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ABSTRACT 
    Monitoring and predicting slope stability in open-pit mines plays a critical role in enhancing safety, minimizing losses, and 

improving operational efficiency. Slope instability can lead to severe and often irreversible economic, human, and 
environmental consequences. Traditional stability analysis methods, such as limit equilibrium and numerical modeling, face 
limitations due to geometric simplifications, linear assumptions, and their inability to capture complex patterns—factors that 
reduce their effectiveness in real-world conditions. In recent years, machine learning approaches have emerged as powerful 
tools in geotechnical analysis. This study aims to predict the stability status of open-pit mine slopes using machine learning 
models, specifically Support Vector Machine (SVM) and Random Forest (RF). To improve the accuracy of these models, their 
parameters were optimized using a Genetic Algorithm (GA). The dataset used includes geotechnical and geometric features 
influencing slope stability, obtained from field investigations and documented sources. The results indicate that the RF–GA 
hybrid model outperforms the SVM–GA model, achieving 93% accuracy with an AUC of 0.93, compared to 86% accuracy and 
an AUC of 0.86 for the SVM–GA model. Moreover, the RF model demonstrated higher sensitivity in identifying stable slopes and 
reduced the number of false negatives. These findings highlight the strong potential of the RF–GA model in delivering reliable 
predictions and supporting decision-making in slope stability management. The integration of intelligent algorithms with local 
data offers a robust alternative to traditional methods in geotechnical engineering. 
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I. INTRODUCTION 

The slopes of open-pit mines are among the most 
critical and strategic components of mineral extraction 
operations, playing a vital role in the safety, efficiency, 
and economic performance of mining activities. These 
slopes, often designed and constructed with 
considerable height and steepness, are influenced by a 
range of complex factors, including geotechnical 
properties of the materials (such as unit weight, 
cohesion, and internal friction angle), hydrological 
conditions (such as pore water pressure), and slope 
geometry (angle and height). Any instability in these 
slopes can result in shear failure, leading to 
consequences that go far beyond financial losses—
posing serious risks to human lives, operational 
continuity, and the reputation of mining companies 
(Abramson et al., 2001; Ullah et al., 2020). Shear failures 
in open-pit mine slopes not only cause temporary or 
prolonged shutdowns of mining operations but may also 
result in fatalities, destruction of expensive equipment, 
and environmental degradation. For instance, slope 

collapses can bury workers, block access roads, and 
contaminate water resources due to runoff. 
Economically, the costs associated with slope 
reconstruction, damage compensation, and lost 
production opportunities can be substantial. Therefore, 
accurate evaluation and prediction of slope stability are 
not only safety imperatives but also economic and 
environmental necessities in the mining industry 
(Abramson et al., 2001; Pourkhosravani et al., 2011). 
Moreover, with the rising global demand for mineral 
resources and the expansion of open-pit mining toward 
greater depths and larger dimensions, the challenges 
associated with slope stability have become increasingly 
complex. In deeper and larger mines, the influencing 
factors on slope stability become more varied and 
nonlinear, further emphasizing the need for more 
precise and efficient assessment methods. Consequently, 
the development of advanced methods for predicting 
and managing the risk of shear failure has become both 
a research priority and an operational necessity 
(Sjöberg, 1996; Stacey et al., 2003). 
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In response to these challenges, the present study 
aims to propose an innovative framework for predicting 
the stability status of open-pit mine slopes using 
intelligent methods and machine learning approaches. 
This strategy not only enhances prediction accuracy but 
also serves as a powerful tool for mining engineers in 
strategic decision-making and risk management. 
Traditionally, limit equilibrium methods have been the 
main tools for slope stability analysis. These methods 
operate based on balancing shear and resisting forces 
along potential slip surfaces. Prominent examples 
include: 

• Bishop’s Method, which assumes a linear stress 
distribution along the slip surface to assess slope 
stability. 

• Janbu’s Method, which divides the slope into 
individual blocks to perform stability analysis. 

Despite their widespread use, these classical methods 
are limited by simplifying assumptions such as fixed slip 
surface geometry and linear or segmented stress 
distributions. As such, they may not deliver sufficient 
accuracy in complex and nonlinear conditions. 
Additionally, they are generally unable to model the 
influence of variable parameters such as pore pressure 
or heterogeneous material properties with high fidelity 
(Duncan et al., 2014). 

In recent decades, advances in computational 
technologies and the availability of large-scale datasets 
have positioned machine learning (ML) as a powerful 
alternative to classical approaches. These methods offer 
the ability to model complex, nonlinear relationships 
between geotechnical parameters and slope stability 
conditions, resulting in significantly improved predictive 
capabilities (Nanehkaran et al., 2023). Among the most 
widely adopted ML models in geotechnical engineering 
are Support Vector Machine (SVM) and Random Forest 
(RF). SVM excels at identifying optimal separating 
boundaries in feature space, enabling precise 
classification of complex data. RF, on the other hand, 
builds robust predictions by aggregating multiple 
decision trees. However, the performance of these 
models depends heavily on the proper tuning of their 
parameters (Breiman, 2001; Suthaharan, 2016). To 
enhance the performance of SVM and RF in this study, 
the Genetic Algorithm (GA)—a powerful optimization 
technique—was employed. GA effectively searches the 
parameter space to identify the optimal configurations 
for each model, leading to significant improvements in 
prediction accuracy (Gen et al., 1999). The dataset used 
in this study comprises key geotechnical and geometric 
parameters of slopes, including unit weight, cohesion, 
internal friction angle, slope angle, slope height, and pore 
pressure ratio. These data were collected from field and 
laboratory studies in open-pit mines and include a 
diverse set of stable and unstable slope conditions. The 
main innovation of this research lies in the integration of 

GA-optimized SVM and RF models for predicting shear 
failure in open-pit mine slopes. This hybrid approach not 
only enhances predictive accuracy but also provides a 
unified framework that leverages the strengths of both 
models. 

Furthermore, by comparing the performance of the 
optimized models with traditional methods, this study 
takes a significant step toward replacing conventional 
techniques with advanced machine learning tools in 
geotechnical engineering. The results of this study can 
serve as an effective tool for risk assessment and 
decision-making in the management of open-pit mining 
operations. 

II. RESEARCH BACKGROUND 

In recent years, due to the complex mechanical 
behavior of slopes and geological structures, traditional 
and numerical methods for slope failure prediction have 
faced several challenges. These challenges include high 
costs, time-consuming procedures, and the need for 
extensive and precise datasets. In response to these 
limitations, machine learning (ML) algorithms have 
emerged as powerful and modern tools in geotechnical 
analysis. In particular, algorithms such as Support Vector 
Machine (SVM) and Random Forest (RF) have gained 
prominence in slope stability prediction due to their 
ability to model complex and nonlinear relationships 
between input and output variables. 

One of the earliest notable studies in this area was 
conducted by Zhao (2008), who applied the SVM 
algorithm to model the performance function in slope 
reliability analysis and demonstrated that, even with 
limited data, this method could achieve high prediction 
accuracy (Zhao, 2008). Later, Li and Rowe (2012) 
combined SVM with Monte Carlo simulation and used 
Particle Swarm Optimization (PSO) to effectively tune 
model parameters, resulting in a more accurate 
predictive model (Li et al., 2013). On the other hand, the 
Random Forest algorithm has also received considerable 
attention. Thanks to its strong classification capability 
and resistance to overfitting, RF has proven effective in 
geoscientific datasets, which are often noisy and 
scattered. Qi et al. (2018) used RF to predict the stability 
of hanging roofs in underground tunnels, achieving 
satisfactory accuracy (Qi, Fourie, et al., 2018). 
Furthermore, Zhou et al. (2021) developed an effective 
landslide susceptibility mapping model by integrating 
RF with feature selection methods such as Recursive 
Feature Elimination (RFE) and GeoDetector, 
significantly enhancing spatial prediction accuracy 
(Zhou et al., 2021). To further improve the performance 
of ML models, researchers have increasingly combined 
them with metaheuristic optimization algorithms such 
as Genetic Algorithm (GA), Particle Swarm Optimization 
(PSO), and Grey Wolf Optimizer (GWO). Demir and Şahin 
(2022) applied GA to optimize the parameters of both 
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SVM and RF for soil liquefaction prediction, reporting a 
substantial increase in model accuracy (Demir et al., 
2022). Zhou et al. (2022) also developed a robust model 
for evaluating liquefaction potential by integrating RF 
with GA and GWO (Zhou et al., 2022). In another practical 
study, Shu et al. (2023) developed a hybrid model using 
RF, PSO, and Least Squares SVM (LSSVM) to predict slope 
stability in the Sichuan–Tibet highway region, which 
performed exceptionally well in classifying unstable 
areas (Shu et al., 2023). Additionally, the application of 
ML in slope reliability analysis has expanded. Aminpour 
et al. (2023) utilized SVM and RF combined with Monte 
Carlo simulation to predict the failure probability of 
heterogeneous and anisotropic slopes using only 1% of 
the sampled data (Aminpour et al., 2023). Similarly, Ji et 
al. (2020) proposed a framework combining GA with 
Finite Element Method (FEM), resulting in more accurate 
optimization of slope stability analysis models (Cen et al., 
2020). 

Overall, the body of research evidence indicates that 
combining ML algorithms like SVM and RF with 
optimization techniques has significantly improved the 
prediction accuracy of slope stability and shear failure 
probability (Arif et al., 2025; Kurnaz et al., 2024; Lann et 
al., 2024; Lin et al., 2018; Pham et al., 2021; Rajan et al., 
2025; Xue et al., 2014). These hybrid approaches are not 
only computationally more efficient than traditional 
methods but also offer greater generalizability across 
diverse geological settings. Therefore, leveraging such 
data-driven and intelligent methodologies can play a 

critical role in enhancing the safety of mining operations 
and reducing geotechnical risks. 

III. DATASET 

In this study, data for slope stability analysis and 
prediction were collected from six credible and relevant 
sources (Hoang et al., 2016; Lin et al., 2022; Pham et al., 
2021; Qi & Tang, 2018; Sakellariou et al., 2005; Zhang et 
al., 2022). The dataset includes the key parameters 
influencing slope stability based on failure modeling. 
These parameters are: unit weight of materials, 
cohesion, internal friction angle of the slope material, 
slope angle, slope height, pore pressure ratio, and slope 
stability status, which is classified into two categories: 
stable and failed. These parameters are considered 
fundamental in determining limit equilibrium conditions 
and the mechanical behavior of slopes. The final dataset 
comprises 627 samples, including 311 stable slopes and 
316 failed slopes. This near-balance between stable and 
failed samples significantly contributes to maintaining 
data equilibrium during machine learning model 
training. The dataset covers a wide range of values with 
asymmetric distributions, reflecting the diversity of 
geomechanical and hydraulic conditions represented in 
the collected data. 

To explore the relationships between input variables 
and identify potential interdependencies, a correlation 
matrix is presented in Fig. 1. 

 

 
Fig. 1. Correlation matrix plot of the study parameters with corresponding coefficient values 
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The correlation analysis reveals several meaningful 
relationships among geotechnical variables. Unit weight 
shows the strongest correlation with both friction angle 
and slope angle (r = 0.71), indicating that as unit weight 
increases, these two parameters also rise significantly. A 
relatively strong correlation (r = 0.68) is also observed 
between the friction angle and the slope angle, 
suggesting that materials with higher internal resistance 
can sustain steeper slopes. Slope height demonstrates a 
moderate correlation with unit weight (r = 0.51), 
implying that heavier materials may offer more stability 
at greater heights. Cohesion also exhibits moderate 
correlations with unit weight, slope angle, and friction 
angle, reflecting the interdependent nature of strength 
parameters. In contrast, the pore pressure ratio has 
weak or even negative correlations with the other 
variables (ranging from -0.20 to 0.19), which may 
indicate an indirect or nonlinear influence of pore 
pressure within this system. Overall, the correlation 
pattern suggests that strength-related parameters such 
as friction angle, cohesion, and unit weight have a 
defined structural relationship with slope geometry. 
Meanwhile, the influence of pore pressure appears to be 
more complex and may require advanced analysis and 
modeling techniques to be fully understood. 

Additionally, Table 1 presents the descriptive 
statistics for the input features in the dataset, including 
the minimum, maximum, mean, and standard deviation 
values for each parameter. 

 
Table 1. Descriptive statistics of the study variables 

Input Data Range Median Mean 
Std. 
Dev. 

Unit Weight (γ) 
(kN/m³) 

0.492 – 
30.160 

20.959 20.185 7.044 

Cohesion (c) (kPa) 0 – 300 19.690 25.600 31.036 
Friction Angle (°) 0 – 49.500 28.800 25.308 12.331 
Slope Angle (°) 0.302 – 65 34.980 32.605 13.711 
Slope Height (m) 0.018 – 565 45.800 90.289 120.140 
Pore Pressure 
Ratio 

0 – 1 0.250 0.254 0.260 

IV. MACHINE LEARNING ALGORITHM 

Machine learning, as a core branch of artificial 
intelligence, enables systems to automatically learn from 
data and identify complex patterns without explicit 
programming. This technology employs various 
algorithms to create models that can be used for 
predicting future outcomes, classifying information, and 
supporting intelligent decision-making. The 
fundamental operation of such systems relies on 
detecting and extracting hidden relationships within 
existing datasets (Alpaydin, 2021; Mitchell et al., 1997). 
Among the different machine learning approaches, 
supervised learning is considered one of the most widely 
used. In this approach, the model is trained using labeled 
training data. Common examples include linear 
regression for predicting continuous values, support 

vector machines for data classification, and decision 
trees for modeling nonlinear relationships. In contrast, 
unsupervised learning focuses on discovering hidden 
structures and patterns in unlabeled datasets, with 
typical applications such as data clustering using the K-
Means algorithm or dimensionality reduction through 
PCA. A third type, known as reinforcement learning, 
takes a different approach in which the learning agent 
interacts with the environment and gradually learns 
optimal behavior by receiving feedback in the form of 
rewards or penalties. This method has found widespread 
application in fields such as robotics, computer games, 
and intelligent control systems. The selection of a 
particular method and its associated algorithm depends 
directly on the nature of the problem, the type of 
available data, and the desired level of accuracy (Mitchell 
et al., 1997). The development and enhancement of 
machine learning models are often accompanied by 
several challenges, including the selection of appropriate 
features, the prevention of model overfitting, and 
optimal tuning of algorithm parameters. To overcome 
these challenges, various techniques have been 
developed, among which intelligent optimization 
methods such as genetic algorithms have proven 
effective. These algorithms, by simulating the process of 
natural evolution, can efficiently explore the parameter 
space and identify the optimal values for model 
parameters (Sra et al., 2011). 

A. Support Vector Machine Algorithm 

Support Vector Machine (SVM) is a supervised 
learning method used for both classification and 
regression tasks. The core mechanism of SVM is based on 
finding an optimal hyperplane that can separate data 
from two classes with the maximum possible margin 
(Fig. 2). In its linear form, the decision function is defined 
as: 

  
f(x) = b + xwᵀ         (1) 

 

Where w is the weight vector (The superscript T  
denotes the transpose of the vector  w) and b is the bias. 
For nonlinearly separable data, kernel functions such as 
RBF or polynomial kernels are used to map the data into 
a higher-dimensional space. The optimization problem 
in SVM is formulated as follows: 

 

min
𝑤,𝑏

1

2
‖𝑤‖2 + 𝐶 ∑ 𝜉𝑖

𝑛
𝑖=1                                           (2) 

 

Where C is the penalty parameter for classification 
errors and ξᵢ are slack variables. Selecting the 
appropriate values for C and kernel parameters has a 
direct effect on model performance (Stitson et al., 1996; 
Suthaharan, 2016). 
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Fig. 2. Maximum-margin hyperplane and margins of a trained 

SVM (two-class problem). Samples lying on the margins are 
denoted as support vectors. 

 

B. Random Forest Algorithm 

Random Forest is an ensemble learning method that 
combines multiple decision trees to improve accuracy 
and reduce variance. This method uses two main 
mechanisms: bootstrap sampling and random feature 
selection. During training, a random subset of the 
training data is selected for each tree, and at each node, 
only a subset of features is used for splitting. Final 
predictions are made based on the majority vote (in 
classification) or the average (in regression) across all 
trees (Fiq. 3). Key parameters in random forest include 
the number of trees, tree depth, and the minimum 
number of samples required in leaf nodes. Proper tuning 
of these parameters can significantly enhance model 
performance (Breiman, 2001). 

  

 
Fig. 3. Schematic illustration of the Random Forest algorithm 

 

C. Genetic Algorithm 

Genetic Algorithm (GA) is an evolutionary 
optimization method inspired by natural selection and 
population genetics. It begins with an initial population 
of chromosomes (encoded solutions), each representing 
a point in the search space. In each generation, the fitness 

of each chromosome is evaluated using an objective 
function. Then, using genetic operators such as selection 
(e.g., roulette wheel or rank selection), crossover 
(combining segments of parent chromosomes), and 
mutation (minor random alterations), a new population 
is generated. This iterative process leads the population 
to gradually converge toward optimal solutions (Fig. 4). 
GA is particularly effective for solving multi-objective, 
nonlinear optimization problems with large search 
spaces, as it incorporates diversity mechanisms to avoid 
getting trapped in local optima. In machine learning 
applications, GA is commonly used for hyperparameter 
optimization by encoding parameters into the 
chromosome structure and defining the fitness function 
based on model evaluation metrics (Gen et al., 1999). 

  

 
Fig. 4. Genetic Algorithm (GA) optimization flowchart 

 
A genetic algorithm is an innovative method for 

finding the best configurations in machine learning 
models, inspired by the natural evolution process. It 
functions like an intelligent search system that improves 
solutions over time. For instance, when searching for the 
optimal parameter combinations for two popular 
models—SVM and RF—GA initially generates a set of 
random combinations. For SVM, these may include 
various values for parameters like C and gamma. Each 
combination is treated as an organism whose fitness is 
determined by the accuracy of the model it produces. 
Better-performing combinations have a higher chance of 
reproducing. In the next step, the top combinations are 
crossed to create a new generation of parameter sets. 
This mimics natural reproduction, where the traits of the 
parents are passed down to the offspring. In addition, 
random mutations are applied to maintain diversity and 
avoid convergence to local optima. This process is 
repeated multiple times until the optimal combination of 
parameters is found. For RF, a similar approach is used 
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to tune parameters such as the number of trees, 
maximum tree depth, and the minimum number of 
samples per leaf node. GA automatically adjusts these 
parameters to achieve the best possible performance. A 
significant advantage of this method is its ability to 
search a wast parameter space and find combinations 
that might be overlooked using traditional trial-and-
error approaches (Hu et al., 2024; Shu et al., 2023). 

This optimization approach is especially valuable 
when dealing with complex models and multiple 
parameters. By simulating the process of evolution, 
genetic algorithms offer an efficient and automated 
solution for finding optimal configurations that save 
time and lead to improved results. In essence, this 
method acts like an intelligent assistant that tests all 
possible combinations and identifies the best option. 

D. Model Evaluation 

The confusion matrix is one of the fundamental tools 
for evaluating the performance of classification models. 
It provides a tabular representation of the model’s ability 
to predict different classes accurately and is particularly 
useful in binary classification problems, such as 
identifying slope stability or failure (Mitchell et al., 
1997). 

 

Table 2. Confusion Matrix 
 Predicted Stable (0) Predicted Failure (1) 

Actual Stable (0) True Positive (TP) False Negative (FN) 

Actual Failure (1) False Positive (FP) True Negative (TN) 

  
Here, True Positive (TP) represents the number of 

samples that are actually stable and were correctly 
predicted as such by the model. False Negative (FN) 
refers to stable cases that were incorrectly classified as 
failures. False Positive (FP) refers to failed cases that 
were mistakenly classified as stable, and True Negative 
(TN) are failed cases correctly identified by the model. 

In this study, model performance was evaluated using 
metrics such as classification accuracy, sensitivity, and 
the ROC curve. Classification accuracy, derived from the 
confusion matrix, indicates the percentage of total 
records correctly classified and is calculated using the 
following formula (Mitchell et al., 1997): 
 

Accuracy = (TP + TN) / (TP + TN + FP + FN)                   (3)  
 

Sensitivity, also known as recall, provides a more 
detailed assessment of the model’s ability to correctly 
identify a specific class (e.g., failure cases). It represents 
the proportion of actual positives correctly identified 
and is calculated as follows (Mitchell et al., 1997): 
 

Sensitivity = TP / (TP + FP)                                              (4)  
 

The ROC (Receiver Operating Characteristic) curve is 
a graphical tool used to evaluate the performance of 
classification models. This curve plots the false positive 

rate (FPR) against the actual positive rate (TPR) at 
various threshold settings. TPR, which is equivalent to 
sensitivity, indicates how many actual positives have 
been correctly identified, while FPR indicates the 
proportion of negatives incorrectly classified as 
positives. The closer the ROC curve is to the upper left 
corner, the better the model’s performance. The area 
under the ROC curve, known as AUC, provides a single 
measure of overall model performance. An AUC close to 
1 indicates excellent performance, while an AUC around 
0.5 suggests performance no better than random 
guessing (Fig. 5) (Hoo et al., 2017). 

  

 
Fig. 5. Principle of Receiver Operating Characteristic (ROC) 

curves 

V. MODELING 

In the modeling phase, the preprocessed dataset was 
first divided into training (70%) and testing (30%) 
subsets. This split was performed with careful 
consideration of statistical principles. A stratified 
sampling method was used to ensure that the 
proportional distribution of stable and failed slope 
classes was maintained across both the training and 
testing sets. As a result, the model was exposed to the full 
spectrum of conditions, allowing for a more unbiased 
evaluation of its performance. Implementation was 
conducted using the train_test_split function from scikit 
learn with stratify=y to preserve class ratios, and 
random_state=42 to ensure reproducibility. 
Importantly, all preprocessing steps—including 
normalization and standardization—were applied based 
solely on statistics derived from the training set, 
effectively preventing data leakage into the test set. This 
data-splitting strategy offers multiple advantages: 
firstly, the training set retains sufficient volume (70%) to 
capture the complexity of underlying patterns. Secondly, 
the test subset (30%) acts as an independent, 
representative sample of the population, enabling valid 
and unbiased model evaluation. Thirdly, maintaining 
class balance across both subsets prevents model bias 
toward majority classes. To verify the robustness of the 
results, the splitting and training process was repeated 
with different random seeds. Evaluation metrics across 
runs demonstrated standard deviations below 2%, 
indicating the method’s stability and reliability. Such 
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rigor in data partitioning is critical, in sensitive domains 
like geotechnical prediction, as it ensures reliable model 
performance under realistic conditions. 

A. SVM Modeling 

For the SVM model, an RBF kernel was employed, with 
two key hyperparameters, C and γ, optimized using a 
genetic algorithm. The GA started with an initial 
population of 50 chromosomes, each encoding random 
values for C and γ. The fitness function was defined 
based on classification accuracy on a validation dataset. 
Uniform crossover and Gaussian mutation operators 
were applied to generate new generations. The 
optimization trend presented in Table 3 (Fig. 6) 
illustrates an evolving process across 20 consecutive 
generations. Initially (generation 0), the population 
started with an average fitness of 0.6999 and a maximum 
fitness of 0.8337, followed by systematic improvements. 
By generation 20, the average fitness rose to 0.71208, 
while the highest fitness peaked at 0.847159 in 
generation 13. A notable jump occurred at generation 8, 
where the maximum fitness increased sharply from 
0.829321 (gen 7) to 0.845896 (gen 8), likely due to the 
discovery of a well-suited parameter combination. This 
variant was retained and further refined in subsequent 
generations. The number of evaluations per generation 
ranged from 34 to 43, reflecting the algorithm’s 
efficiency in managing population size—possibly via 
adaptive population-control mechanisms that deepen 
searches in promising regions. From generation 15 
onward, the maximum fitness stabilized around 0.847, 
signaling convergence to an optimal solution. Over time, 
the gap between average and best fitness values 
diminished—from 0.1338 initially to 0.1345 at 
generation 20—indicating population homogenization 
and reduced genetic diversity. Nevertheless, the modest 
continuing improvement in average fitness in later 
generations suggests ongoing fine-grained exploration 
of the search space. Overall, the GA implementation 
effectively leveraged evolutionary operators to identify 
high-quality solutions while avoiding local optima 
gradually. 

  
Fig. 6. Evolutionary trend of maximum fitness across 

generations of the Genetic Algorithm for the SVM model 
 

 The final optimized parameters reached were C=12.5 
and γ=0.01. The confusion matrix and performance 
results are shown in Fig. 7 and Table 4.  

  

 
Fig. 7. Confusion Matrix for the SVM Model 

 
Table 4. Performance Evaluation Metrics of the SVM Classifier 

Sensitivity Accuracy Class Model 
0.77 0.89 Stability 

SVM 
0.88 0.76 Failure 

 

 
Table 3. Progression of mean and optimal fitness values over GA generations (SVM model) 

Generation 
(gen) 

Evaluations 
(nevals) 

Average 
Fitness (avg) 

Maximum 
Fitness (max) 

Generation 
(gen) 

Evaluations 
(nevals) 

Average 
Fitness (avg) 

Maximum 
Fitness (max) 

0 50 0.699947 0.833797 11 38 0.708902 0.846228 
1 40 0.703025 0.833797 12 40 0.707368 0.847159 
2 38 0.70514 0.833797 13 40 0.706324 0.847159 
3 39 0.708114 0.830728 14 34 0.706736 0.847159 
4 43 0.705524 0.830728 15 37 0.711051 0.847159 
5 41 0.705038 0.830471 16 42 0.711108 0.847159 
6 43 0.707131 0.82766 17 38 0.709795 0.846636 
7 34 0.709932 0.829321 18 34 0.710476 0.846636 
8 40 0.706877 0.845896 19 41 0.712082 0.846636 
9 39 0.707192 0.84291 20 39 0.711791 0.846636 

10 43 0.707144 0.846228 
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The ROC curve demonstrates an AUC of 0.92 (Fig. 8), 
indicating strong discriminatory performance between 
classes. 

  

 
Fig. 8. ROC Curve and AUC Value for the SVM Model 

  

B. Random Forest Modeling 

For Random Forest modeling, primary 
hyperparameters—number of trees, maximum depth, 
and minimum samples per split—were optimized using 
GA within defined search ranges: 50–200 trees, depth 3–
20, and minimum split samples 2–10. The search ranges 
for the Random Forest hyperparameters were selected 
based on prior literature and initial experiments. 
Specifically, the number of trees (50–200) offers a 
practical balance between model accuracy and 
computational cost, as values beyond this range tend to 
increase runtime with minimal performance gain. The 
maximum tree depth (3 to 20) covers both shallow and 
relatively deep trees to prevent overfitting while 
capturing data complexity. The minimum number of 
samples per split (2–10) is widely used to regulate tree 
growth and improve generalization. These ranges 
ensure effective exploration during optimization while 
maintaining reasonable computational efficiency. This 
time, the fitness function was based on the F1-score to 
balance precision and recall. The optimization trend 
presented in Table 5 (Fig. 9) spans 21 generations. 
Initially (generation 0), the average fitness was 
0.868824 with a maximum of 0.913117, suggesting a 

high-quality initial population. From generations 1–5, 
average fitness improved gradually from 0.869686 to 
0.871378, showcasing effective GA operations. Peak 
fitness reached 0.915419 at generation 4 and remained 
stable in the 0.910–0.915 range thereafter. The 
consistency of top performers highlights the GA’s ability 
to preserve high-quality parameter combinations. 
Middle generations (6–10) saw average fitness oscillate 
between 0.868986 and 0.871233, reflecting maintained 
population diversity. Evaluations per generation varied 
between 25 and 46, indicating the presence of adaptive 
search strategies. In later generations (11–20), average 
fitness settled between 0.866457 and 0.867799—a 
slight decline likely due to mechanisms preserving 
diversity—while maximum fitness remained above 0.91, 
illustrating retention of high-performing solutions. The 
relatively stable gap (~0.0443) between average and 
best fitness, from generation 0 to 20, suggests gradual 
convergence—a pattern atypical in many GA 
optimizations, perhaps due to the peculiarities of this 
search space. Overall, the GA successfully uncovered and 
preserved high-quality parameter combinations, with 
consistent maximum fitness levels across all 21 
generations, indicating strong identification of near-
optimal solutions.  

Consequently, the optimized parameters were 
determined to be 150 trees, maximum depth 10, and 
minimum split samples of 4. The resulting confusion 
matrix and performance metrics, compared to SVM, are 
shown in Fig. 10 and Table 6, indicating superior 
performance. 

 

 
Fig. 6. Evolutionary trend of maximum fitness across 

generations of the Genetic Algorithm for the RF model 
 

Table 3. Progression of mean and optimal fitness values over GA generations (RF model) 
Generation 

(gen) 
Evaluations 

(nevals) 
Average 

Fitness (avg) 
Maximum 

Fitness (max) 
Generation 

(gen) 
Evaluations 

(nevals) 
Average 

Fitness (avg) 
Maximum 

Fitness (max) 
0 50 0.868824 0.913117 11 38 0.867400 0.912377 
1 34 0.869686 0.911541 12 40 0.867429 0.911155 
2 25 0.870766 0.911760 13 42 0.866612 0.910704 
3 40 0.870110 0.909841 14 38 0.867621 0.913319 
4 37 0.870954 0.915419 15 34 0.866457 0.912691 
5 35 0.871357 0.912498 16 39 0.867539 0.914193 
6 40 0.870477 0.912498 17 30 0.867748 0.914193 
7 37 0.870867 0.912818 18 38 0.867799 0.914218 
8 38 0.870233 0.914396 19 38 0.867181 0.912460 
9 42 0.868986 0.912507 20 41 0.867522 0.911819 

10 46 0.869928 0.913398 
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Fig. 7. Confusion Matrix for the RF Model 

 
Table 4. Performance Evaluation Metrics of the RF Classifier 

Sensitivity Accuracy Class Model 
0.86 0.89 Stability 

RF 
0.87 0.83 Failure 

  
 The ROC curve calculated an AUC of 0.94 (Fig. 11), 

representing an approximately 2% improvement over 
the SVM model, particularly excelling in classifying 
minority class instances. 

  

 
Fig. 11. ROC Curve and AUC Value for the RF Model 

 
A key insight from the RF model in this study is the 

analysis of feature importance in predicting the stability 
of open-pit mine slopes (Fig. 12). This analysis identifies 
the contribution of each geotechnical and geometric 
parameter to model performance, guiding practitioners 
on which variables to emphasize during slope design, 
analysis, and stabilization efforts. According to the RF 
results, the unit weight of materials had the highest 
importance (0.25), indicating its dominant role in slope 
behavior. A higher unit weight increases the 
gravitational driving force, thereby elevating the 
potential for sliding if shear resistance is insufficient. 
Cohesion, with a relative importance of 0.21, ranks 
second and is a key component of shear strength in the 

Mohr–Coulomb model. Lower cohesion, especially in 
fine-grained or weathered materials, significantly 
reduces the factor of safety and increases failure risk. 
The internal friction angle, with an importance of 0.175, 
is ranked third; this parameter measures the material’s 
resistance to frictional sliding and is particularly 
significant in granular or fractured rock with filled joints. 
Slope height carried a similar weight (0.17), illustrating 
its effect on increasing vertical and shear stress at the 
slope base, thereby promoting deep-seated failure. The 
slope angle, with a relative importance of 0.14, also plays 
a crucial but less dominant role compared to height—
reflecting the complex interplay between geometry and 
material strength. Finally, the pore pressure ratio, with 
the lowest importance value of 0.11, contributed the 
least among the evaluated factors. However, under 
conditions such as localized saturation, heavy rainfall, or 
seepage, pore pressure can increase abruptly and 
critically affect slope stability. Therefore, its lower 
importance in this model likely reflects the relatively dry 
or semi-arid conditions of the data used, rather than 
indicating negligible practical relevance. 

In summary, this analysis demonstrates that among 
various factors influencing open-pit mine slope stability, 
the physical and strength-related properties of the 
materials—namely unit weight, cohesion, and internal 
friction angle—are the most significant drivers of slope 
behavior. 

  

 
Fig. 12. Feature Importance Derived from the RF Model 

VI. DISCUSSION 

The evaluation results of the two genetic algorithm–
optimized machine learning models—Support Vector 
Machine (SVM) and Random Forest (RF)—demonstrate 
significant differences in their performance for 
classifying slope stability and shear failure events. The 
Area Under the ROC Curve (AUC), indicative of each 
model’s discriminative ability, is 0.93 for the RF model 
compared to 0.86 for the SVM. This 0.07 (approximately 
8%) difference clearly indicates the RF model’s superior 
capacity to distinguish between the two classes. A class-
level analysis further elucidates these performance 
differences. In the stable slope class, both models 
achieve an equal precision of 0.89. However, RF’s 
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sensitivity is 0.86—substantially higher than SVM’s 
0.77—indicating that RF is more adept at correctly 
identifying stable cases and less prone to type II errors. 
In other words, RF is less likely to misclassify genuinely 
stable slopes as failures. Conversely, in the failure class, 
both models show similar sensitivity (RF: 0.87, SVM: 
0.88), but RF attains higher precision (0.83 vs. 0.76). This 
demonstrates RF’s superior ability to reduce false 
positives, thereby minimizing instances where stable 
slopes are wrongly labeled as failure risks. The overall 
superiority of RF can be attributed to its inherent 
ensemble structure, which aggregates multiple decision 
trees to reduce variance, guard against overfitting, and 
better capture complex relationships among variables. 
Such capabilities are particularly crucial in modeling 
phenomena influenced by heterogeneous factors—like 
shear failure prediction. It is noteworthy that optimizing 
parameters using genetic algorithms improved both 
models. Nevertheless, RF's architecture seems more 
amenable to effective optimization, resulting in superior 
final performance in terms of generalizable accuracy and 
precision. From a practical standpoint, these optimized 
models hold significant value for engineering decision-
making and structural health monitoring systems. 
Reducing both false positives and false negatives not 
only increases predictive accuracy but also has direct 
implications for operational efficiency, cost reduction, 
and safety enhancement. RF’s balanced performance in 
precision, recall, and specificity makes it particularly 
valuable in real-world contexts. 

In the stable class, RF’s higher sensitivity (0.86 vs. 
SVM’s 0.77) means fewer cases of wrongly flagging 
stable slopes as failures—an important advantage for 
engineering applications such as infrastructure, mining, 
deep excavation, and rock slope monitoring. Correct 
classification avoids unnecessary stabilization measures 
(e.g., injections, rock bolts, costly retaining structures), 
thereby saving resources and time. In early-warning 
systems, minimizing such errors increases user trust and 
reduces alarm fatigue. In the failure class, RF’s higher 
precision (0.83 vs. SVM’s 0.76) reduces false alarms, 
limiting unwarranted operational interruptions, 
planning disruptions, resource waste, and cost overruns. 
When critical decisions—such as site evacuation, work 
stoppage, or emergency stabilization—depend on model 
outputs, minimization of such errors directly improves 
operational efficiency and lowers risk. Moreover, RF's 
robustness positions it well for integration into 
advanced decision-support systems. Coupled with real-
time sensor inputs (e.g., pore pressure, displacement, 
vibration data), remote sensing outputs, or imagery, RF 
can be embedded into intelligent monitoring platforms, 
early-warning systems, and geotechnical risk analysis 
tools. In design phases, the model can also be used to 
simulate behavioral scenarios for rock masses and 
perform sensitivity analyses of geotechnical parameters, 
providing deeper insights into potential stability issues. 

In summary, the GA-optimized Random Forest model 
not only demonstrates superior laboratory and 
analytical performance compared to SVM but, given its 
practical advantages, offers a reliable and precise 
decision-support tool for slope stability management, 
failure risk analysis, and crisis prediction. 

VII. CONCLUSIONS 

This research establishes that using machine learning, 
particularly models optimized via genetic algorithms, 
can profoundly enhance the analysis of open-pit mine 
wall stability. Comparison of two widely used classifiers, 
SVM and RF, reveals that the RF model—optimized with 
GA—delivers higher accuracy, sensitivity, and 
specificity, with powerful performance in detecting both 
stable and failing conditions. These advantages are 
critical in operational mining scenarios, where 
interventions, shutdowns, or stabilization measures 
depend on model outputs. Additionally, employing 
genetic algorithms for hyperparameter tuning not only 
improves model accuracy but also enhances robustness 
and real-world generalizability. Practically, this 
framework can serve as a precise and trustworthy 
decision-support mechanism in monitoring systems, 
early-warning platforms, and slope design and 
optimization tasks across mining project stages. 
Ultimately, this study emphasizes the necessity of 
transitioning from traditional, simplified geotechnical 
methods to intelligent, data-driven models. Considering 
the increasing complexity of deep mines and the 
evolving capabilities of data collection technologies, 
integrating advanced machine learning with detailed 
field and lab data can unlock new horizons for intelligent 
risk management in mining. Accordingly, it is 
recommended that mining design and operations 
officially adopt these innovative tools to elevate safety, 
productivity, and operational stability. 

Recommendations for Future Research 
1. Expanding the dataset across diverse geological 

and geographic conditions to enhance model 
generalizability. 

2. Exploring deep learning algorithms, particularly 
when complex data like images or time series are 
available. 

3. Integrating topographic and satellite imagery 
within AI models. 

4. Fusing numerical geotechnical data with radar, 
LiDAR, or satellite inputs to develop hybrid models that 
detect progressive slope changes for early-warning 
systems. 

5. Live implementation of decision-support 
systems, using real-time sensors to monitor slope 
stability and issue alerts when needed. 

6. Comparative studies of optimization methods, 
exploring alternatives such as Particle Swarm 
Optimization, Imperialist Competitive Algorithm, and 
Bat Algorithm for hyperparameter tuning. 
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7. Extending models to temporal forecasting, 
aiming to predict not just current status but future 
stability trends for proactive risk management. 

Given the rising importance of mine safety and the 
promise of machine learning in geotechnical analysis, 
future studies that expand and implement these 
innovative methodologies in real-world settings can 
significantly advance mining operational safety and 
efficiency. 
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