1. Henry L, Paik J, Younossi ZM. The epidemiologic burden of non‐alcoholic fatty liver disease across the world. Alimentary pharmacology & therapeutics. 2022;56(6):942-56. https://doi.org/10.1111/apt.17158
2. Rinella ME, Sanyal AJ. Management of NAFLD: a stage-based approach. Nature Reviews Gastroenterology & Hepatology. 2016;13(4):196-205. https://doi.org/10.1038/nrgastro.2016.3
3. Meex RC, Watt MJ. Hepatokines: linking nonalcoholic fatty liver disease and insulin resistance. Nature Reviews Endocrinology. 2017;13(9):509-20. https://doi.org/10.1038/nrendo.2017.56
4. Ye J, Yao Z, Tan A, Gao Y, Chen Y, Lin X, He R, Tang R, Hu Y, Zhang H, Yang X. Low serum sex hormone-binding globulin associated with insulin resistance in men with nonalcoholic fatty liver disease. Hormone and Metabolic Research. 2017;49(05):359-64. https://doi.org/10.1055/s-0043-102690
5. Alinezhad A, Jafari F. The relationship between components of metabolic syndrome and plasma level of sex hormone-binding globulin. European Journal of Translational Myology. 2019;29(2):8196. https://doi.org/10.4081/ejtm.2019.8196
6. Lazo M, Zeb I, Nasir K, Tracy RP, Budoff MJ, Ouyang P, Vaidya D. Association between endogenous sex hormones and liver fat in a multiethnic study of atherosclerosis. Clinical Gastroenterology and Hepatology. 2015;13(9):1686-93. https://doi.org/10.1016/j.cgh.2014.12.033
7. Hua X, Li M, Pan F, Xiao Y, Cui W, Hu Y. Non-alcoholic fatty liver disease is an influencing factor for the association of SHBG with metabolic syndrome in diabetes patients. Scientific Reports. 2017;7(1):14532. https://doi.org/10.1038/s41598-017-15232-9
8. Winters SJ, Gogineni J, Karegar M, Scoggins C, Wunderlich CA, Baumgartner R, Ghooray DT. Sex hormone-binding globulin gene expression and insulin resistance. The Journal of Clinical Endocrinology & Metabolism. 2014;99(12):E2780-8. https://doi.org/10.1210/jc.2014-2640
9. Hallsworth K, Adams LA. Lifestyle modification in NAFLD/NASH: facts and figures. JHEP Reports. 2019;1(6):468-79. https://doi.org/10.1016/j.jhepr.2019.10.008
10. Guturu P, Duchini A. Etiopathogenesis of nonalcoholic steatohepatitis: role of obesity, insulin resistance and mechanisms of hepatotoxicity. International Journal of Hepatology. 2012;2012(1):212865. https://doi.org/10.1155/2012/212865
11. Kim D, Kim WR. Nonobese fatty liver disease. Clinical Gastroenterology and Hepatology. 2017;15(4):474-85. https://doi.org/10.1016/j.cgh.2016.08.028
12. Patten RK, McIlvenna LC, Levinger I, Garnham AP, Shorakae S, Parker AG, McAinch AJ, Rodgers RJ, Hiam D, Moreno-Asso A, Stepto NK. High-intensity training elicits greater improvements in cardio-metabolic and reproductive outcomes than moderate-intensity training in women with polycystic ovary syndrome: a randomized clinical trial. Human Reproduction. 2022;37(5):1018-29. https://doi.org/10.1093/humrep/deac047
13. Bergamin M, Ermolao A, Tolomio S, Berton L, Sergi G, Zaccaria M. Water-versus land-based exercise in elderly subjects: effects on physical performance and body composition. Clinical Interventions in Aging. 2013:1109-17. https://doi.org/10.2147/cia.s44198
14. Mohseni-Takalloo S, Beigrezaei S, Yazdanpanah Z, Rajaie SH, Soltani S, Zohrabi T, Kaviani M, Forbes SC, Baker JS, Salehi-Abargouei A. Does exercise beneficially affect sex hormones when added to hypo-caloric diets in adults with overweight or obesity? A systematic review and meta-analysis of controlled clinical trials. European Journal of Endocrinology. 2022;186(2):285-95. https://doi.org/10.1530/eje-21-0675
15. Samadi Z, Bambaeichi E, Valiani M, Shahshahan Z. Evaluation of changes in levels of hyperandrogenism, hirsutism and menstrual regulation after a period of aquatic high intensity interval training in women with polycystic ovary syndrome. International Journal of Preventive Medicine. 2019;10(1):187. https://doi.org/10.4103/ijpvm.ijpvm_360_18
16. Kim JH, Ha MS, Ha SM, Kim DY. Aquatic exercise positively affects physiological frailty among postmenopausal women: a randomized controlled clinical trial. In Health Care. 2021;(9)4,:409. https://doi.org/10.3390/healthcare9040409
17. Omar JS, Jaradat N, Qadoumi M, Qadoumi AN. Regular swimming exercise improves metabolic syndrome risk factors: a quasi-experimental study. BMC Sports Science, Medicine and Rehabilitation. 2021;13(1):22. https://doi.org/10.1186/s13102-021-00254-8
18. Zou Y, Li J, Lu C, Wang J, Ge J, Huang Y, Zhang L, Wang Y. High-fat emulsion-induced rat model of nonalcoholic steatohepatitis. Life Sciences. 2006;79(11):1100-7. https://doi.org/10.1016/j.lfs.2006.03.021
19. Chen B, Ma Y, Xue X, Wei J, Hu G, Lin Y. Tetramethylpyrazine reduces inflammation in the livers of mice fed a high fat diet. Molecular Medicine Reports. 2019;19(4):2561-8. https://doi.org/10.3892/mmr.2019.9928
20. Jowhari A, Daryanoosh F, Koushkie Jahromi M, Nekooeian A A. Effect of high-intensity intermittent swimming training on peroxisome proliferator-activated receptors-α and liver enzymes in non-alcoholic steatohepatitis male rats. Journal of Shahid Sadoughi University of Medical Sciences. 2023;30(10):6034-6051. [In Persian]. https://doi.org/10.18502/ssu.v30i10.11454
21. Farzanegi P, habibian M, alinejad H. The combined effect of regular aerobic exercise with garlic extract on renal apoptosis regulatory factors in aged rats with chronic kidney disease. Journal of Arak University of Medical Sciences. 2016;19(3):62-70. [In Persian]. http://jams.arakmu.ac.ir/article-1-4153-en.html
22. Ramos-Filho D, Chicaybam G, de-Souza-Ferreira E, Guerra Martinez C, Kurtenbach E, Casimiro-Lopes G, Galina A. High intensity interval training (HIIT) induces specific changes in respiration and electron leakage in the mitochondria of different rat skeletal muscles. PloS One. 2015;10(6):e0131766. https://doi.org/10.1371/journal.pone.0131766
23. Shafiee A, kordi M, Gaeini A, Soleimani M, Nekouei A, Hadidi V. The effect of eight week of high intensity interval training on expression of Mir-210 and EphrinA3 mrna in soleus muscle healthy male rats. Journal of Arak University of Medical Sciences. 2014;17(3):26-34. [In Persian]. http://jams.arakmu.ac.ir/article-1-2770-en.html
24. Mohammed M, Al-Habori M, Abdullateef A, Saif-Ali R. Impact of metabolic syndrome factors on testosterone and SHBG in type 2 diabetes mellitus and metabolic syndrome. Journal of Diabetes Research. 2018;2018(1):4926789. https://doi.org/10.1155/2018/4926789
25. Sylow L, Kleinert M, Richter EA, Jensen TE. Exercise-stimulated glucose uptake—regulation and implications for glycaemic control. Nature Reviews Endocrinology. 2017;13(3):133-48. https://doi.org/10.1038/nrendo.2016.162
26. Chavanelle V, Boisseau N, Otero YF, Combaret L, Dardevet D, Montaurier C, Delcros G, Peltier SL, Sirvent P. Effects of high-intensity interval training and moderate-intensity continuous training on glycaemic control and skeletal muscle mitochondrial function in db/db mice. Scientific Reports. 2017;7(1):204. https://doi.org/10.1038/s41598-017-00276-8
27. Amador M, Meza CA, McAinch AJ, King GA, Covington JD, Bajpeyi S. Exercise-induced improvements in insulin sensitivity are not attenuated by a family history of type 2 diabetes. Frontiers in Endocrinology. 2020;13(11):120. https://doi.org/10.3389/fendo.2020.00120
28. Hesselink MK, Schrauwen-Hinderling V, Schrauwen P. Skeletal muscle mitochondria as a target to prevent or treat type 2 diabetes mellitus. Nature Reviews Endocrinology. 2016;12(11):633-45. https://doi.org/10.1038/nrendo.2016.104
29. Antonio L, Wu FC, O’Neill TW, Pye SR, Carter EL, Finn JD, Rutter MK, Laurent MR, Huhtaniemi IT, Han TS, Lean ME. Associations between sex steroids and the development of metabolic syndrome: a longitudinal study in European men. The Journal of Clinical Endocrinology & Metabolism. 2015;100(4):1396-404. https://doi.org/10.1210/jc.2014-4184
30. Wang Q, Kangas AJ, Soininen P, Tiainen M, Tynkkynen T, Puukka K, Ruokonen A, Viikari J, Kähönen M, Lehtimäki T, Salomaa V. Sex hormone-binding globulin associations with circulating lipids and metabolites and the risk for type 2 diabetes: observational and causal effect estimates. International Journal of Epidemiology. 2015;44(2):623-37. https://doi.org/10.1093/ije/dyv093
31. Wittert G, Bracken K, Robledo KP, Grossmann M, Yeap BB, Handelsman DJ, Stuckey B, Conway A, Inder W, McLachlan R, Allan C. Testosterone treatment to prevent or revert type 2 diabetes in men enrolled in a lifestyle programme (T4DM): a randomised, double-blind, placebo-controlled, 2-year, phase 3b trial. The lancet Diabetes & Endocrinology. 2021;9(1):32-45. https://doi.org/10.1016/s2213-8587(20)30367-3
32. Salminen M, Vahlberg T, Räihä I, Niskanen L, Kivelä SL, Irjala K. Sex hormones and the risk of type 2 diabetes mellitus: A 9‐year follow up among elderly men in F inland. Geriatrics & Gerontology International. 2015;15(5):559-64. https://doi.org/10.1111/ggi.12312
33. Ottarsdottir K, Hellgren M, Bock D, Nilsson AG, Daka B. Longitudinal associations between sex hormone-binding globulin and insulin resistance. Endocrine Connections. 2020;9(5):418-25. https://doi.org/10.1530/ec-20-0141
34. Ter Horst R, van den Munckhof IC, Schraa K, Aguirre-Gamboa R, Jaeger M, Smeekens SP, Brand T, Lemmers H, Dijkstra H, Galesloot TE, de Graaf J. Sex-specific regulation of inflammation and metabolic syndrome in obesity. Arteriosclerosis, Thrombosis, and Vascular Biology. 2020;40(7):1787-800. https://doi.org/10.1161/atvbaha.120.314508
35. Kurniawan LB, Adnan E, Mulyono B, Windarwati. Insulin resistance and testosterone level in Indonesian young adult males. Romanian Journal of Internal Medicine. 2020;58(2):93-8. https://doi.org/10.2478/rjim-2020-0004
36. Holota H, Thirouard L, Monrose M, Garcia M, De Haze A, Saru JP, Caira F, Beaudoin C, Volle DH. FXRα modulates leydig cell endocrine function in mouse. Molecular and Cellular Endocrinology. 2020;518:110995. https://doi.org/10.1016/j.mce.2020.110995
37. Gianatti EJ, Grossmann M. Testosterone deficiency in men with Type 2 diabetes: pathophysiology and treatment. Diabetic Medicine. 2020;37(2):174-86. https://doi.org/10.1111/dme.13977
38. Estoppey P, Clair C, Auderset D, Puder JJ. Sex differences in type 2 diabetes. Cardiovascular Medicine. 2023;26(3):96-9. https://doi.org/10.4414/cvm.2023.02273
39. Emami MR, Safabakhsh M, Khorshidi M, Moghaddam OM, Mohammed SH, Zarezadeh M, Alizadeh S. Effect of bariatric surgery on endogenous sex hormones and sex hormone-binding globulin levels: a systematic review and meta-analysis. Surgery for Obesity and Related Diseases. 2021;17(9):1621-36. https://doi.org/10.1016/j.soard.2021.05.003
40. Zhang X, Mou Y, Aribas E, Amiri M, Nano J, Bramer WM, Kavousi M, de Knegt RJ, Asllanaj E, Ghanbari M. Associations of sex steroids and sex hormone-binding globulin with non-alcoholic fatty liver disease: a population-based study and meta-analysis. Genes. 2022 ;13(6):966. https://doi.org/10.3390/genes13060966
41. Simons PI, Valkenburg O, Stehouwer CD, Brouwers MC. Sex hormone–binding globulin: biomarker and hepatokine?. Trends in Endocrinology & Metabolism. 2021;32(8):544-53. https://doi.org/10.1016/j.tem.2021.05.002
42. Wan Q, Xie Y, Zhou Y, Shen X. Research progress on the relationship between sex hormone‐binding globulin and male reproductive system diseases. Andrologia. 2021;53(1):e13893. https://doi.org/10.1111/and.13893
43. Bourebaba N, Ngo T, Śmieszek A, Bourebaba L, Marycz K. Sex hormone binding globulin as a potential drug candidate for liver-related metabolic disorders treatment. Biomedicine & Pharmacotherapy. 2022;153:113261. https://doi.org/10.1016/j.biopha.2022.113261
44. Huang R, Wang Y, Yan R, Ding B, Ma J. Sex hormone binding globulin is an independent predictor for insulin resistance in male patients with newly diagnosed type 2 diabetes mellitus. Diabetes Therapy. 2023;14(10):1627-37. https://doi.org/10.1007/s13300-023-01445-x
45. Mohammadrezaei A, Mokhtari Ardekani A, Abbasalizad-Farhangi M, Mesgari-Abbasi M, Mousavi R. Association between sex hormone-binding globulin, atherogenic indices of plasma among young sedentary males. Nutrition and Metabolic Insights. 2023;16:11786388231155006. https://doi.org/10.1177/11786388231155006
46. Smith SJ, Teo SYM, Lopresti AL, Heritage B, Fairchild TJ. Examining the effects of calorie restriction on testosterone concentrations in men: a systematic review and meta-analysis. Nutrition Reviews. 2022;80(5):1222-1236. https://doi.org/10.1093/nutrit/nuab072
47. Kovács G, Mohos E, Kis JT, Tabák Á, Gerendy P, Pettkó J, Nagy D, Győrbíró D, Kaló Z. Cost-Effectiveness of Bariatric Surgery in Patients Living with Obesity and Type 2 Diabetes. Journal of Diabetes Research. 2023:9686729. https://doi.org/10.1155/2023/9686729