enhancing shelf life, delaying fruit softening, 

and improving resistance to post-harvest pathogens in crops such as tomato and capsicum 
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(Kumari et al., 2022; Wang et al., 2019). Notably, transgenic technology has been identified 

as a rapidly expanding field in agriculture (James, 2016; Keul et al., 2022). Ninama et al. 

(2024) showed that altering genes linked to the ripening process results in fruits and 

vegetables that remain fresh for longer durations, thus improving their transport and storage 

potential. This technology has enabled precise and targeted changes in the genetic material of 

organisms, leading to important progress in fruit crop improvement (Pal et al., 2024). 

 Zinc fingers are protein domains that have been extensively studied in molecular 

biology research. TALENs and CRISPR-Cas9 have emerged as powerful tools for gene 

transcription research, particularly in developing fruits with high nutrient content (Kim et al., 

2017; Puchta et al., 2022). CRISPR-Cas9 a cutting-edge gene-editing technology, is used to 

modify specific traits, offering precise and efficient modifications to achieve desirable 

characteristics in fruit crops (Bhattacharyya et al., 2022; Biswas et al., 2022; Mitra et al., 

2022; Nidhi et al., 2021; Sirohi et al., 2022). This has not only led to enhanced consumer 

satisfaction but also has significant implications for public health, as it allows consumers 

access to fruits with improved health benefits. A study demonstrated that CRISPR-Cas9 

technology enables the modification of genes responsible for the size, taste, and ripening 

process of fruits. By targeting specific genes associated with aroma, sugar levels, and texture, 

it is possible to develop mango varieties with enhanced flavors and longer shelf lives (Antwi-

Boasiako et al., 2024). Furthermore, the use of molecular markers in molecular breeding 

accelerates the breeding process, allowing for the rapid detection of favorable traits (Singh et 

al., 2024). However, a new concept has now emerged in agriculture: Horticulture 4.0. This 

concept encompasses various operational or developing technologies such as robotics, 

nanotechnology, synthetic proteins, cellular agriculture, AI, blockchain, and machine 

learning, which may have pervasive effects on future agriculture and food systems, offering 

major transformative potential (Klerkx & Rose, 2020). The integration of modern 

technologies has the potential to boost fruit quality, optimize resource utilization, and enhance 

the livelihoods of smallholder farmers. Nevertheless, the successful introduction and adoption 

of these technologies depends on various socioeconomic and institutional factors. Precision 

agriculture, a contemporary farming practice, involves the use of GPS and remote sensing by 

farmers to optimize resource application, minimize waste, and increase crop yields (Tolesa & 

Gejea, 2024). Additionally, automation and robotics can streamline horticultural machinery, 

enhancing efficiency and reducing labor costs. Furthermore, big data and AI can offer 

valuable insights for more informed decision-making in farming practices (Rathi et al., 2024). 

As illustrated in Figure 1, biotechnology plays a vital role in modern plant breeding by 

overcoming species gene transfer barriers, eliminating unreliable traits, and shortening 

breeding cycles, ultimately contributing to the improvement in fruit quality. This review 

provides an overview of recent advances in biotechnology aimed at enhancing fruit quality 

and nutritional value, and offers insights into the transformative impact of these technologies 

on fruit production and consumption. Furthermore, we discuss the future challenges and 

opportunities associated with the introduction of desirable alleles and refining fruit traits. 
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Fig. 1. Depicts the necessity of biotechnology in crop improvement, highlighting its role in addressing the 

limitations of traditional breeding methods. 

 

Biotechnological strategies for enhancing fruit quality traits 

Although conventional breeding methods have been employed to reduce pre- and postharvest 

losses, their use is restricted because they are time-consuming and labour-intensive. To 

augment the conventional breeding of fruit crops, a variety of biotechnological approaches, 

such as genetic transformation and transgenics, antisense technology, RNA interference, and 

genome editing, have been employed (Fig. 2). Biotechnological approaches play a key role in 

enhancing fruit quality and nutritional status (Bashir et al., 2023).  

 

Transgenic overexpression method 

Biotechnological tools have revolutionised molecular insights into fruit quality and plant 

traits. By manipulating genes from different sources and inserting them into plants, desirable 

traits can be imparted to improve crops (Mathiazhagan et al. 2021). This method has been 

particularly effective in developing fruit crops and preventing post-harvest yield losses (Irfan 

et al., 2023). The potential of biotechnology to further advance agricultural practices is an 

immense and exciting area for future research and development. The study showed that 

banana (Musa acuminata) has great economic significance in tropical regions, with 

commercial production spanning over 130 countries (Sau et al., 2023). However, the industry 

faces a significant threat from the Sigatoka leaf spot disease, which is caused by the fungus 

Mycosphaerella fijiensis. In response to this challenge, Vishnevetsky et al. (2018) have 

undertaken the expression of the Trichoderma harzianum endochitinase (ThEn-42) gene, in 

conjunction with the stilbene synthase gene from grape and a superoxide dismutase gene 

Cu,Zn-SOD from tomato, to develop transgenic banana plants. This innovative approach 

holds promise for addressing the impact of disease on banana production. These transgenic 
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banana plants displayed improved resistance to this disease under field conditions without 

compromising fruit quality, yield, or the Gray Mold Botrytis cinerea, a major fruit pathogen 

(Paul et al., 2017). Another study showed that the expression of PbSPMS in Xiusu pears 

improves plant resistance to both drought and salt stress (Jiang et al., 2020). Moreover, the 

study revealed that overexpression of the SlORHis gene alone effectively boosted carotenoid 

accumulation in tomatoes, achieving levels similar to those seen with the co-overexpression 

of key regulatory enzymes (SlDXS, SlPSY) (Zhang et al., 2024). Notably, transgenic lines 

expressing SlBHY produced valuable carotenoid derivatives, such as zeaxanthin and 

violaxanthin, along with increased sugar content and antioxidant capacity. These findings 

underscore a promising multi-gene stacking strategy for developing biofortified tomatoes with 

enhanced nutritional profiles using phytoene synthase (PSY) and iron (Brookes et al., 2020; 

Zhang et al., 2024). However, overexpression of kiwifruit AeMDHAR3 negatively regulates 

ascorbic acid (AaA) accumulation by enhancing MDHAR and APX activities, suggesting a 

feedback regulatory mechanism for (AsA) content in kiwifruit (Jia et al., 2023). Moreover, 

with the rise of genomic tools and sequencing technologies, functional genomics has 

advanced significantly in fruit crops, enabling insights into traits, such as fruit quality. MYB 

transcription factors have been linked to the regulation of pigments and flavours, and their 

overexpression, such as MYB10 in apples, has shown potential to enhance flavonoid content 

and improve health benefits (Allan et al., 2018; Canani et al., 2015; Espley et al., 2014). 

Another study showed that overexpression of PcMYB44 enhanced the resistance of pear calli 

to Botryosphaeria dothidea by promoting lignin biosynthesis through the PcmiR397-PcLACs 

module and activating genes in the JA/SA/ET pathways. These findings indicated that 

PcMYB44 is a crucial regulator of host resistance and provides valuable genetic resources for 

breeding, ultimately improving fruit quality (Lv et al., 2025). In addition to these examples 

using transgenic technology, several other transgenic fruit crops have also been developed, as 

listed in Table 1. 

 

Fig. 2. Pictorial representation shows key stages in the development of genetically and genomically engineered 

fruit crops utilizing the above-mentioned technologies. 
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  Table 1. Overview of biotechnological strategies employed to improve quality traits in fruit crops. 

Fruits Genes Approaches Application 

method  

Functions  References 

Citrus CsMYB1-

CwINV6 

Transient 

overexpression  

Agrobacterium-

mediated gene 

transfer 

Promotes soluble sugar 

distribution 

(Khan et al., 2025) 

CsPALs Transient 

overexpression 

Agrobacterium-

mediated gene 

transfer 

Improved enzymatic 

activities and sugar 

content  

(Wei et al., 2024) 

CsGH3.1, 

CsGH3.1L 

Overexpression Agrobacterium-

mediated gene 

transfer 

Resistance to 

Xanthomonas citri 

(Zou et al., 2019) 

CsLOB1 CRISPR-Cas9 Agrobacterium-

mediated gene 

transfer 

Resistance against 

citrus canker 

(Hao et al., 2016) 

Pear  PpZIP44 Transient 

overexpression 

and RNAi 

Agrobacterium-

mediated gene 

transfer 

Improved Flavor, 

texture, nutrition 

overall fruit quality  

(Wang et al., 2023) 

CAMTA2  Overexpression  Agrobacterium-

mediated gene 

transfer 

Improved shelf life of 

pear fruit by inhabiting 

fruit ripening  

(Song et al., 2024) 

 PbFRK1 Overexpression Agrobacterium-

mediated gene 

transfer 

Reregulated sugar 

metabolism 

(Zhao et al., 2024) 

Sweet 

Cheery  

 IbCBF3 Overexpression  Agrobacterium-

mediated gene 

transfer 

Improved cold and 

drought 

stress tolerance 

(Irfan et al., 2023) 

Mango MiRZFP34 Overexpression Floral dip 

method in 

Arabidopsis 

thaliana 

Promoted early 

flowering and stress 

tolerance 

(Lu et al., 2023) 

Sweet 

orange 

 

MTSE1 Virus Induced 

gene silencing  

Agrobacterium-

mediated gene 

transfer 

Increased resistance to 

Xanthomonas citri  

(Rodriguez et al., 

2017) 

CsPALs Transient 

overexpression 

Agrobacterium-

mediated gene 

transfer 

Upregulated shikimate 

pathways and enzyme 

activites 

(Wei et al., 2024) 

Grapefruit CsLOB1 CRISPR-Cas9 Agrobacterium-

mediated gene 

transfer 

Effective against 

Xanthomonas citri 

(Gapper et al., 2014) 

 VvCslD5 Overexpression  Agrobacterium-

mediated gene 

transfer 

Improved fruit firmness  (Hu et al., 2025) 

Pomegranate PgUGT84A23 

and 

PgUGT84A24 

CRISPR-Cas9 Agrobacterium-

mediated gene 

transfer 

Help in gallic acid 

accumulation to 

enhanced flavonoids 

contents  

(Chauhan et al., 

2025) 

Papaya 

 

CP RNAi Particle-

bombardment 

transformation 

Resistance against 

Hainan papaya ring 

spot virus (PRSV) 

(Jia et al., 2017) 

ACO1, ACO2 RNAi Agrobacterium- Enhanced fruit shelf (Kowsalya et al., 
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mediated gene 

transfer 

life 2024) 

FveARF2-

RNAi 

RNAi and 

overexpression  

Agrobacterium-

mediated gene 

transfer 

Improved shelf life and 

ripening  

(Yi et al., 2022) 

Banana MaMADS1, 

MaMADS2 

Antisense and 

RNAi 

interference  

Agrobacterium-

mediated gene 

transfer 

Improve fruit quality 

and shelf life 

(Elitzur et al., 2016; 

Hermawaty et al., 

2024) 

MaACO1 CRISPR-Cas9 Agrobacterium-

mediated gene 

transfer 

Extended fruit shelf-life 

period of up to 40 days 

(Hu et al., 2022) 

Hrap and 

Pflp10 

Transgenic Agrobacterium-

mediated gene 

transfer 

Effective against BXW (Jin et al.,2017) 

PDS CRISPR-Cas9 Agrobacterium-

mediated gene 

transfer 

Improved carotenoids 

biosynthesis  

(Naim et al., 2018) 

Tomato MYB12, 

SGR1 

CRISPR-Cas9 Agrobacterium -

mediated gene 

transfer 

Enhanced fruit color (Yang et al., 2023) 

CLV3 CRISPR-Cas9 Agrobacterium -

mediated gene 

transfer 

Improved fruit size, 

resulting in enhanced 

tomato yield 

(Sethi et al., 2024) 

CsCCD1 CRISPR-Cas9 Agrobacterium -

mediated gene 

transfer 

Increased carotenoid 

contents  

(Dai et al., 2025) 

LCY-E, LCY-

B1 and LCY-

B2 

CRISPR-Cas9 Agrobacterium -

mediated gene 

transfer 

Improved lycopene 

content in fruit 

(Li et al., 2018) 

RIN CRISPR-Cas9 Agrobacterium -

mediated gene 

transfer 

Inhibit ethylene 

biosynthesis and 

delayed fruit 

senescence process   

(Jung et al., 2018) 

SlORRM4 CRISPR-Cas9 Agrobacterium -

mediated gene 

transfer 

Delayed fruit ripening (Yang et al., 2017) 

Watermelon  PDS CRISPR-Cas9 Agrobacterium -

mediated gene 

transfer 

Carotenoid 

biosynthesis 

(Wang et al., 2019d) 

Kiwifruit  CEN CRISPR-Cas9 Agrobacterium -

mediated gene 

transfer 

Fruit development  (Varkonyi-Gasic et al. 

2019) 

Apple MdPGT1 CRISPR-Cas9 Agrobacterium -

mediated gene 

transfer 

Improved plant growth 

and fruit size 

(Miranda et al., 2023) 

MdPL5 Transient 

Overexpression  

Agrobacterium -

mediated gene 

transfer 

Enhanced fruit firmness  (Su et al., 2024) 

MdWRKY126 Overexpression Agrobacterium-

mediated gene 

transfer 

Upregulated sucrose 

phosphate synthase 

(SPS) activity 

(Zhang et al., 2024b) 
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Antisense and RNAi technology 

Gene silencing methods such as antisense and RNAi technologies have demonstrated 

significant effectiveness in enhancing the structure and characteristics of fruit crops. 

Antisense RNA technology is gaining momentum in agricultural research, in which 

complementary RNA molecules hybridise with mRNA to inhibit protein production 

(Malakondaiah et al., 2024). These biotechnological approaches allow for precise gene 

regulation, leading to improved traits such as shelf life, nutritional content, and reduced 

undesirable compounds. This technique, which includes RNA interference (RNAi) and long 

non-coding RNA (lncRNA), has been employed by crop breeders to develop new varieties by 

controlling the expression of specific genes (Sindhura et al., 2024). A notable example is the 

successful development of bananas with delayed ripening and extended shelf life, achieved by 

targeting two key MADS box genes, MaMADS1 and MaMADS2, which are crucial in banana 

ripening (Tilahun et al., 2021). Similarly, Antisense RNA technology has been utilized to 

increase the nutritional value of crops by inhibiting genes responsible for undesirable traits. 

For instance, the FLAVR SAVR tomato was engineered to slow ripening, enhancing shelf life 

(Sinha et al., 2023). In tomatoes, antisense RNA targeting polygalacturonase (PG) has been 

shown to affect fruit texture and firmness during ripening (Wong, 2018). Li et al. (2022) 

investigated the enhancement of vitamin D₃ content through the knockout of Sl7-DR2. Post-

harvest losses pose a threat to global food security, underscoring the need for crops with 

longer shelf lives and consistent nutritional qualities. Genetic engineering, particularly RNA 

interference (RNAi), offers a promising solution for controlling postharvest damage by 

delaying ripening, reducing browning, and enhancing disease resistance. RNAi techniques, 

such as SIGS, enable the application of gene silencing across diverse crop species, improving 

both yield quality and shelf life (Kaur et al., 2024; Singh et al., 2025). However, this 

technology involves the use of short double-stranded RNA (dsRNAs), small interfering RNA 

(siRNAs), or hairpin RNA (hpRNAs) to induce post-transcriptional gene silencing. This 

approach has shown promise in reducing postharvest losses by extending shelf life, 

preventing softening, and enhancing resistance to pathogens in crops such as tomatoes, 

strawberries, and bananas (Meena, 2024; Nie et al., 2024; Zhou et al., 2023). This genetic 

modification represents a significant milestone in agricultural biotechnology, offering the 

potential to improve crop quality and sustainability (Zhou et al., 2020). Pinkglow, a 

genetically modified pineapple (Ananas comosus) with altered fruit colour, delayed ripening, 

and senescence, was recently introduced to the US market by Del Monte. This pineapple 

accumulates pink flesh because of the expression of the tangerine (Citrus reticulata) phytoene 

synthase gene, which is essential for fruit carotenoid biosynthesis, and the suppression of 

endogenous lycopene-β and ε-cyclase genes (β-LYC and ε-LYC, respectively) through RNAi. 

The product has received FDA approval prior to commercialisation (Alvarez et al., 2021; 

Bashir et al., 2023; Firoozbady et al., 2015). Research has shown that dsRNA is transcribed in 

grapes (Vitis vinifera) and citrus crops under tissue culture conditions by administering the 

solution through root zone drenching or trunk injection. The aim of this study was to target 

the arginine kinase process of two psyllids against a brown plant hopper (Hunter et al. 2012; 

Saberi et al. 2023). Citrus canker disease, caused by Xanthomonas citri subsp. remains a 

major threat to citrus production, affecting both yield and fruit quality, with current control 

methods posing environmental risks. Recent studies demonstrated that antisense 

oligonucleotides (ASOs) targeting CsLOB1 can significantly reduce disease symptoms and 

protect fruit quality, offering a promising, non-transgenic strategy for sustainable disease 

management (Lima et al., 2024). RNAi has successfully increased carotenoid and flavonoid 

levels in tomatoes by suppressing the DET1 gene, demonstrating its potential for enhancing 

health-promoting compounds (Davuluri et al., 2005). In papaya, RNAi targeting ethylene 
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biosynthesis genes significantly delayed ripening, extending shelf life from 4 to 20 days 

(Sekeli, 2013). Both RNAi and antisense technologies can address various agricultural 

challenges, including resistance to biotic and abiotic stresses, and the removal of allergens. 

However, there are concerns regarding biosafety and potential off-target effects, necessitating 

thorough risk assessments for genetically modified crops (Rajam, 2021; Saurabh et al., 2014). 

While both technologies offer momentous improvements in fruit quality and nutrition, the 

ongoing estimation of their safety and environmental impact remains crucial for their 

widespread adoption in agriculture (Penna and Shri, 2023). Consequently, safety concerns 

regarding the use of genetically engineered products have arisen. Additionally, Antisense 

oligonucleotides (ASOs) have progressed from functional genomics tools to precision crop 

pest management strategies with chemical modifications to improve their stability and 

specificity. ASOs selectively target pest genes, offer an alternative to conventional pesticides, 

and enhance crop yield and quality. The potential for sustainable agriculture depends on 

further advancements in stability, delivery, and environmental safety (Patil et al., 2024). 

 

Genome editing techniques for fruit crop improvement  

Genome editing has swiftly become a transformative tool for precise genetic modification in 

plants, allowing for the targeted enhancement of key fruit traits (Zhang et al., 2021). Initially, 

site-directed nucleases (SDNs) like mega-nucleases (MegaNs), zinc finger nucleases (ZFNs), 

and transcription activator-like effector nucleases (TALENs) have been employed in the 

genetic engineering of fruit crops (Mishra et al., 2023; Mamrutha et al., 2024). However, 

recent advancements in the CRISPR-Cas9 system have revolutionised fruit crop improvement 

owing to its precision, cost-effectiveness, and ease of reprogramming (Guo et al., 2023; Zhou 

et al., 2023). CRISPR-Cas9 facilitates targeted alterations, such as gene insertion, deletion, or 

replacement, through sequence-specific recombination, making the process more efficient and 

reproducible (Shi et al., 2024). This system has been successfully applied to various fruits, 

including tomato (Solanum lycopersicum), apple (Malus domestica), pear (Pyrus pyrifolia), 

banana (Musa acuminata), and sweet cherry (Prunus avium), leading to delayed fruit 

senescence, enhanced productivity, improved fruit quality, and an extended shelf life (Fiol et 

al., 2022; Ming et al., 2022; Ntui et al., 2020; Zhou et al., 2023). Genetically encoded delivery 

methods, such as Agrobacterium-mediated transformation and biolistic particle delivery, have 

facilitated the effective implementation of CRISPR tools in plant cells (Kumari et al., 2022). 

Furthermore, these innovations contribute to sustainable agriculture by enhancing both the 

field performance and the postharvest quality of fruit crops (Zhu et al., 2020). For instance, in 

citrus plants, the bacterium Xanthomonas citri subsp. citri causes citrus canker, leading to 

severe symptoms in the stem, leaf, and fruit and significant economic losses at both the pre- 

and post-harvest stages (Ali et al., 2023). To address this issue, the susceptibility gene 

(CsLOB1), a key transcription factor responsible for disease expression, was eliminated using 

the CRISPR-Cas9 approach (Martins et al., 2020; Zou et al., 2021). Moreover, CRISPR-Cas9-

mediated silencing of CsWRKY22 enhances resistance to citrus canker by inhibiting cell 

hypertrophy and CsLOB1 expression, identifying CsWRKY22 as a key regulator of disease 

susceptibility and contributing to the improved post-harvest control of fruit cell size (Long et 

al., 2021). Similarly, CRISPR-Cas9-based mutants (DLOB9 and DLOB10) with enhanced 

resistance to Xanthomonas citri were developed in Duncan grapefruit (Citrus paradisi) by 

targeting CsLOB1 (Jia et al., 2017). Additionally, modulating the expression of genes, such as 

OVATE, SUN, SlWUS, and SlCLV3, can regulate tomato fruit shape, size, and locule number, 

with mutations in CLV3 and WUS enhancing fruit size (Yuste-Lisbona et al., 2020; Zsogon et 

al., 2018). Furthermore, pale blue flower torenia varieties and pale purplish-pink flowered 

petunia varieties were created by interrupting F3H with CRISPR-Cas9 (Yu et al., 2021). 
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CRISPR-Cas9 technology has significant potential for extending the shelf life of tomatoes and 

bananas by targeting genes such as Nr, alc, rin, and Cnr, although mutations can affect 

colour, flavour, and nutrition (Wang et al., 2019d). Research has demonstrated that mutations 

in the alc gene and knockout of SlPL or MA-ACO1 can enhance fruit firmness, delay 

softening, and improve storage without compromising organoleptic and nutritional qualities 

(Liu et al., 2022). Similarly, Tripathi et al. (2019) employed CRISPR-Cas9-mediated targeted 

mutagenesis to confer resistance to the banana streak virus strain Obino l'Ewai (BSOLV) in 

bananas. This editing technique also reduced softening, water loss, and damage to B. 

ytestiscinerea, without affecting other fruit quality traits. However, CRISPR-Cas9-mediated 

knockout of FaPG1 in strawberry plants significantly increased fruit firmness, with firmness 

rising from 33% to 70%, and improved post-harvest shelf life (Lopez-Casado et al., 2023). 

For instance, Yang et al. (2017) developed SlORRM4 mutants in tomatoes that resulted in 

delayed fruit ripening. Similarly, Li et al. (2018a) reported that targeted mutations in the 

lncRNA1459 locus using CRISPR-Cas9 suppressed the ripening process Yang et al. (2023).  

Utilised CRISPR-Cas9-mediated knockout of PSY1, MYB12, and SGR1 to create tomato lines 

with diverse fruit colours, offering a more efficient and time-saving breeding approach. 

Multiplex editing of genes related to carotenoid metabolism in tomatoes leads to a significant 

increase in lycopene content, demonstrating the potential to enhance nutrient levels through 

genetic manipulation (Sethi et al., 2024). Carotenoids, especially lycopene, support plant 

development and human health by reducing oxidative damage and disease risk; CRISPR-

Cas9-mediated editing of genes like LCY-B, SGR1, and PSY1 in tomatoes has significantly 

enhanced or altered lycopene accumulation during fruit ripening (Shahrour et al., 2020). 

CRISPR-Cas9-mediated editing of SlGAD2, SlGAD3, and key metabolic genes significantly 

increases GABA accumulation in tomatoes, enhancing its health benefits while affecting fruit 

traits (Li et al., 2018; Nonaka et al., 2017). Within this framework, CRISPR-Cas9 has shown 

it capability to alter the specific characteristics of fruits. For example, editing MdMKK9 using 

this method resulted in a beneficial increase in anthocyanin levels, which resulted in the 

typical red color of apples (Sun et al., 2022). These findings highlight the potential of gene 

editing to manipulate bioactive compounds in fruits for nutritional enhancement. This method 

produces transgene-free plants with altered color phenotypes while maintaining key 

agronomic traits, demonstrating its potential for enhancing multigene-controlled traits in 

horticultural crops. Additionally, the APOBEC-Cas9 fusion-induced deletion system (AFIDs) 

represents an innovative approach to genome editing, particularly to enhance fruit quality and 

nutrition (Pacesa et al., 2024). This system leverages the precision of CRISPR-Cas9 

technology to induce targeted deletions, potentially improving traits such as size, color, and 

nutritional value in fruit crops (Jin et al., 2020). The application of AFIDs in fruit quality and 

nutrition is promising, as it allows for the precise modification of the genes responsible for 

these traits, thereby enhancing the overall quality and nutritional profile of fruits. CRISPR-

Cas9 technology, including AFIDs, can be used to improve fruit traits such as size, colour, 

and nutritional value by precisely editing genes that control these characteristics (Pimentel & 

Fortes, 2020). For instance, the targeted deletion of specific genes in grapes has been shown 

to potentially alter fruit skin colour, which is a key quality trait in many fruit crops (Nakajima 

et al., 2023). AFIDs have the potential to enhance the nutritional content of fruits by targeting 

genes involved in the biosynthesis of beneficial compounds. CRISPR-Cas9-mediated 

deletions have been used to explore the role of FvMYB46 in flavonoid biosynthesis, which is 

crucial for both fruit quality and nutritional value in strawberries (Rai et al., 2024). This 

technology also shows promise for improving the resilience of fruits to biotic and abiotic 

stressors, thereby indirectly supporting nutritional quality by reducing postharvest losses 

(Shipman et al., 2021; Wan et al., 2021). Although AFIDs offer significant potential for 
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enhancing fruit quality and nutrition, challenges such as regulatory barriers, insights into gene 

function, and long-term safety considerations must be addressed to facilitate their effective 

agricultural application. 

 

Utilizing omics and bioinformatics in fruit biotechnology 

In recent years, the use of various bioinformatics and omics techniques, including genomics, 

metabolomics, transcriptomics, proteomics, ionomics, and phenomics, has propelled 

significant advancements in fruit biotechnology (Dhiman et al., 2025; Ijaz et al., 2024). These 

methodologies have been pivotal for enhancing fruits and vegetables, addressing quality 

concerns, and elucidating product deterioration. Multi-omics approaches aid breeding by 

identifying stress-resilient genotypes with desirable fruit traits (Roychowdhury et al., 2023). 

Transcriptomics reveals gene expression dynamics associated with fruit ripening and 

senescence, while genomics identifies key genes that regulate traits such as texture, flavour, 

and colour. Proteomics complements this by profiling proteins involved in postharvest 

metabolic processes (Mathiazhagan et al., 2021; Sang et al., 2022). Studies have demonstrated 

that omics methods can be employed to select slower ripening lines, modify ethylene 

responses, and reduce softening rates, thereby extending postharvest life and maintaining 

quality (Gapper et al., 2014; Habibi et al., 2024). In the past, the genomes of numerous fruits, 

including cassava (Wang et al., 2014), citrus (Teh et al., 2017), pomegranate (Luo et al., 

2020), and lychee (Hu et al., 2022), have been sequenced using advancements in genomic 

sequencing technologies. Gu et al. (2024) developed a metabolite-gene association database, 

revealing that DNA methylation regulates carotenoid biosynthesis and ABA accumulation 

during pear flesh development. Inhibiting DNA methylation increased xanthophyll and β-

carotene levels and identified PbZFP1 as a key transcription factor that promotes ABA 

biosynthesis, suggesting that methylation delays ripening. Additionally, while cold storage 

extends the shelf life of fruits, it often results in chilling injuries, such as superficial scalds in 

apples and pears, or internal disorders in peaches and nectarines, influenced by genetics and 

storage conditions (Rodrigues et al., 2024). Multi-omics approaches have uncovered key 

pathways and regulatory mechanisms underlying these injuries, enabling targeted 

interventions such as 1-MCP and controlled atmosphere, which demonstrate cultivar-specific 

effectiveness in Granny Smith and Ladina apples (Vittani et al., 2023). Recent studies have 

also underscored the role of ethylene metabolism in heat stress adaptation, highlighting the 

need for tailored postharvest strategies to enhance fruit resilience and quality under changing 

climates (Nguyen et al., 2023). The sequencing of fruit crop genomes not only provides 

insights into their molecular evolution and genetics but also offers opportunities for 

developing molecular tools and breeding to improve fruit quality traits. Furthermore, the 

emergence of computational tools such as artificial intelligence and machine learning has 

facilitated the prediction of gene sequences and functional relationships between plant 

metabolic pathways and biological processes, particularly in rapidly accumulating but poorly 

annotated genomes, including those of tropical crops. Omics technologies and bioinformatics 

have revolutionised horticultural crop improvement by decoding complex genomes, 

identifying key genes, and developing genome-wide DNA markers. These advances, along 

with genetic engineering, have enabled the enhancement of fruit and vegetable quality traits, 

such as shelf life, aroma, and nutritional value, directly benefiting consumer health and 

agricultural productivity (Bashir et al., 2023; Fatima et al., 2023). These advancements hold 

great promise in the future of fruit biotechnology. 
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Novel smart technologies are accelerating horticultural plant breeding 

Smart horticulture, utilizing technologies like AI, big data, and Internet of Things (IoT), is 

key to enhancing yield, resource efficiency, and productivity amid challenges like climate 

change and labour shortages. Integrating these technologies into breeding, cultivation, 

transportation, and sales will help the horticulture industry transition to a smart, automated 

system within the next 30 years (Zhang et al., 2023). Breeding new cultivars is crucial for 

improving the yield and quality of fruit crops. There are four main stages of breeding patterns. 

The first stage, known as artificial selection (breeding 1.0), involves breeding new cultivars 

with higher nutritional value based on direct observation, but it is a random and inefficient 

process (Moose & Mumm, 2008). The second stage, experimental design breeding (breeding 

2.0), has become more popular with the rapid development of genetics and has achieved 

success in crops like citrus and grapes. Classical breeding in this stage produces new cultivars 

with improved agronomic features, but the breeding cycle length is a significant high (Ahmar 

et al., 2020). The third stage, molecular breeding (breeding 3.0), is emerged in the 1980s with 

genetic engineering and modern molecular biology, leading to the development of transgenic 

crops with good agronomic characteristics and high disease resistance (Qaim, 2020). The 

fourth stage, smart breeding (breeding 4.0), has developed in the 21st century with the 

advancement of computational biology and synthetic biology, driving breeding technology 

toward intelligence through biological and information sciences are shown in Fig 3. Smart 

breeding, based on important identified genes, integrates multi-omics, new-generation 

biotechnology, and novel information technology (i.e., AI and big data). First, the number of 

important genes identified using genetics i.e., through map-based cloning, quantitative trait 

locus (QTL) and genome-wide association analysis (GWAS) and transgenics methods are the 

basis for applying smart breeding. However, with further research, it is increasingly believed 

that the plant phenotype is determined by the genotype, environmental type I, and genotype × 

environment interaction. Multi-level phytomics data (i.e., multi-omics data) includes 

genomics, metabolomics, phenomics, proteomics, and transcriptomics. However, seedling 

transplantation is the primary method for growing horticultural plants, but the quality of 

seedlings produced by individual farmers often fails to meet production standards. Large-

scale intensive seedling nursing has emerged as a practical solution to enhance efficiency, 

reduce labor, and ensure the production of high-quality seedlings with strong root systems for 

rapid establishment after transplantation (Tay et al., 2024). Protected cultivation, utilizing 

controlled environments like greenhouses, ensures stable yields and quality, but requires 

significant labor input and environmental regulation (Liu et al., 2022). The rapid advancement 

of AI and machine learning has led to the development of smart monitoring systems that 

enable precise control over environmental and growth factors, predict pest outbreaks, and 

optimize plant growth dynamics (Lastochkina et al., 2022; Weiss et al., 2025). These systems, 

which integrate phenotypic, environmental, and stress data, facilitate smart decision-making 

and improve crop quality and production efficiency in both protected and open-field 

cultivation. These approaches assist in the analysis of complex biological changes and 

regulatory processes systematically, helping in the discovery of key genes and regulatory 

elements efficiently, which is beneficial to plant breeding (Yang et al., 2021). However, 

exploring and integrating this knowledge is challenging, as multivariate data are usually 

characterized by high dimensionality, redundancy, and noise. 
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Fig. 3. Evolution of the breeding patterns of horticultural crops. 

Future prospects 

Continued improvements in biotechnological tools and other smart agricultural methods are 

expected to further improve the quality and nutritional value of fruits. The addition of 

artificial intelligence, machine learning, and other computational tools will enable the 

calculation of gene sequences and functional associations, leading to more specific genetic 

and genomic engineering in fruit crops. Furthermore, the progress in CRISPR-edited fruit 

crops holds great potential for sustainable agriculture, promoting both economically growing 

countries and food security. In general, the current progress in biotechnological approaches 

offers exciting potential for fruit quality improvement and nutritional value. Similarly, smart 

horticulture is still in its early stages, with most research focusing on common crops, such as 

citrus, grapes, and tomatoes, while other plants, such as flowers and tea, remain 

underexplored. Current studies primarily focus on crop-specific factors, with limited attention 

given to broader aspects, such as weed detection, soil health, and environmental impacts, 

making the development of a systematic approach challenging. Future research should 

integrate knowledge from industry, academia, and scientific research, leveraging emerging 

technologies like AI, big data, and biotechnology to enhance crop quality, yield, and 

sustainability. 

 

CONCLUSION 

 

This review primarily focuses on the application of cutting-edge biotechnological tools for 

genetic and genome engineering in fruit crops, aiming to reduce production losses and 

enhance nutritional value. By integrating breeding techniques, biotechnology, omics, and 

computational biology, we can develop innovative approaches for the sustainable cultivation 

of fruit crops. These strategies lead to improved fruit yields and enhanced postharvest 
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stability, ensuring the preservation of nutritional attributes. The advantages of CRISPR 

technology over traditional methods are evident, positioning it as a promising avenue for 

future research. By developing CRISPR-edited fruit crops, we can create sustainable solutions 

to minimize losses, ultimately benefiting economically developing countries and contributing 

to food security for the rapidly growing global population. However, a better and advanced 

understanding in the physiological mechanisms leading to fruit quality are paving the way for 

more sustainable and resilient agricultural systems and a better control of the postharvest 

ripening. By harnessing innovative technologies and interdisciplinary approaches, we can 

address current and future challenges in fruit production, ensuring the world-wide availability 

and accessibility of high-quality products. A more knowledge-based and science-driven 

postharvest will also contribute to promoting fruit security by minimizing fruit wastage while 

enhancing fruit quality. This is an exciting time for the agricultural industry and academia, 

with the promise that close-future discoveries will enhance our ability to feed a growing 

population while protecting natural resources. 
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