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ABSTRACT 
Porosity is an essential rock property reflecting the capacity of the reservoir to store hydrocarbons, making it a critical 

parameter in the exploration and development of oil and gas resources. Well logging is a fundamental technique in the oil and 
gas industry for estimating the porosity of subsurface formations. Well logging methods do not directly measure porosity, but 
instead record physical parameters (e.g., bulk density, acoustic travel time, hydrogen index) that can be empirically or 
theoretically related to the porosity of the rock. The artificial intelligence (AI) methods of Backpropagation Neural Network 
(BPNN), General Regression Neural Network (GRNN), and Support Vector Machine (SVM) were adopted to estimate porosity 
from well-logging data points using MATLAB software. For this purpose, 70% of the data was used for training, and 30% of the 
data was used for testing these AI methods. The well logging dataset obtained from one of the Kaggle datasets belongs to the 
Peninsular Malaysia hydrocarbon field. The comparison of the porosity values predicted by the AI methods and the actual 
values indicated that the three AI methods predict porosity values with great accuracy (with R values all equal or very close to 
one). However, the BPNN method has a smaller error in estimating porosity compared to the other two AI methods, suggesting 
that BPNN outperforms the other two AI techniques in this study. 
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I. INTRODUCTION 

Accurate prediction of porosity is a crucial task in 
petroleum engineering as it directly affects the 
estimation of reservoir quality and hydrocarbon 
potential. Porosity is an essential rock property 
reflecting the capacity of the reservoir to store 
hydrocarbons, making it a critical parameter in the 
exploration and development of oil and gas resources 
(Al-Khafaji et al., 2024). Well logging is a fundamental 
technique in the oil and gas industry for estimating the 
porosity of subsurface formations. Various well logs are 
routinely run in boreholes to measure properties related 
to porosity. These logs provide continuous, in-situ 
measurements that can be directly related to the pore 
space within rocks. They do not directly measure 
porosity, but instead record physical parameters (e.g., 
bulk density, acoustic travel time, hydrogen index) that 
can be empirically or theoretically related to the porosity 
of the rock. By integrating data from multiple logs and 
applying corrections for lithology, borehole conditions, 
and fluid type, engineers can derive reliable estimates 
for formation porosity across the entire logged interval 
(Wang et al., 2024). Conducting experimental tests on 

core samples and applying well testing methods are 
other mainstream approaches in estimating the 
formation porosity. However, these traditional 
techniques have several significant limitations. Core 
samples provide localized measurements, which usually 
cannot represent the entire formation due to 
heterogeneity (Denney, 2013). Acquiring and analyzing 
cores is expensive and takes significant time, limiting the 
number of samples. Moreover, core analysis can be 
affected by laboratory errors and differences in 
measurement techniques, leading to inconsistencies in 
porosity values (Hook, 1983; Bao et al., 2019). Besides, 
laboratory conditions may not replicate downhole 
pressures and temperatures, affecting the measured 
porosity compared to in situ porosity values. The 
application of most well logging and well testing 
techniques in an oil field is costly, challenging, and time-
consuming (Gamal et al., 2021). Well test methods are 
often conducted under transient (unsteady state) 
conditions, which can complicate the analysis and 
interpretation of in situ test results.  

Artificial intelligence (AI) techniques, such as 
Backpropagation Neural Network (BPNN), General 
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Regression Neural Network (GRNN), and Support Vector 
Machine (SVM), offer notable advantages over classical 
methods used for porosity estimation. AI models can 
capture complex, nonlinear relationships between well 
log data and porosity, leading to more accurate 
predictions, especially in geologically complex or 
heterogeneous formations (Elkatatny et al., 2018; Zhang 
et al., 2021). Unlike traditional methods that may be 
subject to human interpretation and bias, AI algorithms 
rely on data-driven approaches, leading to more 
objective results. AI methods can be continuously 
trained and improved as more data becomes available, 
allowing them to adapt to changing reservoir conditions 
and enhance predictive capabilities over time. Once 
trained, AI models can rapidly process large datasets, 
providing real-time or near-real-time estimations 
(Gamal et al., 2021; Iklassov et al., 2022). 

Ahmadi and Chen (2019) discussed the comparison of 
various machine learning (ML) methods for estimating 
porosity and permeability in oil reservoirs using 
petrophysical logs. The study adopted several ML 
techniques, including artificial neural networks (ANNs), 
genetic algorithms (GAs), and hybrid approaches. The 
findings indicated that hybridized methods yield reliable 
estimations, achieving an average relative absolute 
deviation of less than 1% compared to actual data. The 
authors emphasized the importance of accurate porosity 
and permeability estimations for enhancing oil recovery 
and effectively managing reservoir evaluation. Ayantola 
and Amigun (2020) discussed the application of ANNs 
for the accurate prediction of reservoir porosity, 
particularly in heterogeneous reservoirs, where 
traditional estimation methods face challenges due to 
the varying nature of reservoir rocks. Utilizing well log 
data, such as sonic, resistivity, and density 
measurements, the study demonstrated how the ANN 
can effectively predict actual porosity by training on core 
porosity data from one selected well and validating 
results against other wells. The results indicated a strong 
correlation between ANN predictions and actual core 
porosity values. The study highlighted the cost-
effectiveness and accuracy of using ANN for porosity 
estimation in the oil and gas industry. Chen et al. (2021) 
presented a study on predicting reservoir porosity from 
well logging data using a BPNN optimized by a GA 
(BPNNGA). This approach aims to provide a reliable and 
effective method for estimating reservoir physical 
parameters, which is crucial for reservoir 
characterization and management. The research was 
conducted in the Chang 8 oil group of the Yanchang 
Formation in the Ordos Basin, China, utilizing five well 
logging curves as inputs for the model. The results 
indicated that BPNNGA offers better accuracy in porosity 
predictions compared to conventional regression 
methods and standard BPNN models, achieving an 
average relative error of 10.77%. Ifrene et al. (2023) 

reported a study on fracture porosity estimations using 
a hybrid ML approach in the context of fractured tight 
reservoirs. They emphasized the importance of fracture 
porosity for storage and production efficiency. The 
research explored the effectiveness of combining ANNs 
and SVM to improve fracture porosity predictions using 
geophysical image logs from well data, exhibiting 
promising results with lower error rates compared to 
traditional methods. The findings suggested that 
integrating ML with well log analysis can enhance the 
reliability of fracture porosity estimations, especially in 
regions lacking advanced logging data. Ardebili et al. 
(2024) discussed an AI-based approach developed to 
enhance the estimation of reservoir parameters, such as 
porosity and shale volume. The study involved 
measuring the petrophysical properties of 27 samples 
and utilizing a geostatistical algorithm to augment 
laboratory data to a total of 686 porosity and 702 shale 
volume samples. Additionally, it incorporated 2263 well 
logging data. The optimal multilayer perceptron (MLP) 
ANN demonstrated significant improvements in 
estimating these parameters. Mirghaed et al. (2024) 
presented the enhanced evaluation of petrophysical 
properties through the integration of ML techniques and 
well logging data in an Iranian oil field. They highlighted 
the significance of using advanced logging technologies 
to identify key petrophysical parameters such as 
porosity and saturation. The study compared various ML 
methods to model petrophysical data. The findings 
showed that the AdaBoost model achieved the lowest 
error in estimating petrophysical properties, indicating 
its effectiveness. Ali et al. (2024) discussed the 
importance of porosity assessment in reservoir 
evaluation within the oil and gas industry. The research 
focused on utilizing ML techniques, specifically ANN and 
fuzzy logic (FL), to improve the accuracy of porosity 
curve predictions compared to conventional methods 
like multiple linear regression (MLR). The study adopted 
various geophysical logs incluading gamma ray, neutron 
porosity, density, and sonic logs. The results highlighted 
the superior predictive performance of ANN and FL over 
MLR. He et al. (2025) elaborated on the importance of 
accurately predicting porosity in tight reservoirs for the 
optimization of oil and gas exploration and production. 
They highlighted the limitations of traditional predictive 
models, which often struggle with high costs, 
inefficiency, and accuracy issues. To address these 
challenges, advanced ML algorithms were applied using 
well logging data. The study found that the particle 
swarm optimization-gradient boosting decision tree 
(PSO-GBDT) model significantly enhances predictive 
accuracy, achieving an R² greater than 0.99.  

In summary, while traditional well logging, well 
testing, and core measurement-based methods provide 
a practical means and valuable insights into estimating 
formation porosity, they are limited by costs, challenges, 
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and reproducibility. The three AI-based techniques, 
namely BPNN, GRNN, and SVM, have not been used 
simultaneously in the previous investigations to predict 
porosity using well logging data. These three AI methods 
can address the aforementioned challenges by offering 
higher accuracy, efficiency, and adaptability in porosity 
prediction from existing field data. This makes AI 
approaches increasingly attractive for engineers in the 
oil and gas industry. In line with these motivations, we 
adopted the above-mentioned three AI methods to 
predict porosity from well logging data acquired from 
one of the Kaggle datasets (https://www.kaggle.com/). 
The dataset belongs to the Peninsular Malaysia 
hydrocarbon field. To predict formation porosity 
through these AI techniques, some computer codes were 
written based on the commands of the Artificial Neural 
Networks and Machine Learning Toolbox present in 
MATLAB software. For the sake of comparison, a 
multivariate linear regression (MLR) model was also 
developed. The performance of these approaches was 
evaluated based on the correlation coefficient (R) and 
root mean square error (RMSE). 

II. ARTIFICIAL INTELLIGENCE 

Artificial intelligence (AI) is the science and 
engineering of creating intelligent machines, utilizing 
computers and modeling human or animal intelligence, 
with the ultimate goal of achieving AI mechanisms at the 
human intelligence level. AI techniques were initially 
developed to solve those types of problems that could 
not be easily solved by functional programming or 
mathematical methods. Branches of AI include expert 
systems, artificial neural networks (ANN), fuzzy logic, 
genetic algorithms, and many other techniques, each 
designed based on a specific mechanism from the natural 
world.  

ANNs are designed to simulate the computational 
behavior of the human brain. Various types of 
computational models, collectively referred to as ANNs, 
including multilayer perceptrons (MLPs), radial 
networks, and support vector machines (SVMs), have 
been introduced. Each of these models is suitable for a 
specific category of applications and is inspired by a 
particular aspect of the capabilities and properties of the 
human brain (Specht, 1991; Haykin, 1998; Demuth and 
Beale, 2002). In this paper, the AI methods of MLP, 
general regression radial networks (GRRN), and SVM are 
employed to estimate total porosity from well logging 
data. 

 

A. MLP-Based ANN 

Neural networks can be divided into three structures: 
single-layer networks, multi-layer networks, and 
networks with competitive layers. The number of layers 
in the network is defined based on the connection 
weights in the neurons. A single-layer network includes 

only one layer of connection weights (Fig. 1), whereas 
multi-layer networks include more than one layer of 
connection weights (Fig. 2). 

 

 
Fig. 1. Single-layer network with R inputs and S neurons in 

the hidden layer (Demuth and Beale, 2002) 

 
A single-layer network in Fig. 1 has R input units P1,…, 

PR and S neurons. In this network, each input element 
from the vector p is connected to each neuron input 
through the weight matrix 𝑤. The i-th neuron has a 

summing unit that sums the weighted inputs and bias to 
produce a scalar output 𝑛(𝑖). The different 𝑛(𝑖) values 
form the net input vector 𝑛. Finally, the outputs of the 

neuron layer form the column vector a. 

,...S,jbwpn
R
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where 𝑤𝑖𝑗  are the connection weights between the 

input unit 𝑝𝑖  and the output unit 𝑛𝑗 , and 𝑏𝑗  are the 

biases related to the j-th cell. 
MLP networks can solve more complex problems 
compared to single-layer networks. Neural networks are 
divided into two groups based on the way nodes are 
connected: feedforward networks and feedback 
networks. In feedforward networks, there is only a one-
way flow from the input layer toward the output layer. 
In contrast, in a feedback network, at least one output 
signal feeds back to itself or a previous neuron. The 
structure of different networks is defined by the 
connection pattern between neurons and layers. BPNNs 
are among the most widely used MLP networks (Demuth 
and Beale, 2002).      
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Fig. 2. Structure of a multilayer perceptron (Demuth and Beale, 2002) 

 
B. Radial Basis Function (RBF) Neural Networks 

Similar to the architecture of MLP neural networks, 
there is another type of neural network in which the 
processing units are focused on specific locations in the 
input space. This focus is modeled using RBFs. In terms 
of overall structure, RBF neural networks are not 
significantly different from MLP networks; the main 
distinction lies in the type of processing that neurons 
perform on their inputs. However, RBF networks 
typically have a faster learning and preparation process. 
In Fig. 3, you can see an RBF network with R inputs. 

Here, the input to the network for the radial basis 
transfer function is the vector distance between the 
weight vector 𝑤 and the input vector 𝑝, multiplied by the 

bias. The box labeled ||dist|| in this figure takes the input 
vector 𝑝 and the single-row weight matrix 𝑤  and 

produces their dot product. The transfer function of the 
radial basis neuron is as follows: 

2

)( nenradbas 
 

(2) 

 

 
Fig. 3. Neuron model of RBF neural network (Demuth and 

Beale, 2002) 
 

Fig. 4 shows the plot of the radial basis transfer function. 
 

 
Fig. 4. Transfer function used in RBF neural network 

(Demuth and Beale, 2002) 
 

As the distance between 𝑤 and 𝑝 decreases, the 

output value increases. Therefore, a radial neuron acts 
like a detector, producing a value of one when the input 
𝑝 exactly matches its weight. The bias value 𝑏 adjusts the 

sensitivity of the radial neuron. Radial networks consist 
of two layers: a hidden radial layer with S1 neurons and 
a linear output layer with S2 neurons (Fig. 5), where R 
stands for the number of input vector elements, S1 is the 
number of neurons in layer 1, S2 is the number of 

neurons in layer 2, 𝑎𝑖
1 represents the i-th element of 𝑎1, 

and 𝑖𝐼𝑊1,1  denotes the i-th row of the vector 𝐼𝑊1,1. 

The ||dist|| box in this figure receives the input vector 
𝑝 and the input weight vector IW1,1, producing a vector 

with S1 elements. These elements represent the 
distances between the input vector and the elements of  
𝑖𝐼𝑊1,1  formed by the rows of the input weight matrix. The 
bias vector b1 and the output of ||dist|| are then 
combined using the ".*" operator, which performs 
element-wise multiplication (Demuth and Beale, 2002). 
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Fig. 5. Structure of RBF neural network (Demuth and Beale, 2002) 

 

The GRNN can be considered as a normalized radial 
network that has one hidden neuron for each training 
unit. These networks are based on the probability 
density function (PDF) and have the advantages of fast 
training time and the ability to model nonlinear 
functions. The algorithm form of this network can be 
used for any regression problem where no assumptions 
about linearity exist. This network does not have the 
parameters of error backpropagation networks; instead, 
it has a smoothing factor whose optimal value is 
obtained through multiple runs based on the mean 
squared error. The structure of this network is similar to 
the general structure of a radial network, with only a 
slight difference in the second layer (Fig. 6) (Demuth and 
Beale, 2002). 

 

C. Support Vector Machine  
An SVM is a supervised learning tool used for 
classification and regression. The structure of an SVM 
network shares many similarities with an MLP neural 

network, with the main difference being the learning 
method. An SVM-based classification system uses 
nonlinear decision functions to transform data into a 
higher-dimensional space and then linearly partitions 
them. This algorithm can be expressed for regression 
purposes as Eq. (5), where 𝑓(𝑥) is a function of 𝑚 
variables to be estimated, 𝑤 is the coefficient vector, 𝑏 is 

the bias vector, and ϕ is the kernel function. 
 

𝑦 = 𝑓(𝑥) = ∑ 𝑤𝑖𝜙𝑖(𝑥) + 𝑏𝑖 =  𝑤𝑇𝜙(𝑥) + 𝑏
𝑚

𝑖=1
 (3) 

 

To estimate the function 𝑓(𝑥), 𝑤, 𝑏, and the kernel 

function parameters must be calculated based on a set of 
training data in a way that produces the least possible 
error based on this model. 

The regression error using SVM is expressed as Eq. 
(6) using Vapnik’s ε-insensitive loss function, shown in 
Fig. 7. 

 

 
Fig. 6. Structure of GRNN (Demuth and Beale, 2002) 
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Fig. 7. The procedure for calculating the regression error in SVM, only samples outside the ± range will have non-zero error (ξ) 

(Liu et al. 2009) 
 

𝝃 =  |𝑦 − 𝑓(𝑥)|𝜀 = 𝑚𝑎𝑥{0, |𝑦 − 𝑓(𝒙)| − 𝜀} (4) 
 

In the classical SVM method, vectors 𝑤 and 𝑏 are 
obtained by minimizing the risk function 𝑅(𝑊) for a set 

of N training data. 
 

R(w) =
1

2
‖𝑤‖2 + 𝐶 . ∑ 𝝃𝑖

𝑁

𝑖=1
 (5) 

 

The following constraint is implemented while 
applying Eq. (7). 
  

𝑦𝑖 . (𝑤𝑇𝑥 + 𝑏) ≥ 1 −  𝝃𝑖      i= 1, … , N (6) 
 

Minimizing the function 𝑅 in a classical SVM is 

performed through a second-order programming 
optimization method, which requires a large amount of 
computation. This drawback is overcome using the least 
squares method, which performs the optimization by 
solving a set of linear equations instead of a second-
order program. 

III. DATA GATHERING, AND GEOLOGICAL, LITHOLOGICAL, 
AND PETROPHYSICAL PROPERTIES 

This study utilized 1474 data points gathered from 
one of the Kaggle datasets (https://www.kaggle.com/) 
to predict total porosity (Phi). The dataset belongs to the 
Peninsular Malaysia hydrocarbon field, with longitude 
104° 28' 48" E and latitude 5° 25' 48" N. The geological, 
lithological, and petrophysical context of Peninsular 
Malaysia for oil and gas-bearing formations is influenced 
by its complex tectonic setting, sedimentary basins, and 
reservoir characteristics. This context can be 
summarized as follows: 

a) Geological Context: Peninsular Malaysia's 
geological setting includes three main north-south 
trending tectonic belts: western, central, and eastern, 
shaped by Paleozoic to Cenozoic processes. The region 
has a diverse sedimentary terrain, with significant 
Paleozoic black shales (about 25% of the area) 
considered important hydrocarbon source rocks. 

Structural features like faults and fractures related to 
regional tectonics control fluid migration and reservoir 
formation. Offshore basins, such as the Malay Basin, are 
typical Tertiary sedimentary basins composed of half 
grabens filled by lacustrine shales and clastics overlain 
by deltaic systems that act as hydrocarbon source and 
reservoir intervals (Bishop, 2002; Rashid et al., 2022; 
Shlof et al., 2025). 

b) Lithological Context: Lithologically, the Paleozoic 
to Mesozoic successions include clastic and carbonate 
reservoirs. These are interbedded with source rock 
intervals like Devonian black shales and high total 
organic carbon (TOC) shales. The offshore sedimentary 
basins are dominated by alternating sandstones, 
siltstones, and mudstones, with variations in grain size 
and consolidation influencing reservoir quality. Coarse-
grained sandstones generally present the best reservoir 
quality due to high porosity and permeability, while fine-
grained and bioturbated sandstones exhibit lower 
reservoir quality owing to clay concentration and 
cementation (Bishop, 2002; Rashid et al., 2022). 

c) Petrophysical Context: Porosity and permeability 
tend to be highest in coarse-grained sandstones, with 
values up to about 25% porosity and permeability 
reaching nearly 1900 mD, supporting good hydrocarbon 
flow. Fine-grained sandstones and shales tend to have 
low porosity and permeability, critically impacting fluid 
flow and storage capacity. Microfractures and fault zones 
extensively influence reservoir permeability and fluid 
migration pathways, with fault rocks exhibiting variable 
permeability depending on mineralogy, pore fluid 
composition, and stress conditions (Shar, 2015; Ibad and 
Padmanabhan, 2022).  

In summary, Peninsular Malaysia's oil and gas-
bearing formations occur primarily within Paleozoic to 
Tertiary sedimentary successions characterized by rich 
source rocks like black shales and diverse reservoir 
lithologies ranging from coarse sandstones to 
carbonates.  

https://www.kaggle.com/
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IV. 4. MODELING POROSITY USING AI METHODS 

Some sample data points are given in Table 1. To 
predict Phi, some computer codes were written using the 
commands of the Artificial Neural Networks and 
Machine Learning Toolbox in MATLAB software. Three 
AI methods were employed in this research: the error 
backpropagation multilayer ANN (BPNN), the 
generalized radial regression neural network (GRNN), 
and the support vector machine (SVM). 

In Table 1, GR stands for gamma ray log, SP denotes 
spontaneous potential log, Rt represents 
(uninvaded/virgin) formation resistivity, Rxo signifies 
flushed zone resistivity, DEN symbolizes density log, 
SONIC indicates sonic log, CNL stands for compensated 
neutron log, and Phi denotes (total) porosity.  
The designed ANNs have three layers (input layer, 
hidden layer, and output layer). The inputs of the AI 

methods used are GR, SP, Rt, Rxo, DEN, SONIC, and CNL. 
The number of neurons in the hidden layer of the BPNN 
is obtained by trial and error, and in the GRRN is equal to 
the number of training examples (Fig. 8). The Pearson 
correlation heatmap between porosity (Phi) and the 
other parameters is given in Table 2. CNL has the most 
signicant direct effect on porosity estimation, reflected 
by the highest positive correlation (0.39) between 
porosity and CNL. This is because the output of the CNL 
is a type of porosity obtained based on neutron 
bombardment of the formation, and the neutrons 
received by the receiver, depending on the hydrogen 
content of the formation rock. Moreover, the highest 
negative correlation (-0.93) exists between the output of 
the density log and the porosity. This is a thoroughly 
expected trend because the lower the porosity, the 
higher the density, and vice versa.  
 

 
Table 1. Well logging data points and Phi 

DEPTH 
(ft) 

GR (API) SP (mv) 
Rt (Ohm-

m) 
Rxo 

(Ohm-m) 
DEN 

(g/cm3) 
SONIC 
(us/ft) 

CNL (%) Phi (%) 

5195 91.4 -22.7 2.2 4.3 2 103.8 36.2 45.71429 

5195.5 96.1 -25 3.4 6.9 2 104.3 36.7 45.71429 

5196 95 -25 2.7 5.4 2 101.5 38.8 45.71429 

5196.5 95.2 -23.1 2.9 5.5 2 103.8 36.6 45.71429 

5197 92.8 -26.2 2.7 5.7 2.1 109.5 36.8 40 

5197.5 95.1 -25.3 3.3 6.8 1.9 100.9 39 51.42857 

5198 95.1 -24.5 3.1 6.1 2 110.8 38.8 45.71429 

5198.5 93.7 -24.7 2.9 5.8 1.9 100.7 37 51.42857 

 

 
Fig. 8. Schematic diagram of AI methods 
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Table 2. Pearson correlation heatmap between the dependent variable (Phi) and independent variables 

 
 

To obtain the optimal structure of the networks and 
SVM, normalization of the existing data (1474 data) was 
performed between the interval [-1, 1] using Eq. 9. Then, 
approximately 70% (1,050 data points) was used for 
training, and 30% (424 data points) for testing. 

 

12
minmax

min 





pp

pp
pn

 

(7) 

 

where 𝑝𝑛 is the normalized value, 𝑝 is the actual 
value, 𝑝𝑚𝑖𝑛 is the minimum of the actual value, and 𝑝𝑚𝑎𝑥  
is the maximum of the actual value.  

Then, three target AI methods were trained with 
different variable parameters to obtain the optimal 
parameters, considering the correlation coefficient and 
error between the actual value and the predicted value 
in the training and test data. Finally, the optimal BPNN 
that uses the Bayesian regularization algorithm for 
training was selected to avoid overfitting. The network 
was allocated an input layer (with eigth inputs), a hidden 
layer with 10 neurons with a log sigmoid transfer 
function (logsig), and an output layer with one neuron 
with the linear transfer function (purlin). The optimal 
GRRN was also designed with an input layer (8 inputs), a 

hidden layer with 1050 neurons with a smoothing factor 
of 0.08 with the radial basis transfer function (radbas), 
and an output layer with one neuron and the linear 
transfer function. The SVM was also considered with 
eigth inputs, the adjustment coefficient 𝐶 = 500, 𝜎2 =
0.01, and the kernel of the RBF type. 

The results of the optimal three artificial intelligence 
(AI) methods for porosity estimation from well logging 
data reveal varying levels of performance, as quantified 
by the correlation coefficient (R) and root mean square 
error (RMSE) in Table 3 and Figs. 9-14. For the BPNN 
model, Fig. 9 depicts the correlation between predicted 
and actual porosity values in the training data, where 
points align closely along the ideal 1:1 line, reflecting an 
R value of 1 and a low RMSE of 0.02, indicative of 
excellent fitting without significant deviations. In the test 
data (Fig. 10), the model maintains this high fidelity, with 
an R of 1 and RMSE of 0.04, showing minimal scatter and 
strong generalization to unseen data, which underscores 
its robustness against overfitting. 

In contrast, the GRNN model exhibits near-perfect 
performance in training, as shown in Fig. 11, with points 
tightly clustered along the diagonal (R=0.999, 
RMSE=0.18), suggesting effective capture of underlying 
patterns in the training set. However, Fig. 12 illustrates a 
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noticeable degradation in the test data, where increased 
scatter results in a slightly reduced R of 0.998 and a 
substantially higher RMSE of 0.57, pointing to some 
overfitting and reduced predictive accuracy on new data. 

The SVM model follows a similar trend, with Fig. 13 
demonstrating strong alignment in the training phase 
(R=0.999, RMSE=0.18), as data points adhere well to the 
reference line. However, in the test data (Fig. 14), greater 
dispersion is evident, leading to an R of 0.986 and an 
elevated RMSE of 1.52, which highlights poorer 
generalization and higher prediction errors compared to 
the other models. 

Overall, while all methods achieve high accuracy in 
training, the testing results emphasize BPNN's 
advantage in maintaining precision, making it the 
optimal choice for porosity prediction in this context. 
Further refinements, such as hyperparameter tuning or 
additional data, could potentially enhance GRNN and 
SVM performance. 

To compare the intelligent methods utilized in this 
study with statistical modeling methods, the porosity 
value was also modeled using multivariate linear 
regression (MLR). In this method, the training data of the 
intelligent methods were used to create the multivariate 
regression relationship, and the test data of the 
intelligent methods were used to test the regression 
relationship. The multivariate regression relationship 
was obtained using SPSS statistical software as follows: 

𝑃ℎ𝑖 (%)  = 154.145 + 0.028 𝐺𝑅 +
0.007 𝑆𝑃 − 0.00001524 𝑅𝑡 + 0.032 𝑅𝑥𝑜 −
59.392 𝐷𝐸𝑁 − 0.007 𝑆𝑂𝑁𝐼𝐶 + 0.238 𝐶𝑁𝐿                                                                                                

(8) 

 
Table 3. R and RMSE in the training and testing data of the 

three AI methods and MLR adopted 

Database Method RMSE R 

Training 

BPNN 0.02 1 
GRNN 0.18 0.999 
SVM 0.18 0.999 
MLR 0.72 0.994 

Testing 

BPNN 0.04 1 
GRNN 0.57 0.998 
SVM 1.52 0.986 
MLR 0.67 0.994 

 
Further, to compare the errors generated by the 

models while predicting porosity (Phi), a residual plot 
has been drawn and presented in Fig. 15. As can be 
observed, the difference between the actual and 
predicted values in the BPNN method in the test data is 
around zero. In the MLR, GRNN, and SVM methods, 
which follow the regression structure, this difference is 
high for several of the data points. As a result, the RMS 
values in the three methods in Table 3 are different from 
each other. 

 

 
Fig. 9. Correlation between predicted porosity of BPNN vs. actual porosity (training data) 
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Fig. 10. Correlation between predicted porosity of BPNN vs. actual porosity (test data) 

 

 
Fig. 11. Correlation between predicted porosity of GRNN vs. actual porosity (training data) 
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Fig. 12. Correlation between predicted porosity of GRNN vs. actual porosity (test data) 

 

 
Fig. 13. Correlation between predicted porosity of SVM vs. actual porosity (training data) 
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Fig. 14. Correlation between predicted porosity of SVM vs. actual porosity (test data) 

 
In summary, the BPNN exhibited the most stable and 

accurate performance among all tested models. The 
GRNN also performed strongly in the training phase (R = 
0.999, RMSE = 0.18), suggesting a perfect representation 
of the underlying data distribution. However, in the 
testing dataset, its accuracy dropped slightly, with R = 
0.998 and RMSE increasing to 0.57. Although the 
correlation remains high, the increased error indicates 
reduced predictive accuracy and some degree of 
overfitting. Figs. 11-12 reveal greater scatter in the 
predicted versus actual porosity values, confirming this 
reduction in robustness. The SVM achieved high 
accuracy in the training dataset (R = 0.999, RMSE = 0.18). 
Nevertheless, its performance degraded considerably in 
the test dataset, with R decreasing to 0.986 and RMSE 
rising sharply to 1.52. This significant loss of predictive 
power, illustrated in Figs. 13-14, demonstrates that 
while SVM can model training data well, it is less capable 
of generalizing to unseen samples compared to BPNN 
and GRNN. The MLR model was developed using the 
same training and testing datasets for consistency. 
During training, the MLR achieved R = 0.994 and RMSE = 
0.72, which is considerably weaker than the AI-based 
models. In the test dataset, the model retained a similar 
correlation (R = 0.994) with RMSE = 0.67. Although its 
performance is more stable across datasets than GRNN 
and SVM, the predictive accuracy remains lower, 
reflecting the limitations of linear models in capturing 
nonlinear relationships present in well logging data.  The 
residual plots further emphasize the superiority of 
BPNN. For this model, the residuals (differences 

between predicted and actual/real values) are tightly 
clustered around zero, confirming its strong predictive 
reliability. In contrast, the residuals for MLR, GRNN, and 
SVM are more widely scattered, which explains their 
higher RMSE values. 

V. CONCLUSION 

Intelligent methods of BPNN, GRNN, and SVM were 
designed to estimate porosity from well logging data 
using MATLAB software. For this purpose, 70% of the 
data was used for training, and 30% of the data was used 
for testing the AI methods. The BPNN with a Bayesian 
regularization training algorithm is composed of input, 
hidden, and output layers. The input layer consists of 
seven types of well logging records, the hidden layer 
comprises 10 neurons with a log sigmoid transfer 
function, and the output layer is composed of one 
neuron, namely (total) porosity, with a linear transfer 
function. The GRNN is also similar to the BPNN, with 
three layers, with the difference that the number of 
neurons in the hidden layer of this network is the same 
as the number of training patterns (i.e., 1050 neurons 
with a radial transfer function and a smoothing factor of 
0.08). The inputs and outputs of the SVM were also 
designed similarly to neural networks, and its optimal 
parameters were as follows: the adjustment coefficient 
C=500, σ^2=0.01, and the kernel of the RBF type. 
According to the comparison of the porosity prediction 
values of the AI methods and the actual values, we found 
that the three AI methods predicted porosity with high 
accuracy. Among the tested methods, the BPNN stands 



 

138 
Vol 3, No. 2 / Summer 2025 
 

 
R. Rooki, M. Rahimi 

out as the most effective and reliable approach for 
porosity estimation. It not only achieved near-perfect 
accuracy in training but also maintained excellent 
generalization to testing data, avoiding overfitting. 
Although GRNN and SVM exhibited promising results in 
training, their performance degraded in testing, limiting 
their practical application. The MLR model, while stable, 
lacked the accuracy and flexibility required for high-

quality porosity predictions. These results demonstrate 
that AI-based nonlinear modeling—particularly BPNN—
provides significant advantages over traditional 
statistical approaches in predicting porosity from well 
logging data. Future work may focus on optimizing 
hyperparameters and expanding the dataset to improve 
the generalization ability of GRNN and SVM models.   

 

 
Fig. 15. Residual plot of the models adopted 
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