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Abstract 

Dissolved oxygen (DO) fluctuations directly affect biological processes and water quality in a 

reservoir. It can occur gradually or rapidly as a result of a large input load of pollution. This paper 

proposes the Reservoir Health Indicator (RHI) as a weighted combination of reliability, resiliency, 

and vulnerability indices. The one-dimensional First-Order Reliability Method (FORM) and the 

empirical framework are applied to estimate these indices.  The analysis uses 50 years of daily DO 

simulation results, acquired from molding a Minab dam divided into five non-overlapping 10-year 

periods. An indicator value greater than 0.5 reveals that the dam is healthy and sufficiently reliable 

in meeting the DO standard. Three weighting scenarios are applied to explore the RHI sensitivity. 

Results showed that in the first scenario, the approximate range of RHI variation is between 0.6 and 

0.2. This indicates that after 20 years, the dam has lost its ability to improve its condition. In the 

second scenario, the variation is between 0.63 and 0.4, and the dam almost loses its health at 25 years. 

The third scenario indicates successful performance of the dam such that system has almost ability to 

recover itself by the end of its life. Therefore, developing such an indicator can effectively help 

understand the variation of a reservoir water quality by integrating three vital aspects of reliability, 

resiliency, and vulnerability.  
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1. Introduction 

Development and urbanization, industrial 

growth, increased agricultural production, and 

rising wastewater and pollutant discharges 

have intensified reservoir pollution. 

Eutrophication is a process that occurs when 

nutrients such as nitrogen and phosphorus 

promote phytoplankton growth in reservoirs. 

Excessive algae growth disrupts ecological 

balance by causing large daily fluctuations in 

dissolved oxygen (Lukhele and Msagati, 

2024). Eutrophication has multiple negative 

impacts, including oxygen depletion, changes 

in species composition, unpleasant taste and 

odor in drinking water, and production of 

toxins by certain cyanobacteria harmful to 

animals (Devlin and Brodie, 2023). As nutrient 

levels rise, these problems intensify. 

Additional effects include excessive floating 

plant growth, reduced transparency, water 

toxicity, foam formation, waterway blockages, 

and interference with navigation and 

recreation (Geletu, 2023; Pranta et al., 2023). 

Dissolved oxygen (DO) depletion in 

reservoirs represents one of the most critical 

water quality challenges facing aquatic 

ecosystems. This phenomenon, characterized 

by hypoxic (< 2-3 mg/L) or anoxic (< 1 mg/L) 

conditions, fundamentally affects reservoir 

biogeochemistry and threatens ecosystem 

integrity (Schernewski et al., 2025). For 

example, hypoxic conditions severely impact 

fish communities through habitat compression 

and physiological stress (Nodo et al., 2023; 

Hughes et al., 2015). In North Texas 

reservoirs, chronic anoxia from July through 

September was observed, with dissolved 

oxygen frequently < 2.0 mg/L throughout the 

entire water column (Matthews and Marsh-

Matthews, 2003). In Iran's Seymareh 
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Reservoir, low DO led to significant fish 

mortality (Keyvanshokooh et al., 2009). 

Anoxic conditions dramatically increase 

sediment nutrient release. In California 

reservoirs, anoxic conditions resulted in 

ammonia fluxes of 82-366 mg-N/m²•d and 

soluble reactive phosphorus fluxes of 67-122 

mg-P/m²•d (Beutel et al., 2008). These rates 

are extreme compared to typical eutrophic 

systems (4-60 mg-N/m²•d and 10-53 mg-

P/m²•d) (Cortés et al., 2021). 

The environmental consequences can 

extend far beyond simple dissolved oxygen 

deficiency. It might cause cascading effects 

that impact biodiversity, water quality, and 

ecosystem services. Over the years, many 

studies have aimed to assess reservoir health 

status and develop several indices. Common 

parameters include temperature, pH, dissolved 

oxygen, and nutrients like nitrates and 

phosphates. For instance, a Mediterranean 

reservoir study highlighted that WQI 

deteriorated due to increased urbanization and 

nutrient runoff (Fadel et al., 2021). 

Carlson (1977) introduced the Trophic State 

Index (TSI), which uses separate regression 

equations for chlorophyll a, total phosphorus, 

and Secchi depth to yield values from near zero 

(oligotrophic) to 100 (eutrophic). Due to 

eutrophication’s complexity, researchers have 

also developed fuzzy-logic-based and entropy-

based indices to better capture uncertainty in 

trophic level boundaries (Chen et al., 2008; 

Bharti et al., 2018; Dasgupta et al., 2025). 

Abdolabadi and NikSokhan (2014) applied 

both EFEI and TSI to assess Ilam Dam 

reservoir’s epilimnion and hypolimnion over 

one year, using two weighting scenarios based 

on chlorophyll a, total phosphorus, and oxygen 

saturation. Results showed EFEI’s reliability 

in determining trophic levels (Abdolabadi and 

Niksokhan, 2014). 

Risk-based indices such as reliability, 

resiliency, and vulnerability are widely used to 

assess sustainability in water-resource systems 

and have been applied in areas like reservoir 

operation testing, water supply assessment, 

TMDL program evaluation, sustainability 

measurement, and pollution control cost 

optimization. Given water quality’s direct link 

to public health, long-term assessment is 

essential.  These indices link water quality 

parameters and ecosystem stability. For 

instance, resilience indicators can capture the 

capacity of reservoir ecosystems to absorb 

disturbances and maintain function (Pelletier 

et al., 2020; Jaiswal et al., 2021; Guerrero-

Jiménez et al., 2024). Diverse resilience 

indicators include biogeochemical metrics 

(e.g., hypoxia, nutrient release), ecological 

community metrics (e.g., species composition, 

functional groups), and integrated indices such 

as trophic state and water quality indices (Mi 

et al., 2023; Toumasis et al., 2024; Xu et al., 

2015). 

Reviewing literatures reveals that effective 

reservoir water quality assessment requires not 

only maintaining standards under normal 

conditions but also understanding the system’s 

performance under stress and uncertainty. 

Traditional deterministic indices, which 

evaluate a system against a single failure 

threshold, are often insufficient for this task. 

Probabilistic methods offer a more robust 

framework. The First-Order Reliability 

Method (FORM) is a computationally efficient 

and powerful technique to estimate three 

critical system performance metrics: 

Reliability, Vulnerability, and Resiliency (Wei 

et al., 2023). FORM is applied by many 

researchers to analyze varied case studies—

from urban drainage networks to riverine 

ecosystems. Azimi et al. (2019) used the 

FORM to analyze drought recurrence 

conditions during 1994–2015 from 609 study 

areas of Iran. They defined reliability based on 

groundwater resource index. The analysis 

incorporates geostatistical techniques 

(Kriging) to map drought risk spatially, 

providing insight into both the extent and 

severity of groundwater decline across the 

country. Thorndahl and Willems (2008) 

integrated FORM with hydrodynamic urban 

drainage modeling (MOUSE) to analyze 

probabilistic overflow events in combined 

sewer systems. They used multi-year rainfall 

statistics to derive failure probabilities and 

return periods for overflows impacting 

receiving water quality.  Hamed and El Beshry 

(2006) applied FORM in modeling benzene 

transport in an aquifer, effectively capturing 

uncertainties in hydrogeological and chemical 

parameters. They demonstrated that FORM-

based exceedance probabilities matched 

traditional Monte Carlo outputs with far fewer 

model runs. 
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This study proposes and applies a Reservoir 

Health Indicator (RHI), based on reliability, 

resiliency, and vulnerability, to evaluate long-

term dissolved oxygen dynamics in the Minab 

reservoir. Unlike traditional indices such as 

TSI, WQI, or fuzzy-based approaches, the RHI 

explicitly integrates risk-based performance 

metrics with probabilistic methods (FORM). 

This provides a dynamic and long-term 

perspective on reservoir health that captures 

not only average water quality conditions but 

also the likelihood, intensity, and persistence 

of failures. The novelty of this work 

emphasizes introducing a risk-based 

framework that enables a evaluation of 

reservoir water quality dynamics across the 

entire design life. By focusing on dissolved 

oxygen as a sentinel parameter, the study 

demonstrates how RHI can bridge the gap 

between conventional water quality indices 

and resilience-based assessment, offering 

reservoir managers a more robust tool for 

decision-making under uncertainty. 

 

2. Materials and Methods 

When water quality in a reservoir remains 

standard, from the beginning of the operation 

to the end of the dam life, the dam has a 

successful performance and the system is 

totally reliable. As achieving total reliability in 

the preliminary designs seems not reasonable 

(due to excessive expenditure, increased 

uncertainty, etc.), evaluating reservoir 

performance in protecting water quality can be 

useful for managers to avoid encountering 

challenges like eutrophication and dissolved 

oxygen depletion.  

In this study, we select DO because it 

directly reflects biological processes 

(respiration, photosynthesis, decomposition) 

and indirectly captures the effects of nutrient 

enrichment, organic loading, and stratification 

as a primary and integrative indicator. We treat 

DO as a single random variable and estimate 

these indices following the conceptual 

framework of Hashimoto et al. (1982) and 

Maier et al. (2016), but with a one-dimensional 

First-Order Reliability Method (FORM) 

formulation. The analysis uses 50 years of 

daily DO data from the Minab dam water 

quality model (Abdolabadi, 2024).  

The DO data is divided into five non-

overlapping 10-year periods. For each period, 

indices are computed from the statistical 

properties of the DO distribution, with the 

probability calculations performed under the 

assumption of normality. Finally, RHI is 

estimated over the operational period under 

three weighting scenarios. For each period p, 

the series is denoted as: 

{𝐷𝑂𝑡
(𝑝)
}, 𝑡 = 1,… , 𝑇𝑝 (1) 

where 𝑇𝑝 is the final day. The regulatory 

standard (threshold) was set at DOthr = 5 mg/L. 

2.1. Reliability 

Reliability in water resources is often 

modeled as the relation between load (system 

demand/stress) and resistance (system 

capacity). The random variables influencing 

load and resistance are denoted by 𝑋 =
(𝑋1, 𝑋2, … , 𝑋𝑛). 

The performance function for such systems 

is commonly defined as: 

𝐺(𝑋) = 𝑅 − 𝐿 (2) 

where R is resistance and L is load. Both R 

and L have physical dimensions which depend 

on the context and problem definition. The 

system fails when G(X) <0. 

The goal is to estimate the probability of 

failure: 

𝑝𝑓 = 𝑃(𝐺(𝑋) < 0) = ∫ 𝑓𝑋(𝑋)𝑑𝑋
𝐺(𝑋)<0

 (3) 

 

2.1.1. Empirical reliability 

Empirical reliability Remp is defined as the 

proportion of time steps meeting or exceeding 

the standard: 

𝑅emp
(𝑝)

=
1

𝑇𝑝
∑𝐼(𝐷𝑂𝑡

(𝑝)
≥ 𝐷𝑂thr)

𝑇𝑝

𝑡=1

 (4) 

where I() is the indicator function. Remp is 

dimensionless (a probability in [0,1]). 

 

2.1.2. FORM reliability (1-D Case) 

The performance function is defined as: 

𝐺(𝐷𝑂) = 𝐷𝑂 − 𝐷𝑂thr (5) 

Assuming DO has a normal distribution 

𝒩(𝜇𝑝, 𝜎𝑝
2) for period p, the reliability is: 

𝛽𝑝 =
𝜇𝑝 − 𝐷𝑂thr

𝜎𝑝
 (6) 

where 𝜇𝑝is sample mean DO for period 𝑝 

(mg·L⁻¹) and 𝜎𝑝 is standard deviation of DO in 

period 𝑝 (mg·L⁻¹). The FORM estimate of 

reliability is then: 
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𝑅form
(𝑝)

−Φ(𝛽𝑝) (7) 

where Φ() is the standard normal 

cumulative distribution function. 

 

2.2. Vulnerability 

Vulnerability is assessed using the failure 

state severity approach from Maier et al. 

(2016). The DO domain is partitioned into m 

states by descending bounds (mg·L⁻¹): 
 

𝐷𝑂thr > 𝑏1 > 𝑏2 > ⋯ > 𝑏𝑚−1 (8) 
 

For each failure state j in {1, …, m-1}, a 

weight wj represents the severity of that state 

(dimensionless). The probability of being in 

state j is: 

𝑒𝑗
(𝑝)

= 𝑃(𝑏𝑗 < 𝐷𝑂 ≤ 𝑏𝑗−1) 

= Φ(
𝑏𝑗−1 − 𝜇𝑝

𝜎𝑝
) − Φ(

𝑏𝑗 − 𝜇𝑝

𝜎𝑝
) 

(9) 

The vulnerability index is the weighted 

sum: 

𝑉(𝑝) = ∑ 𝑤𝑗𝑒𝑗
(𝑝)

𝑚−1

𝑗=1

 (10) 

 

 

 

 

2.3. Resiliency 

Resilience is defined as the conditional 

probability of recovery from a failure state in 

one time step: 

𝛾(𝑝) = 𝑃(𝐷𝑂𝑡+1 ≥ 𝐷𝑂thr ∣ 𝐷𝑂𝑡 
< 𝐷𝑂thr) 

(11) 

Under the Gaussian assumption, the joint 

distribution (DOt, DOt+1) is bivariate normal 

with: marginal mean μp, marginal standard 

deviation σp, and lag-1 autocorrelation ρp 

estimated from the period time series. Failure 

probability is 𝑃𝑓 = Φ(𝑎𝑝) where: 

𝑎𝑝 =
𝐷𝑂thr − 𝜇𝑝

𝜎𝑝
 (12) 

Joint failure probability is 𝑃𝑓𝑓 =

Φ2(𝑎𝑝, 𝑎𝑝; 𝜌𝑝) where Φ2 is the bivariate 

normal CDF with correlation ρp 

(autocorrelation of DO in period 𝑝, range [-

1,1]). Resiliency (dimensionless probability) is 

then: 

𝛾(𝑝) = 1 −
𝑃𝑓𝑓

𝑃𝑓
, 𝑃𝑓 > 0 (13) 

This formulation accounts for persistence in 

DO excursions due to autocorrelation. Figure 1 

presents a conceptual diagram showing how 

the DO domain is partitioned into states and 

how the indices are computed. 
 

 
Fig. 1. The schematic diagram of the DO domain in calculating reliability, resiliency, and vulnerability. 

Reliability refers to how often DO levels meet the standard. Vulnerability evaluates the average seriousness 

of times when DO levels fall below the threshold. Resiliency reflects the system's capacity to quickly return 

to acceptable DO levels after a violation. 

 

2.4. Reservoir health index 

Based on the explanations provided, the 

dam reservoir health index can be defined as a 

weighted combination of the reliability, 

resiliency, and vulnerability indices of the 

reservoir. Since reliability and resiliency are 

probabilistic measures, their values range 

between zero and one. To maintain 
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consistency, the vulnerability index is also 

normalized within the same range (0–1), using 

normalization relative to its maximum value. 

The relative weights of the three indices take 

values between zero and one and together sum 

to unity. Eq. 14 expresses the quantitative 

value of the reservoir health index as the 

weighted sum of the three indices: 

𝑅𝐻𝐼 = 𝑊𝑅𝑒𝑙(𝑅) +𝑊𝑟𝑒𝑠(𝛾) 
+𝑊𝑣𝑢𝑙(1 − 𝛿) 

(14) 

where WRel, WRes, and Wvul  are the weights 

assigned to the reliability, resiliency, and 

vulnerability indices, respectively. To assign 

weights that reflect the practical importance of 

each component, three weighting scenarios are 

considered (Table 1): 

• Scenario 1: Reliability is given the 

highest weight, followed by resiliency, while 

vulnerability receives the smallest weight. 

This emphasizes the system’s ability to 

remain functional and recover after 

disturbances. 

• Scenario 2: Equal weights are assigned 

to all three indices, giving balanced 

importance to reliability, resiliency, and 

vulnerability. 

• Scenario 3: Reliability again receives 

the greatest weight, but in this case, 

vulnerability is given higher importance than 

resiliency, highlighting the risk associated 

with severe declines in system condition. 

 
Table 1. The weights corresponding to each index 

under these three scenarios. 
Weights Reliability Resiliency Vulnerability 

Scenario 1 0.5 0.4 0.1 

Scenario 2 0.33 0.33 0.33 

Scenario 3 0.5 0.1 0.4 

 

According to the RHI, values closer to one 

indicate a better reservoir condition in terms of 

water quality, characterized by higher 

reliability and resiliency and lower 

vulnerability. Conversely, values approaching 

zero represent a system that frequently fails to 

meet the standard value of the selected water 

quality variable (DO). In such cases, the 

system remains failed most of the time. 

Therefore, a RHI greater than 0.5 can be 

interpreted as an indication that the reservoir 

possesses an acceptable level of health with 

respect to DO. 

 

3. Results and Discussion 

To study the trend of changes in the health 

index based on trophic status, the reservoir 

condition was evaluated over decadal intervals 

as well as for the overall lifespan. Accordingly, 

five intervals were defined based on the 

reservoir’s operational history: the first 10 

years, 10–20 years, 20–30 years, 30–40 years, 

and finally 40–50 years. Given the large 

number of observations (18,250 days) and the 

potential for computational errors, MATLAB 

2012 was used to compute all indicators. 

Figure 2 presents the time series of dissolved 

oxygen (DO) concentration in the 

hypolimnion, along with the values below the 

standard threshold of 5 mg/L, across the 

operational life of the Minab reservoir.  

As can be seen, from the start of operation 

until approximately day 5000 (the first 13 

years), the system functioned with almost no 

problems, and DO concentrations on most 

days were above the standard limit. During this 

stage, concentrations fluctuated between 4 and 

8 mg/L, which is acceptable considering 

seasonal variations. Between days 5000 and 

10,000 (years 13–26), the reservoir entered an 

intermediate state. While most values were 

still above the standard limit, DO fluctuations 

increased in intensity, ranging from 2.5 to 7 

mg/L. This indicated a gradual deterioration of 

system conditions during this period. 

From days 10,000 to 15,000 (years 26–39), 

the DO concentration frequently fell into a 

critical range, and the reservoir experienced 

unfavorable conditions. During this interval, 

fluctuations ranged from 0 to 6 mg/L, 

reflecting the high vulnerability of the 

reservoir. In the final 11 years of operation, the 

decline in DO concentration became more 

severe, with both variability and intensity of 

depletion reaching maximum levels.  

In this phase, concentration fluctuations 

remained within 0 to 6 mg/L, signaling the 

most critical stage of the reservoir’s health. 

Table 2 summarizes the computed values for 

reliability, resiliency, vulnerability, and RHI, 

considering the weights assigned under the 

three defined scenarios. 

The probability that the reservoir meets the 

dissolved oxygen (DO) standard (5 mg/L) 

decreases over time. In the early years (10–1), 

reliability is high (0.81–0.98). It indicates that 

the reservoir has stable conditions. However, 
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in later decades, particularly between years 

40–50, reliability drops to 0.59, indicating a 

gradual decline in system performance. 

The ability of the reservoir to recover after 

failure events remains extremely low 

throughout the entire lifespan (0.01–0.02). 

This indicates that once the system falls below 

the DO threshold, its capacity to return to 

acceptable conditions is very limited.

 

 
Fig. 2. Dissolved oxygen concentration in the Minab reservoir 

 
Table 2. Reliability, resiliency, vulnerability, and RHI, considering under-weighting scenarios 

Lifetime 50–40 40–30 30–20 20–10 10–1 Index               Year 

0.588 0.272 0.412 0.470 0.807 0.982 Reliability 

0.007 0.005 0.009 0.008 0.013 0.016 Resiliency 

0.115 0.180 0.144 0.138 0.145 0.122 Vulnerability 

45 204 113 128 78 64 Average failure days 

0.39 0.22 0.30 0.32 0.49 0.59 RHI (Scenario 1) 

0.50 0.37 0.43 0.45 0.56 0.63 RHI (Scenario 2) 

0.65 0.46 0.55 0.58 0.75 0.84 RHI (Scenario 3) 

The severity of failure, when it occurs, 

fluctuates within 0.11–0.18. The highest 

vulnerability is observed between years 30–40 

(0.18), showing that during this period, failures 

were more critical. The number of days in 

which the DO standard is not met varies across 

intervals. The worst performance is recorded 

between years 40–30 (204 days on average), 

while the best condition occurs in the earliest 

decade (64–78 days). This further confirms the 

trend of deterioration over time. 

In Scenario 1 (reliability prioritized), RHI 

decreases from 0.59 in the early years to 0.22–

0.32 in later decades, reflecting worsening 

health conditions. In Scenario 2 (equal 

weights), RHI values are slightly higher (0.37–

0.63), but still demonstrate a declining trend 

over time. In Scenario 3 (vulnerability 

weighted more heavily), the RHI values are 

highest (0.46–0.84). However, the same 

pattern of deterioration is visible, with 

healthier conditions in the early years and a 

decline as the reservoir ages. Figure 3 presents 

fluctuations in the reliability, resiliency, and 

vulnerability indices of the reservoir over its 

50-year operational life. 

The reservoir’s reliability shows a clear 

decreasing trend over time, with the decline 

occurring rapidly and steeply. In the first 

decade, reliability is high (close to 1). In the 

second decade, the index decreases by about 

18%, yet remains acceptable at around 0.8. 
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During the third decade, however, the decline 

becomes more severe, with values dropping 

from about 0.8 to 0.4, reflecting a marked 

deterioration in dissolved oxygen conditions. 

In the fourth decade (years 30–40), the slope of 

decline lessens, suggesting that while 

reliability is still poor, fluctuations around the 

DO threshold are reduced, and concentrations 

are consistently below the standard level. 

 

 
Fig. 3. Reliability, resiliency, and vulnerability in the reservoir 

 

In the final decade, reliability falls further to 

approximately 0.2, indicating that the system 

is no longer capable of maintaining DO 

concentrations above the acceptable standard. 

The resiliency index exhibits a trend 

generally similar to reliability, but its values 

remain extremely low throughout the 

reservoir’s life (around 0.01–0.02). This 

indicates that once the reservoir fails (DO < 5 

mg/L), the probability of recovery in the next 

time step is very small. The mean downtime 

data in Table 2 corroborate this finding. A 

slight increase in resiliency is observed during 

the fourth decade, which is attributable to a 

reduction in the average number of failure days 

during this period. Nonetheless, the system’s 

overall ability to recover remains negligible. 

The vulnerability index increases over time, 

indicating that the severity of dissolved oxygen 

depletion events intensifies as the reservoir 

ages. Since this index is normalized, the 

maximum possible deviation from the standard 

(5 mg/L) corresponds to DO values reaching 

zero, which were observed during some 

periods (see Figure 1). Interestingly, the 

vulnerability index shows a temporary decline 

during the third decade, suggesting that 

although failures were frequent, their intensity 

was somewhat reduced. In the fourth decade, 

the intensity remained comparable, but in the 

final decade, the vulnerability increased 

significantly, pointing to more severe oxygen 

depletion events. 

Figure 4 shows the trend of RHI under the 

three weighting scenarios. Across all 

scenarios, the RHI follows a logical decreasing 

trend, reflecting the reservoir’s progressive 

deterioration in water quality. The decline is 

steep and consistent over time. 

Scenario 1 results in the lowest RHI values 

because reliability is prioritized and 

vulnerability has minimal weight. Scenario 2 

leads to moderate RHI values, as all three 

indices are equally weighted. Scenario 3 

produces the highest RHI values, since greater 

weight is assigned to vulnerability, which 

reduces the penalization from poor resiliency 

and declining reliability. 

 

4. Conclusion 

Although water quality monitoring of 

reservoirs—especially those supplying 

drinking water—is standard practice, the 

processes driving water quality changes 

typically act over the long term. RHI evolves 

gradually, making it difficult to determine 

when the system irreversibly loses its ability to 

maintain acceptable quality without external 

intervention. To address this challenge, a risk-

based indicator of reservoir health was 
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introduced, describing the water quality 

changes throughout the operational lifetime 

(design life) of the reservoir. 

This indicator evaluates the system’s 

success or failure in meeting desired quality 

standards over time. In this study, the concept 

of reservoir health was assessed in relation to 

dissolved oxygen (DO) level. Three indices— 

reliability, resiliency, and vulnerability—were 

quantified and then combined into a single 

Reservoir Health Index (RHI) using three 

distinct weighting scenarios. The resulting 

index was used to analyze the reservoir’s water 

quality across its lifetime. 

 

 
Fig. 4. The RHI under the three weighting scenarios 

 

Scenario 1 demonstrated that the RHI 

decreased from approximately 0.6 in the first 

decade to 0.2 in later years. The reservoir fell 

below the standard threshold by the third 

decade, suggesting that its ability to improve 

conditions was largely lost by around 20 years 

of age. Scenario 2 indicates that the RHI 

ranged between 0.63 and 0.4. Here, the decline 

was more gradual, but the reservoir nearly lost 

acceptable health by around 25 years of age. In 

scenario 3, although the RHI also declined, the 

reservoir maintained relatively better 

performance throughout its lifetime and only 

lost its recovery capacity near the end of the 

50-year period. Given the importance of 

reliability and resiliency in defining long-term 

water quality performance, the weighting 

scheme in Scenario 1 is considered the most 

reasonable basis for evaluation. Accordingly, 

it can be concluded that the Minab reservoir 

gradually lost its health, with a critical decline 

occurring after 20 years of operation. It is 

evident that without management interventions 

such as oxygenation or operational 

adjustments, the reservoir will continue to 

experience diminished water quality and 

reduced ecological resilience in its later stages 

of life. 

This research can provide an early-warning 

system, enabling managers to anticipate 

critical phases of water quality decline and to 

prioritize interventions. By quantifying 

reliability, resiliency, and vulnerability, the 

RHI highlights not only when the reservoir is 

likely to fail in maintaining dissolved oxygen 

standards but also how severe and persistent 

these failures may be. This helps shift water 

quality management from reactive responses 

to proactive, risk-informed strategies.  
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