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ABSTRACT 
The first challenge in conducting seismic surveys, petrophysical evaluations, assessments of the mechanical rock 

characteristics, and stress analyses in oil and gas fields is to ascertain the bulk density. It is a physical characteristic of rocks 
assessed in the laboratory on rock specimens or acquired from oil and gas wells through logging equipment. However, the rock 
samples are difficult to extract along the interested intervals to construct a rock density profile due to the cost and time-
consuming. Additionally, most of the logging tools, especially the bulk density log, are usually not implemented in the shallow 
depth of the drilled borehole sections. Therefore, this study was motivated to synthesize bulk density from other well-logged 
data, i.e., gamma ray, neutron porosity, and sonic compressional waves. Two mathematical models of bulk density were created 
exploiting a dataset from a single well, employing artificial neural networks (ANNs) and multiple regression analysis (MRA) as 
predictive techniques. The outcomes indicated that the ANNs and MRA are comparable in predicting bulk density; however, 
the higher determination coefficient (0.92) and smaller root mean square error (0.063) of the ANNs illustrate superior accuracy 
compared to the MRA. Eventually, this study offers efficient and cost-saving approaches that combine traditional well logs to 
synthesize the rock density. 
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I. INTRODUCTION 

The complex attributes of oil and gas reserves 
present a challenge in the petroleum industry. The 
absence of reliable information predics reservoir 
parameters complicated (Bukar et al., 2019). The bulk 
density log is a kind of well logging tool that shows how 
dense the rocks are around a borehole. In other words, 
the density log contributes to distinguishing various 
lithologies along the geological column. Each rock type 
has a distinct density, and density logs can differentiate 
among them (Ghawar et al., 2021). One of the most 
significant variables in determining rock characteristics 
is rock bulk density. Several estimation techniques 
depend on rock parameters, which are intimately related 
to calculating formation rock density; these include 
predicting sand production and evaluating wellbore 
stability (Hadi et al., 2020). 

Throughout the various phases of the petroleum 
industry, from discovery to exploitation, bulk density is 
regarded as a crucial factor because it provides 
important insights into the geomechanical and physical 

characteristics of rock formations that may contain gas 
or oil reserves. Moreover, petrophysical logs are highly 
accessible and practical tools for acquiring information 
concerning these characteristics (Issa, Hadi, et al., 2025). 
This technique offers continual data regarding 
formations, in contrast to the information derived from 
laboratory analyses of core specimens. In addition, the 
expenses associated with executing petrophysical 
logging in wells are considerably lower than those 
required for performing laboratory tests (Issa et al., 
2024). According to various well logs, the bulk density 
log is crucial, as it offers essential information for 
different areas of study, including reservoir 
characterization (Eberli et al., 2003), geophysics 
(Phadke et al., 2000; Waluyo et al., 1995), and 
geomechanics (Asoodeh & Bagheripour, 2014; Chang et 
al., 2006; Eaton, 1975). As for the geomechanical 
parameters, including in-situ stresses (vertical stress 
and maximum and minimum horizontal stresses), 
formation pore pressure, and mechanical rock 
properties (strength and elastic rock parameters). 
Accurately identifying these characteristics is critical for 
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developing and implementing hydrocarbon extraction, 
while incorrect evaluation of these properties may lead 
to flawed decision-making and inappropriate field 
development procedures (Issa et al., 2023). Moreover, to 
carry out any activity, it is necessary to develop a 
consistent profile of the geomechanical properties. 
Nevertheless, the process of recovering rock samples 
from various depths within the reservoir and carrying 
out laboratory testing is costly and time-consuming. To 
overcome these challenges, bulk density in conjunction 
with sonic logs is occasionally utilized to assess these 
properties (Issa, Issa, et al., 2025). 

A wide variety of research efforts have recently been 
published in the scientific literature, seeking to 
determine the relationship between bulk density and 
diverse petrophysical properties of rocks. It is important 
to note that many factors affect bulk density, not all of 
which are included in empirical relations. Furthermore, 
these correlations applay solely to a specific location or 
lithological type (e.g., Castagna et al., 1993, Brocher, 
2005, and Gardner et al., 1974). Additionally, many 
researchers have employed machine learning 
techniques, such as artificial neural networks (ANNs), to 
develop various models that address the complex issues 
associated with the petroleum industry. These models 
are applicable at diverse stages, i.e., exploration (e.g., 
Ross, 2017), drilling (e.g., Elzenary et al., 2018), 
production (e.g., Tariq, 2018 ), and reservoir (e.g., 
Hamam & Ertekin, 2018) in addition to a synthetic model 
of well logs based on traditional well logging data. 
Finally, many of these investigations have substantially 
advanced the petroleum industry by developing 
prediction models that address challenges arising from 
missing or discontinuous data (Akinnikawe et al., 2018; 
Hussein et al., 2025; Long et al., 2016).  

It is noteworthy that the density log measurements of 
the most drilled borehole sections are not recorded in 
shallow depths. Thus, the present study was motivated 
and conducted based on data extracted from oil wells 
located in southern Iraq to synthesize the rock density 
for the unlogged intervals in the area of interest, 
depending on the conventional well logging data. Robust 
and straightforward mathematical models, namely 
multiple regression analysis and artificial neural 
networks, were established using data derived from 
traditional wireline logs to generate synthetic bulk 
density for different formation lithologies. Finally, the 
predictive ability of each model was assessed using two 
distinct metrics: the coefficient of determination (R²) 
and the root mean square error (RMSE). 

II. MATERIALS AND METHODS 

A. Area of Study 

The current study was conducted in an oilfield 
located in southern Iraq to estimate bulk density by 
utilizing well logging data (DTc, GR, and NPHI). The 

research employed two mathematical models: Artificial 
Neural Networks (ANN) and Multiple Regression 
Analysis (MRA). Data from two wells were used in this 
study; the first well served to construct the models, while 
the second well was utilized to validate the developed 
models. The geological layers of the southern Iraq fields 
consist of a complex sequence of sedimentary strata that 
extend from the Jurassic to the Cretaceous and Tertiary 
periods. These sedimentary deposits include various 
types of rocks, such as sandstone, limestone, and shale 
(Fig. 1). These formations are essential for the 
development of geological structures that contain oil and 
gas. Finally In this investigation, the area of interest was 
expanded from the surface to a depth of 1800 m, as 
shown in Fig. 1. 
 

 
Fig. 1. Illustrate the area of study. 

B. Problem Statement and Methodology 

The missing recording of the bulk density 
measurements due to the well logging job did not 
implement a density log for the shallow depths of the 
drilled borehole sections, or it may be to avoid the 
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borehole problems that are associated with lowering 
logging tools inside the wellbore. However, the absence 
of the bulk density measurements can lead a reduction 
in the accuracy of several applications that are strongly 
associated with the bulk density measurements, 
including but not limited to geomechanical applications, 
i.e., determination of in-situ stresses, pore pressure, 
stimulation jobs, wellbore stability analysis, and sand 
production prediction. Thus, several techniques, such as 
extrapolated methods or empirical correlations based on 
well logging data, were introduced in the literature that 
may be used to solve these issues, but these methods 
have uncertainty; additionally, these correlations are 
specialized to a specific location or lithological type. 
Consequently, a field case study in southern Iraq was 
implemented to propose reliable mathematical models 
to overcome these challenges. This research employs a 
methodology (Fig. 2). It effectively utilizes existing 
databases by applying conventional well log data to 
generate synthetic bulk density. 

Data analysis involves the processes used to extract 
information from a dataset and then apply it to create 
models using statistical methods. Its goal is to ensure a 
logical relationship between the input data and the 
output function. In this study, well logging data from two 
wells in southern Iraq were used to achieve the research 
objectives. As a result, well-logged data, such as sonic 
compressional wave, gamma ray, and neutron porosity, 
were analyzed (Fig. 3). These parameters serve as inputs 
for the developed ANN and MRA models. At the same 
time, the bulk density is defined as the output. 
Additionally, the data analysis identified the input 
parameters that significantly affect the output function, 
as depicted in Fig. 3. 

C. Artificial Neural Networks (ANNs) 

One form of machine learning model is the artificial 
neural network, which attempts to mimic the brain's 
biological neural networks in terms of both structure 
and function(Anemangely et al., 2019; Gharbi & 
Mansoori, 2005). The primary objective of ANNs is to 
tackle complex problems that traditional modelling 
methods fail to tackle because of the problem's 
complexity (Liu et al., 2021). In the oil and gas industry, 
artificial neural networks are currently employed to 
address several difficulties related to the enhancement 
of oil and gas field operations that extend from the 
exploration phase to the abandonment phase (Alkinani, 
2019). Generally, the neural network consists of several 
key components, including the input layer, weights, 
transfer or activation function, hidden layer, and output 
layer. Each layer connects to the next through neurons. 
The model features one hidden layer containing three 
neurons. The transfer function, also known as the 

activation function, plays a crucial role in controlling the 
processes within each model neuron. The tangent 
sigmoid function was selected as the nonlinear transfer 
function for this study because it can limit the potential 
output from a neuron to approximately [-1, 1]. This 
capability is achieved by differentiating the outputs for 
both the hidden layer and the output layer. In machine 
learning, various algorithms are utilized, including 
support vector machines, supervised back-propagation 
neural networks, and genetic algorithms. This study 
employed a back-propagation neural network (BPNN) as 
a supervised learning algorithm, which is particularly 
effective at addressing complex problems that may be 
challenging for traditional machine learning techniques 
to solve. The fundamental basis of a Backpropagation 
Neural Network (BPNN) is to gradually minimize the 
model's total error, ideally reaching zero during the 
learning process. This is achieved by iterating and 
readjusting the connection weights among the input, 
hidden, and output layers of the network. One type of 
BPNN algorithm is the Levenberg-Marquardt (LM) 
algorithm. This algorithm is advantageous because it is 
generally faster and more reliable than other BPNN 
algorithms, allowing it to effectively manage situations 
where the relationship between input and output 
variables is nonlinear. Before presenting the input-
output data to the Levenberg Marquardt (LM)-Artificial 
Neural Network (ANN) model, all input data (DTc, GR, 
and NPHI) were normalized within the range of [-1, 1] 
using Eq. 1. In this equation, Xnorm represents the 
normalized value of the input parameter, X denotes the 
input parameter, and Xmin and Xmax indicate the 
minimum and maximum values of the input parameters, 
respectively. This normalization step enhanced training 
stability and accelerated the convergence process. In this 
investigation, early stopping was implemented to 
automatically halt training when there was no significant 
improvement in model accuracy after several 
consecutive iterations, which helps to prevent 
overfitting. Additionally, training parameters, including 
the initial damping factor, were configured to permit 
adaptive adjustments throughout the training process. 
Regarding hyperparameter optimization, the selection of 
the number of neurons was based on trial and error. 
Configurations ranging from 1 to 10 neurons were 
evaluated, and it was found that three neurons yielded 
the optimal results (Fig. 4). 

 

𝑋𝑛𝑜𝑟𝑚 = 2 (
𝑋−𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥−𝑋𝑚𝑖𝑛
) − 1                                               (1) 
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Fig. 2. Flowchart of the research methodology 

 

 
Fig. 3. Shows the statistical analyses of the input data. 

 
In this study, a fully linked three-layer neural 

network architecture was used to execute the procedure 
of the developed models, and three parameters, i.e., 
sonic compressional waves (DTc), gamma ray (GR), and 
neutron porosity (NPHI), influencing bulk density 
measurements (RHOB) were included. There are three 
layers to the network design depicted in Fig. 4: input, 
hidden, and output. Simple processing neurons related 
across layers provide full connectivity between them. 
Moreover, in the hidden layer, three neurons were 
specifically chosen to guarantee accessibility (Fig. 4). 
Finally, the development of the ANN model typically 
involves three steps, i.e., training, validation, and testing. 
As for the training, the fundamental operation of an 
artificial neural network is the training process. It 
enhances the efficiency of the ANN by assessing the 
output value concerning the target value within the ANN 
model. The backpropagation neural network (BPNN) 
approach, which employs the Levenberg-Marquardt 
methodology, was introduced in the present study (Fig. 
4). The BPNN algorithm was selected due to its capability 
to iterate and modify the connection weights for the 
network's input, hidden, and output layers, typically 

yielding acceptable outcomes. Regarding the validation, 
the training dataset undergoes cross-validation in order 
to prevent over-fitting in the ANN model. Randomly, 
70% of the raw datasets were set aside for training 
purposes, and 30% were set aside for validation 
purposes. This split was done to facilitate the research. 
Finally, the last stage in evaluating the ANN model's 
performance during the learning process is the testing 
method. A rise in the testing operation's error rate will 
result in the termination of the training operation. 

 

 
Fig. 4. The ANN architecture for the development of bulk 

density 
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D. Multiple Regression Analysis (MRA) 

Regression analysis can be performed on datasets 
gathered within the reservoir, for instance, well 
logging or core sample measurements, in order to 
simulate the output function. Regression analysis, either 
simple or more complicated (also called multiple 
regression analysis), can be used (Issa & Hadi, 2021). An 
important statistical technique for determining the 
output function with several independent variables is 
the multi regression analysis. The sonic compressional 
wave (DTc), gamma-ray (GR), and neutron porosity 
(NPHI) are the independent parameters in this 
investigation. On the other hand, the bulk density 
(RHOB) was the dependent variable, which utilized the 
MRA. 

III. RESULTS AND DISCUSSIONS 

According to the scientific literature, many studies 
have been published to determine the relationship 
between bulk density and various petrophysical 
parameters of rocks. However, empirical relationships 
often fail to account for many factors influencing bulk 
density. Additionally, these relationships are typically 
specific to a particular locality or lithological type. This 
study was conducted to develop robust mathematical 
models (MRA and ANN) tailored explicitly for the 
southern Iraqi oilfields. The aim is to address the issue of 
absent bulk density measurements, which arise from the 
lack of density logging in the shallow depths of drilled 
borehole sections. Furthermore, the study utilizes the 
ANN technique, which significantly diverges from 
existing literature by incorporating variables associated 
with the model's input layer (weights and biases), the 
hidden layer, and the output layer. 

A. Model Development Employing MRA 

A statistical analysis was conducted to ascertain the 
correlation and reduction of log characteristics. Partial 
regression leverage plots (Fig. 5) were employed to 
assess the reliability of the multiple regression model 
and to illustrate the individual impact of each predictor. 
These diagnostic plots facilitate the isolation of the 
impacts of each independent variable (DTc, GR, and 
NPHI) on the dependent variable (RHOB) while 
accounting for the other factors' effects. In each plot (Fig. 
5a, b, and c), the horizontal axis represents the residuals 
of the chosen independent variable after removing the 
effects of the other two predictors. The vertical axis 
represents the residuals of the dependent variable (rock 
bulk density) after adjusting for the same other factors. 
Additionally, the slope of the fitted line in each graph 
directly corresponds to the partial regression coefficient 
of the associated variable. This graphical method 
elucidates the distinct contribution of each predictor to 
the model, identifies influential observations or outliers, 
and reveals potential multicollinearity concerns, if 

present. Moreover, to examine the correlation and 
reduction of well-logging characteristics, the P-value has 
been taken into consideration in the present 
investigation. In summary, bulk density is significantly 
influenced by each physical parameter when the P-value 
is below 0.0001, demonstrating the model's accuracy in 
forecasting bulk density. Fig. 5 shows how each physical 
characteristic affects the bulk density and the 
corresponding P-values. The blue line shows the mean 
output attribute, which is bulk density. Conversely, a 5% 
confidence range is shown by the red line. Furthermore, 
significant deviations of the mean bulk density from the 
confidence range make these physical characteristics 
crucial in the bulk density computation. As a result of the 
DTc and NPHI (Fig. 5a and Fig. 5c) creating high angles, 
the P-values for both of them are below 0.0001. Thus, 
these properties have a significant influence on the bulk 
density function. In contrast to the GR property (Fig. 5b), 
its P-value is equal to 0.0003; hence, it has the minimum 
effect on the bulk density. The constructed model (Fig. 
5d) to predict the bulk density using multiple regression 
analysis is illustrated in Eq. 2. Ultimately, the model's 
statistical validity is evidenced by a P-value below 
0.0001, highlighting the superior prediction accuracy of 
MRA in estimating formation bulk density using well 
logging data. The findings validated that each variable 
exerted a significant and distinct influence on density 
prediction. No indications of significant multicollinearity 
or concerning leverage points were detected. 
Consequently, the regression coefficients obtained from 
the model are deemed statistically robust and 
dependable. Additionally, the given model exhibits a 
determination coefficient (R2) of 0.88 and the root mean 
squared error (RMSE) of 0.0751. 

 

𝑅𝐻𝑂𝐵 = 3.0562 − 0.00317 𝐷𝑇𝑐 − 0.00036 𝐺𝑅 −
1.3877 𝑁𝑃𝐻𝐼                                                               (2) 

 

Where, RHOB is the formation bulk density (gm/cc), 
DTc is the compression sonic wave (us/ft), GR is the 
gamma ray (gAPI), and the NPHI is the neutron porosity 
(fraction). 

B. Model Development Employing ANN 

A three-layer fully connected neural network 
structure was used to construct the models in this 
investigation. Three variables that affect bulk density 
measurements were incorporated into this structure. 
These variables are compression sonic wave, gamma-
ray, and neutron porosity that make up the input layer. 
Iterative trial and error was employed during the 
learning and training processes to choose three neurons 
for the hidden layer. Then, the network was applied to 
construct the simulated RHOB model once the training 
operation had been finished. 

Fig. 6 presents cross plots that depict the comparison 
between the actual and forecasted bulk density for both 
training and validation datasets. According to the 
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performance metrics (𝑅2 and RMSE), the results 
indicated that the values of 𝑅2and RMSE are 0.92 and 
0.063, respectively, for the training datasets. In contrast, 
they are 0.90 and 0.069, respectively, for the validation 
datasets.  

Concerning the results shown above, when 
comparing the two models (MRA and ANN) for bulk 
density forecasting, the ANN model is more conservative 
than the MRA model. In other words, this conservative 
characteristic arises from the ANN's nonlinear learning 
capacity, which allows it to capture complex relations 

without excessively amplifying noise or fluctuations that 
might mislead simpler models like MRA. In contrast, the 
MRA model is defined by its strict linearity and 
sensitivity to multicollinearity, which can result in larger 
prediction intervals and greater sensitivity to outliers or 
variable combinations that diverge from the main data 
distribution. Thus, characterizing the ANN as more 
conservative suggests that it generates outputs that are 
steadier and less extreme, making it less prone to 
irregular or noisy data points and thereby improving its 
generalization abilities. 

 

 
Fig. 5. Illustrates the bulk density model employing MRA 

 
Fig. 6. Shows the actual and predicted bulk density for both training and validation datasets 
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The developed model for estimating bulk density 
using ANN (Fig. 6) was completed. Eq. 3 defines this 
model, which corresponds to the mathematical tangent 
sigmoid function. Ultimately, Eq. 3, in conjunction with 

the weights and biases of the ANN model detailed in 
Table 1, delineates the mathematical formulation of the 
constructed ANN model for precise prediction of 
formation bulk density. 

𝑅𝐻𝑂𝐵𝑛 = [∑ 𝑊2𝑖
𝑁
𝑖=1 (

2

1+𝑒
−2(𝑤1𝑖,1∗𝐷𝑇𝑐 𝑛+ 𝑤1𝑖,2∗𝐺𝑅𝑛+𝑤1𝑖,3∗𝑁𝑃𝐻𝐼 𝑛 +𝑏1𝑖) − 1)] + 𝑏2                                                                             (3) 

C. Validation of Developed Models 

To determine the level of reliability of the produced 
models, they were compared with logging data from one 
well in the same area. The purpose of this comparison is 
to determine whether the research actually produces 
better results. To evaluate the dependability of the newly 
established models (MRA and ANN) in predicting the 
bulk density (RHOB), a thorough comparison between 
the continuous profile of the predicted bulk density by 
MRA and ANN with the actual reading profile of bulk 
density that was recovered from other wells has been 
implemented, as shown in Fig. 7. 

The current findings endorse the idea that artificial 
neural networks and multiple regression analysis are 
effective methods for evaluating the bulk density. The 
models that possess have been developed  to estimate 
the bulk density accurately. This precision is attained by 
integrating three frequently utilized well logs. Moreover, 
it can be concluded from Fig. 7 that both models (ANN 
and MRA) are reasonable in estimating the values of 
formation bulk density. In other words, these models 
successfully predicted the bulk density due to the 
satisfactory matching between predicted and actual bulk 
density as illustrated in the fifth track of Fig. 7. Finally, 
according to the performance metrics (𝑅2 and RMSE), the 
constructed ANN model outperformed the MRA model. 

 

 
Fig. 7. Shows the validation of developed models with actual 

bulk density 

 

IV. CONCLUSIONS 

Formation bulk density is a critical characteristic for 
formation assessment. This study employed two models 
(ANN and MRA) to synthesize bulk density when well log 
data is unavailable or limited. These models were 
conducted using well-logging data that was obtained 
from one well located in southern Iraq. Thus, several 
applications related to bulk density computation can be 
performed (e.g., wellbore stability analysis, sand 
production prediction, drilling optimization, stimulation 
jobs, etc.). The following points briefly summarizes the 
conclusions of this investigation: 

 This work presents straightforward, reliable, and 
advantageous approaches (ANN and MRA) for 
ascertaining bulk density through the utilization of 
well-logging data (DTc, GR, and NPHI). 

 Regarding the performance metrics (R2and RMSE), 
the ANN model exhibited superior performance 
(𝑅2= 0.92 and RMSE = 0.063) compared to the model 
generated using MRA (𝑅2 = 0.88 and RMSE = 
0.0751). This demonstrates the superiority of 
artificial neural networks in ascertaining bulk 
density in comparison to multiple regression 
analysis. 

 The present study proposes a reasonable and 
adequate ANN model for predicting formation bulk 
density. It eliminates the need for expensive, 
commercially available software. 

 In addition to demonstrating that well-logging 
measurements are dependable indicators for 
creating synthetic bulk density, this study 
recommends the significance of further 
investigations, considering the influence of other 
physical and mechanical rock properties on 
synthetic formation bulk density. 

Finally, the generated synthetic bulk density can be 
used for diverse lithologies, as compared with studies 
published in the literature, which are specialized for 
specified formation lithologies. Moreover, when using 
these developed models in different regions, it is 
advisable to modify the data accordingly. 
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Table 1. Weights and biases of the developed ANN model 

Hidden Layer 
Neurons (i) 

Input-Hidden Weight ( 𝑤1𝑖
) Hidden-Output Weight Bias 

𝐷𝑇𝑐 𝐺𝑅 𝑁𝑃𝐻𝐼 𝑤2𝑖
 𝑏1𝑖

              𝑏2 

1 -0.18514 -0.16518 9.1933 0.101174 13.78159 
3.511833 2 -0.01049 -0.03005 -0.8815 3.948866 0.673876 

3 -0.01582 -0.04993 0.135461 -2.41774 1.564944 
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