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Abstract 

This study aims to (1) evaluate the Crop Water Productivity (CWP) and gray Water Footprint 

(WFGray) for key agricultural systems in Lorestan province, Iran, to identify hotspots of inefficiency 

and pollution, and (2) develop and compare Machine Learning (ML) models for predicting these 

metrics to aid in management and forecasting. We calculated CWP and WFGray for major crops 

(including forage corn, wheat, beans, potatoes and vegetables) across multiple meteorological stations 

in Lorestan province. Furthermore, we employed two ML algorithms including Random Forest (RF) 

and Support Vector Machine (SVM) to model and predict these indices. Model performance was 

evaluated using the Mean Absolute Error (MAE). The assessment revealed significant regional and 

crop-specific disparities. Forage corn was the most efficient and sustainable system (CWP: 2.173 

kg/m³, WFGray: 0.05 m³/kg), whereas bean production was the least efficient (CWP: 0.064 kg/m³). 

Spatially, stations like Azna (potato) demonstrated best practices, while Kuhdasht was identified as 

a critical area of concern due to low efficiency and high fertilizer pollution. In modeling, the optimal 

algorithm was target-dependent: RF was superior for predicting CWP (MAE: 0.236), while SVM 

performed relatively better for the more complex WFGray. This study concludes that addressing water 

security and agricultural pollution in the region requires tailored, crop-specific interventions and 

improved farm management practices. Furthermore, while ML model (particularly RF) proves to be 

a powerful tool for forecasting water productivity, accurately modeling the environmental impact 

(WFGray) remains a challenge, highlighting the need for more robust data and further research in this 

domain. 

Keywords: Agricultural Water Management, Crop Water Productivity, Gray Water Footprint, Random 

Forest, Nitrogen Pollution. 

 
1. Introduction 

Iran is located in an arid and semi-arid belt, 

making it a predominantly dry country. 

Therefore, the problem of water shortage has 

become a major challenge in the country. The 

The agricultural sector consumes a large share 

of water resources to provide food for the 

growing population (Dehghanpir et al., 2023). 

The decline in groundwater levels, the 

drying up of rivers, and the increase in water 

pollution are indicators of water resource 

scarcity (Hoekstra, 2008). Furthermore, there 

is an unfavorable temporal mismatch between 

precipitation patterns and irrigation seasons. 

Additionally, rainfall amounts are highly 

inconsistent from year to year and season to 

season. This issue has caused various problems 

in recent years for different sectors, 

particularly agriculture, and has inflicted 

significant losses on this sector (Behmanesh, 

2016). One practical approach to water 

resource management is assessing crop water 

requirements and determining the volume of 

water consumed during different production 

stages (Piri and Sarani, 2020).   
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The growing competition for water, the 

need to feed an increasing population, and 

escalating water scarcity worldwide are 

essential reasons that necessitate a focus on 

water consumption management.  

Geographically, countries in the Middle 

East and Central Asia are facing the greatest 

reduction in physical water resources relative 

to their societal consumption. On the other 

hand, projections regarding changes in 

resources and the intensification of the global 

freshwater crisis, based on the risk level of 

unsustainable economic development by 2050, 

indicate that most countries in Central Asia, 

North of Africa, and North America face a risk 

of over 40% reduction in water resources. 

Countries in the Middle East, particularly Iran, 

with a risk of over 50% reduction in freshwater 

resources, are among the most vulnerable 

regions in the world confronting the water 

crisis (Vörösmarty et al., 2010; Madani, 2014; 

Mekonnen and Hoekstra, 2016).   

Agriculture is a major consumer of water 

resources as a primary input for production. 

Meanwhile, the development of this sector is 

highly significant for the economic 

development of developing countries like Iran, 

in terms of employment, ensuring food 

security, supplying raw materials for 

industries, and generating income (Goodarzi et 

al., 2023). 

The water footprint index serves as a global 

indicator representing the actual volume of 

water consumed based on the climate and 

conditions of each region. Understanding and 

evaluating the actual water used for various 

agricultural products is of great importance, 

and this assessment can be highly beneficial 

for identifying and proposing appropriate 

strategies to reduce water consumption in the 

agricultural sector (Aligholinia et al., 2017).   

Examining the volume of water directly or 

indirectly consumed to produce a good or 

deliver a service (referred to as the water 

footprint) has significant potential for water 

management in agriculture (Dehghanpir et al., 

2023). The concept of the water footprint, 

introduced by Hoekstra and Chapagain (2011), 

enables the analysis of relationships between 

water use and the allocation of freshwater 

resources. Furthermore, Hoekstra (2008) 

defined the gray water footprint as the volume 

of freshwater required to dilute pollutants 

generated during the production process of a 

product, based on established water quality 

standards.  

The total water used throughout all stages 

of growth and production of agricultural 

products is referred to as virtual water (Piri and 

Sarani, 2020). The gray water footprint (GWF) 

is a critical concept in water resource 

management, representing the volume of 

freshwater required to dilute pollutants to meet 

water quality standards. Understanding and 

predicting the GWF is essential for sustainable 

agricultural practices, efficient water 

management, and environmental protection.  

Recent studies have emphasized the 

importance of accurately modeling the GWF in 

relation to agricultural practices. Serrano et al. 

(2016) provided a comparative analysis of 

organic farming versus conventional rice 

farming, illustrating the substantial differences 

in gray water usage. The research found that 

conventional practices, which rely heavily on 

chemical fertilizers, herbicides, and pesticides, 

result in a greater GWF due to the increased 

volume of freshwater necessary to dilute the 

resultant pollutants. In contrast, organic 

farming significantly reduces the GWF, 

suggesting that sustainable agricultural 

practices are essential for minimizing 

environmental impacts while enhancing 

economic returns. 

The water footprint represents the actual 

water consumption of products through three 

components: green, blue, and gray. It has 

recently gained attention as part of modern 

water resource management with an integrated 

approach. To properly investigate water 

consumption in agriculture, it is essential to 

evaluate the water footprint index across 

different climates (Piri and Sarani, 2020).   

Given the necessity of focusing on water 

resource management, one of the novel 

concepts in water management is the water 

footprint. The water footprint index for 

product production is used for the quantitative 

and qualitative management of water 

resources. Virtual water is the total water used 

to produce one unit of a product, good, or 

service (Oveisi et al., 2019).  

The water footprint encompasses a concept 

similar to, but broader than, virtual water, as it 

incorporates temporal and spatial dimensions 

into the virtual water concept, thereby serving 
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as a link for policy formulation. The water 

footprint is an indicator developed based on 

the concept of virtual water; in other words, at 

the product scale, the water footprint index 

reflects the concept of virtual water, but at 

larger scales, the virtual water concept is used 

as a calculation tool (Ma et al., 2020).   

The impacts of climate change on water 

resources and the GWF are increasingly 

critical. Ostad-Ali-Askari et al. (2019) 

examined the effects of management strategies 

on mitigating climate change impacts on 

aquifer water resources. Their findings 

indicate that proactive management can 

significantly reduce negative impacts, 

suggesting that effective strategies are 

essential not only for preserving water quality 

but also for ensuring sustainable water supplies 

in the face of climate variability. This 

highlights a crucial area for further research on 

how adaptive management practices can 

influence the GWF. 

The water productivity index is one of the 

most important indicators for analyzing water 

use efficiency, representing the amount of 

product produced per cubic meter of water 

consumed (Piri and Sarani, 2020). Given that 

the water footprint depends on various 

parameters, predicting it is challenging. 

Therefore, one effective approach for 

predicting and estimating agricultural and 

hydrological variables is the use of Machine 

Learning (ML) models (Li et al., 2023).  

ML models utilize interconnected 

information processing units to identify 

relationships and patterns in data, transforming 

input data into output. Limited research has 

been conducted in this area. For example, 

Lotfy et al. (2024) investigated the application 

of ML models for estimating the blue and 

green water footprint (BWFP and GWFP) of 

wheat in the Nile Delta under varying climatic 

conditions. The study's aim was to develop and 

compare a comprehensive suite of models, 

including single models (XGBoost, Random 

Forest (RF), LASSO, and CatBoost), eight 

hybrid models, and stacking ensembles.  

These models were evaluated across five 

different input scenarios incorporating climate, 

crop, and remote sensing data. A key finding 

was that hybrid ML models significantly 

outperformed both single models and stacking 

ensembles. Remarkably, the hybrid models 

XGB-LASSO and RF-LASSO achieved a 

perfect R² value of 1.0 (100%) for predicting 

BWFP and GWFP, respectively, under 

specific input scenarios. In contrast, the single 

LASSO model performed poorly, especially 

with remote sensing data alone (R² = 0.16). 

The study concludes that hybrid ML 

approaches demonstrate high efficacy and 

superior predictive accuracy for water 

footprint estimation, offering a powerful tool 

for agricultural water management. 

Given the limited studies on estimating the 

water footprint using ML models, the objective 

of this research is to predict water productivity 

and the gray water footprint using ML models. 

 

2. Materials and Methods 

2.1. Case study 

This study, conducted in 2022, aimed to 

model and predict the gray water footprint and 

water productivity of key crops in Lorestan 

province, Iran: potatoes and beans in Azna 

County; vegetables in Poldokhtar County; and 

grain corn, forage corn, and wheat in 

Kouhdasht County.  

The geographical locations of the studied 

stations are presented in Fig. 1.  The data used 

included key agro-climatic variables: average 

effective rainfall, average crop 

evapotranspiration, and average net irrigation 

requirement. These variables were calculated 

using NETWAT software.  

Additionally, data on crop yield per unit 

area, cultivated area, total production (in tons), 

and the amount of nitrogen fertilizer applied 

for each crop during 2022 were also collected. 

A summary of this data is presented in Table 

1. 

 

2.2. Random Forest (RF) 

The Random Forest algorithm is one of the 

most widely used algorithms for addressing 

classification and multivariate prediction 

problems. It is less sensitive to 

multicollinearity and yields relatively stable 

results in the presence of missing data and 

class imbalance (Bageri et al., 2023; Nazeri 

Tahroudi et al., 2023; Saloman et al., 2024). 

The following four steps define the RF 

process: 

a) Defining and bootstrapping the training 

data, 
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b) Selecting a random subset of features 

for each bootstrap sample, 

c) Assigning a decision tree to each of 

these samples using its random feature 

subset and growing the tree, 

d) Generating a single, unified decision 

model by aggregating the predictions 

from all the decision trees (e.g., through 

majority voting for classification or 

averaging for regression). 
 

 
Fig. 1. Geographical location of the studied stations 

 

Table.1. Statistical characteristics of the studied parameters 

Province Product 

Average 

Net 

Irrigation 

Requirement 

Average 

Evapotranspiration 

Average 

Effective 

Rainfall 

Cultivated 

Area (ha) 

Nitrogen  

fertilizer 

(kg/ha) 

Yield 

(kg/ha) 

Total 

Production 

(tons) 

Azna 
Potato 931 941 10 688 400 46773.26 32180 

Bean 751 751 0 6880.75 50 2104.93 14484.1 

Poldokhtar Vegetable 394 443 49 2202.27 200 15904.63 35022 

Kohdasht 

Grain 

corn 
630 656 26 97.04 400 8000 775.92 

Forage 

corn 
585 611 33 1652.14 600 59803.87 98796 

Wheat 144 177 26 649.8 200 3300.51 21450.2 

2.3. Support Vector Machine (SVM) 

A Support Vector Machine (SVM) is a 

supervised ML algorithm (Ding et al., 2017). 

The SVM method can reduce empirical error, 

model complexity, and mitigate overfitting 

(Pisner and Schnyer, 2020). The objective of 

an SVM is to find the optimal separating 

hyperplane that maximizes the margin 

between different classes. In most situations, 

the hyperplane is defined by a non-linear 

surface. In such cases, Eq. 1 is used for 

classifying the datasets. 

(1) ( ) ( ) ( )* , ,
n

i i i

i 1

f x a a K x x b
=

= − +  

where 𝑎𝑖 and 𝑎𝑖
∗ are the Lagrange coefficients, 

K is the kernel function, and b is the bias of the 

hyperplane from the origin. 

2.4. Estimation of Gray Water Footprint 

(WFGray) 

The calculation of the gray water footprint 

pertains solely to nitrogen fertilizers (Hoekstra 

and Chapagain, 2011). According to sources, 

the maximum permissible concentration of 

nitrogen in surface and groundwater resources 

is recommended to be 10 mg/L (Su et al., 

2018), and it is obtained from Eq. 2: 

(2) ( ) ( )max/ / .Gray natWF NAR C C 1 Y=  −   
In Eq. 2: Y is the crop yield and α is the 

percentage of nitrogen fertilizer leaching loss. 

Based on irrigation conditions, this value is 5% 

for irrigated crops and 10% for rainfed crops 

(the selected crops in this study are irrigated). 

The term NAR is the application rate of the 

fertilizer used per hectare (kg/ha), Cmax is the 



232                                                                            Khakshour et al. /Water Harvesting Research, 2025, 8(2):228-237 

      

maximum acceptable concentration of the 

pollutant, and Cnat is the natural concentration 

of the pollutant in the water body. 

 

2.5. Model evaluation 

This study employed three criteria to 

evaluate model performance: 

1.  Root Mean Square Error (RMSE): Used 

to measure the distribution of the model's 

residuals. 

2. Mean Absolute Error (MAE): Represents 

the sum of the average absolute differences 

between the actual and predicted values. 

Simply put, MAE indicates how wrong the 

predictions are, on average. 

3.  Mean Squared Error (MSE): Calculates 

the average of the squared differences between 

the actual and predicted output values (using 

squares instead of absolute values) before 

summing them all. These metrics are 

calculated using Eqs. 3, 4, and 5, respectively. 

(3) ( ) ,
n

2

i i

i 1

1
RMSE y y

n =

= −
  

(4) ,
n

i i

i 1

1
MAE y y

n =

= −
  

(5) ( ) ,
n

2

i i

i 1

1
MSE y y

n =

= −
  

where n is the number of observations, yi is the 

ith observation, and 𝑦𝑖̂ is the predicted value for 

the ith observation. Also in this study, the 

Pearson correlation coefficient statistical 

measure was used to evaluate the correlation 

between variables. The Pearson coefficient is a 

symmetric index, meaning the correlation of 

the dependent variable based on the 

independent variable is the same as that of the 

independent variable based on the dependent 

variable. The value of this correlation index 

ranges between +1 and -1.  

A value exactly equal to +1 indicates a 

perfect positive correlation, while a value 

exactly equal to -1 indicates a perfect negative 

correlation between the two variables. 

 

3. Results and Discussion 

The values for the gray water footprint 

(WFGray) and Crop Water Productivity (CWP) 

for the year 2022 are presented in Table 2. 

According to Table 2, as the gray water 

footprint decreases, water productivity 

increases. This finding is consistent with the 

results of the study by Piri and Sarani (2020).  

Potatoes typically have high water 

productivity and, if managed well, a relatively 

low nitrogen fertilizer requirement per ton of 

yield. 

 
Table 2. Values of the gray water footprint 

(WFGray) and water productivity (CWP) for the 

year 2022 
Gray 

water 

(m3/kg) 

Water 

Productivity 

 (kg/m3) 

Crop Station 

0.0427 1.159 Potato 
Azna 

0.118 0.064 Beans 

0.063 0.883 Vegetables Poldokhtar 

0.25 0.269 Grain corn 

Kuhdasht 0.302 0.487 Wheat 

0.05 2.173 Forage corn 

 

Based on Azna-Potato (WFGray= 0.0427, 

CWP= 1.159) the results showed that the low 

WFGray suggests highly efficient fertilizer use 

with minimal leaching and runoff in Azna, 

likely due to good agricultural practices (e.g., 

drip irrigation, precise fertilizer application). 

The high CWP indicates that the crop yielded 

well for the amount of water it consumed.  

Bazred on Azna-Beans (WFGray= 0.118, 

CWP= 0.064) the results showed thst this is the 

poorest-performing crop in the dataset. The 

extremely low CWP (0.064 kg/m³) means a 

very large amount of water was needed to 

produce a small yield. This could be due to 

drought stress, high evaporation, low-yielding 

varieties, or inefficient irrigation (e.g., flood 

irrigation). The WFGray is moderate but is 

magnified by the very low yield, meaning 

pollution per kg of product is significant. 

Vegetables often have high water 

requirements but also high yields (Zwart and 

Bastiaanssen, 2004). the results showed that 

based on Poldokhtar - Vegetables (WFGray= 

0.063, CWP= 0.883), the high CWP shows 

good water management. The low WFGray is 

impressive for vegetables, which are often 

heavily fertilized; it points to excellent nutrient 

management that minimizes pollution. 

Corn is a water- and nutrient-intensive crop 

(Mekonnen and Hoekstra, 2011). Based on 

Table 2, the results of Kuhdasht - Grain Corn 

(WFGray= 0.25, CWP= 0.269) indicates 

moderately inefficient production. The CWP 

of 0.269 kg/m³ is on the lower side, suggesting 

suboptimal yield for the water used, possibly 

due to water stress or other growth limitations. 



Predicting the Gray Water Footprint and Water Use Efficiency …..                                                                             233 
  

The WFGray is high, indicating significant 

fertilizer pollution per kilogram of grain 

produced. 

Also based on the results of Kuhdasht - 

Wheat (WFGray= 0.302, CWP= 0.487),  Wheat 

has the highest (worst) WFGray, meaning it 

generates the most pollution per kg of grain. 

This is common in systems with high nitrogen 

fertilizer application. However, its CWP is 

reasonable for wheat, indicating that its water 

use efficiency is better than that of the grain 

corn grown in the same region. 

And finally, Forage Corn (WFGray= 0.05, 

CWP= 2.173) indicated the best-performing 

crop in the dataset. Forage corn (harvested for 

silage) has an outstanding CWP because the 

entire above-ground biomass is harvested, 

resulting in a very high yield per unit of water. 

Its WFGray is the lowest, as the nitrogen taken 

up by the plant is removed from the field in the 

harvest, leaving less to leach away as nitrate. 

The data reveals critical insights into the 

water use efficiency and environmental impact 

of agriculture in these stations for 2022. There 

is a massive disparity between the most and 

least efficient crops. Forage corn is a highly 

productive and low-pollution system, while 

bean production appears to be highly 

unsustainable in its current form, using vast 

amounts of water for a meager output. The 

station (location) is a major factor.  

Kuhdasht emerges as an area of concern. 

Both wheat and grain corn show low water 

productivity and high gray water footprints 

compared to global averages. This indicates a 

potential for serious water scarcity and 

pollution problems in this region. Improving 

irrigation efficiency (e.g., switching to drip or 

sprinkler from flood irrigation) and 

implementing precision nutrient management 

are critical here. Conversely, Azna (for 

potatoes) and Poldokhtar (for vegetables) 

demonstrate that efficient production is 

achievable. Their combination of relatively 

high CWP and low WFGray suggests the 

adoption of better management practices, such 

as drip irrigation and careful fertilizer 

application, which maximize yield while 

minimizing waste and pollution. 

The results highlight the importance of crop 

selection for regional water security. Growing 

high-water-productivity crops like potatoes or 

forage corn is more sustainable in water-scarce 

environments than low-productivity crops like 

beans or inefficiently grown cereals. 

 

3.1. Examination of the relationship 

between the studied variables  

Figure 2 illustrates the correlation between 

the variables. Based on the figure 2, there is a 

negative correlation between CWP and 

WFGray.

 

 
Fig. 2. the correlation between CWP and WFGray 
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This indicates that as water use efficiency 

increases, the gray water footprint decreases. 

 

3.2. Results of gray water footprint and 

water productivity modeling 

Table 3 presents the results obtained from 

the RF and SVM algorithms. In this study, a 

comparison was made using 7 variables: crop 

yield (Y), fertilizer application rate per hectare 

(kg/ha) (NAR), nitrogen fertilizer leaching loss 

(α), maximum acceptable pollutant 

concentration (Cmax), natural pollutant 

concentration (Cnat), net irrigation requirement 

(IR), and gross irrigation requirement (GI). 

80% of the data was used for the training phase 

and 20% for the testing phase. The error 

evaluation metrics for the model validation 

phase are presented in Table 3 for this method. 

Figures 3 and 4 also illustrate the model's 

results. 

 
Table 3. Results of SVM-based and RF-based 

modeling 
CWP_ 

RF 

WFGray_ 

RF 

CWP_ 

SVM 

WFGray_ 

SVM 
Metrics 

0.301117 1.133599 0.635046 0.722238 RMSE 

0.236220 1.124770 0.626510 0.637442 MAE 

0.090672 1.285048 0.403283 0.521627 MSE 

 

Based on the SVM Model in CWP 

prediction (CWP_SVM), the errors are 

moderate (RMSE: 0.635, MAE: 0.627). This 

means that, on average, the SVM model's 

predictions for CWP (in kg/m³) are off by 

about 0.63 units. Also for WFGray Prediction 

(WFGray_SVM), the errors are higher than for 

CWP (RMSE: 0.722, MAE: 0.637). This 

indicates that predicting WFGray is a more 

difficult task for the SVM model, leading to 

less accurate results. 

Based on the RF Model in CWP Prediction 

(CWP_RF),  the RF model performs 

exceptionally well in predicting CWP. The 

errors are low (RMSE: 0.301, MAE: 0.236). 

An MAE of 0.236 means the model's 

prediction is, on average, less than a quarter of 

a unit away from the actual value, which is 

likely a very good performance given the scale 

of CWP values (which, from the table 3, often 

range from 0.06 to 2.17). Also in WFGray 

Prediction (WFGray_RF), the performance for 

WFGray is significantly worse (RMSE: 1.133, 

MAE: 1.125). An MAE of over 1.12 means the 

model's predictions are, on average, off by 

more than 1 unit. Given that WFGray values can 

be as low as 0.05 (Table 3), an error of 1.13 is 

very large and would render the predictions 

highly unreliable. 

 

 
Fig. 3. Results of model performance evaluation based on WFGray data 
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Fig. 4. Results of model performance evaluation based on CWP data 

 

Overall For CWP prediction, the RF model 

is decisively superior to the SVM model. All 

of its error metrics (0.301, 0.236, 0.091) are 

less than half of those produced by the SVM 

(0.635, 0.626, 0.403) and for WFGray 

prediction, Both models perform poorly, but 

the SVM model performs relatively better than 

the RF model. The SVM's errors (~0.72, 0.64, 

0.52) are substantially lower than the RF's 

errors (~1.13, 1.12, 1.29). 

based on figure 3, the SVM model achieved 

lower error values for WFGray. This suggests 

that the relationship between the input 

variables and the complex output (WFGray) 

may be one that SVM is particularly well-

suited to handle. Since, WFGray's calculation is 

highly sensitive to the leaching factor (α), 

which is non-linear and can be influenced by 

many complex, interacting factors. SVM, 

especially with a non-linear kernel (like RBF), 

can effectively map these inputs to a high-

dimensional feature space where a linear 

separation (or regression) is possible, 

potentially capturing the complex underlying 

patterns better than a simpler model. 

Based on figure 4, RF's significantly lower 

errors for CWP indicate an excellent fit for this 

task. CWP is fundamentally a ratio of yield to 

water used. The relationship between water 

input (IR, GI) and yield (Y) is often strong and 

can be learned effectively by an ensemble of 

decision trees. RF excels at capturing such 

non-linear relationships and interactions 

between features (e.g., how water and fertilizer 

interact to affect yield) without overfitting, 

especially on tabular data, which is very 

common in agricultural studies. SVM's high 

errors for CWP suggest it was unable to 

effectively model the relationship from the 

given data. Furthermore, SVM can be less 

efficient and effective than tree-based models 

like RF on datasets with a mix of features and 

clear, hierarchical decision boundaries that 

trees can easily exploit. 

As is evident from the examination of the 

table 3 and figures 3 and 4, among the models 

used, the SVM model, with the lowest mean 

squared error (MSE) of 0.6979, showed the 

best performance in predicting WFGray. For 

predicting CWP, the RF model demonstrated 

the best performance. 

The core finding is that model performance 

is highly dependent on the prediction task. 

There is no one-size-fits-all solution. RF is the 

unequivocally best choice for predicting CWP, 

while SVM is the better choice for modeling 

the Gray Water Footprint (WFGray) with this 

particular dataset. 

The model performance reflects the nature 

of the predicted phenomena. CWP is governed 

by more direct, quantifiable biophysical 

relationships (water in -> growth out), which 

RF captures superbly. WFGray is driven by a 

more complex, indirect, and volatile process 

(pollutant leaching and dilution), which 
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appears to be better captured by the high-

dimensional approach of SVM in this instance. 

Researchers and agronomists can have high 

confidence in using a RF model to forecast 

water productivity and optimize irrigation 

strategies. Predicting environmental impact 

(WFGray) remains a challenging task. While 

SVM performed better here, the relatively 

higher error rates suggest that predictions 

should be treated with caution. To improve 

WFGray models, future work should focus on 

incorporating more direct data on soil 

properties and climate events that drive 

leaching. 

 

4. Conclusion 

This research was conducted with the aim 

of predicting the water footprint of agricultural 

products in the counties of Lorestan Province. 

Accordingly, two ML models were employed, 

and the gray water footprint was estimated 

using the Hoekstra and Chapagain framework. 

The model inputs consisted of seven variables: 

crop yield (Y), fertilizer application rate per 

hectare (kg/ha) (NAR), nitrogen fertilizer 

leaching loss (α), maximum acceptable 

pollutant concentration (Cmax), natural 

pollutant concentration (Cnat), net irrigation 

requirement (IR), and gross irrigation 

requirement (GI). The analysis was performed 

for three counties. 

The results indicate that the share of the 

gray water footprint in Kouhdasht County for 

wheat was the highest at 0.302 m³/kg. The 

reason for this is the high consumption of 

chemical fertilizers and the high rate of 

fertilizer leaching in this region. 

Water productivity in Kouhdasht County 

for forage corn was the highest at 2.173 kg/m³. 

The higher the crop production per unit of 

water consumed, the higher the productivity. 

Gerkani Nezhad Moshizi et al. (2022), in their 

research on the water footprint of saffron, 

achieved similar results, indicating an inverse 

relationship between water productivity and 

water footprint, where an increase in the water 

footprint leads to a decrease in water 

productivity. 

The findings of this research can serve as a 

decision-making tool for planners and 

operators to achieve sustainable water 

management in the agricultural sector. One of 

the most significant challenges of this study 

was the lack of sufficient data for use in the 

ML models. Furthermore, extending the 

statistical period could aid in better 

understanding the mechanism of future 

changes. 
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