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ABSTRACT 

The mechanical behaviors of sands exhibit nonlinear stress-strain relationships under applied loads, involving a complex 
interaction between volumetric and deviatoric responses. An accurate understanding of constitutive behaviors is crucial for 
predicting how sand responds under various loading conditions. However, laboratory investigations of sand behavior under 
monotonic loading are challenging due to the intricate nature of stress-strain responses. Moreover, traditional constitutive 
models are often time-consuming, computationally intensive, and require extensive calibration. Machine learning (ML) 
techniques provide a promising alternative by learning patterns and trends from experimental or modeled data. In this study, 
three ML methods, namely Decision Trees (DT), K-Nearest Neighbors (KNN), and Random Forests (RF), were employed to 
evaluate the constitutive behaviors of Toyoura sand under drained and undrained triaxial compression monotonic loadings. 
The models’ performance was assessed using R2, Mean Absolute Deviation (MAD), and Root Mean Square Error (RMSE). In this 
context, "high accuracy" refers to R² values close to 1, coupled with low MAD and RMSE values, indicating a strong correlation 
between predicted and actual responses. Under drained conditions, the ML models achieved high accuracy across varying 
initial void ratios, with R2 values up to 0.9992 for volumetric strain and 0.9980 for deviatoric stress, along with minimal 
prediction errors and zero training-phase error, reflecting a perfect model fit. Among the models, KNN demonstrated superior 
performance in most drained cases, likely due to its effectiveness in capturing local nonlinear trends within the dataset. Under 
undrained conditions and across a wide range of confining pressures (Pc = 100–2000 kPa), the ML models maintained robust 
predictive capability. High R2 values (up to 0.9998) and low error metrics confirmed the models’ reliability, showing excellent 
agreement with training data. These findings validate the efficacy of ML algorithms in accurately modeling complex mechanical 
behaviors, including deviatoric and volumetric responses under different confining pressures and initial void ratios. 
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I. INTRODUCTION 

The mechanical behaviors of sands show nonlinear 
stress-strain relationships under monotonic loadings 
with a complex interplay between volumetric and 
deviatoric responses. Critical state conditions emerge in 
these granular materials only after significant shearing 
occurs (usually when the axial strain exceeds 10%) (Liu 
et al., 2022; Tarhouni & Amer, 2021). An accurate 
understanding of constitutive behaviors is paramount 
for predicting how sand will behave under different 
loading conditions. This understanding is crucial for 
designing structures like foundations and retaining 
walls, where accurate estimations of sand behavior 
under mechanical loads can prevent structural failures, 
and also for analysis of other geotechnical research 
topics, including seismic analysis of earth structures and 
buried pipeline stability (Latini et al., 2017; Tarhouni & 
Amer, 2021). To optimize structural safety factors, the 
industry needs an accurate prediction of sand response 

under various stress paths. Current design practices 
focus mainly on laboratory testing techniques, such as 
triaxial compression tests, which demand accurate 
control of strain rates and drainage conditions to 
maintain specimen integrity during the tests (Liu et al., 
2022; Tarhouni & Amer, 2021). However, laboratory 
measurements face inherent challenges in replicating 
in-situ fabric conditions and scaling effects (Latini et al., 
2017). Moreover, laboratory characterization of sand 
behavior under monotonic loadings is also challenging 
due to the complex nature of sand's response to stress, 
which involves both deviator strain and volumetric 
strain (De Silva & Koseki, 2012). Constitutive models 
assist us in predicting the behavior of sand under 
monotonic loading. These models are employed in the 
construction of infrastructure like bridges and 
foundations, where understanding sand behavior under 
applied loads is critical for stability issues (De Silva & 
Koseki, 2012; Sassel & O’Sullivan, 2024). While 
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traditional constitutive models provide a foundation for 
understanding sand behavior, they often need extensive 
calibration and may not capture all the complexities of 
sand's response. Furthermore, critical state-based 
constitutive models are complicated because accurately 
capturing the non-linear and path-dependent behavior 
of sand requires sophisticated models with numerous 
material parameters (Yeh et al., 2023). Besides, critical 
state-based constitutive models may have limitations in 
capturing the complex nature of sand behavior, 
especially under complex loading conditions. They may 
not be able to represent the anisotropic elastic response 
and the influence of intermediate principal stresses. 
This is because they usually assume simplified isotropic 
elasticity and do not consider the intermediate principal 
stress in the definition of the yield function. The 
accuracy of the predictions of these constitutive models 
also depends on the type of model parameters and their 
calibration. The accurate determination of these 
material parameters might be challenging and require 
adequate experimental data. The development of more 
sophisticated critical state constitutive models tailored 
for more complex loading conditions requires a more 
profound understanding of critical state soil mechanics 
and involves increasing mathematical and numerical 
complexities. Machine learning (ML) techniques offer a 
great solution to overcoming these limitations through 
data-driven pattern recognition. ML techniques offer a 
promising approach to modeling sand behavior by 
learning from the pattern and trend of existing 
experimental/constitutive modeling data. These models 
can improve prediction accuracy and reduce the need 
for extensive parameter calibration (Najjar & Zhang, 
2000; Su et al., 2023). Unlike conventional plasticity 
models, ML methods bypass restrictive assumptions 
regarding hardening laws and flow rules by directly 
learning from the existing databases (Chen et al., 2021) . 

Kohestani and Hassanlourad (2016) discussed the 
modeling of the mechanical behavior of carbonate sands 
using ML techniques, specifically support vector 
machines (SVMs) and artificial neural networks (ANNs). 
They highlighted the unusual characteristics of 
carbonate sands, such as particle crushability and 
compressibility, which distinguish them from other soil 
types. The study compared the performance of these ML 
models in predicting the mechanical behavior of various 
carbonate sands, utilizing a comprehensive database of 
triaxial test results. The findings indicated that both 
methods are reliable for representing the mechanical 
behavior of carbonate sands . 

Gao (2018) presented a comprehensive review of 
the identification of geomaterial constitutive models 
using computational intelligence methods. The review 
was organized into four key aspects: the approach, 
description, selection, and construction of constitutive 
models by ANNs and evolutionary computation. The 
study reported that challenges presented by the 

complexity and numerous parameters of traditional 
models highlight the importance of developing models 
that effectively describe real engineering behaviors 
through back analysis. The document also discussed the 
advantages and disadvantages of current research 
directions and suggested future research to focus on 
identifying a geomaterial constitutive model based on 
computational intelligence. Pouragha et al. (2020) 
explored the integration of artificial intelligence (AI) in 
geotechnical studies and the modeling of geomaterials. 
They addressed the fundamental questions concerning 
the capability of AI-generated models to represent the 
constitutive behavior of geomaterials. The authors 
emphasized the importance of understanding the long-
term impacts of AI in geomechanics and the potential 
shifts in theoretical constitutive modeling. Zhang et al. 
(2021) discussed the ability of ML to learn from raw 
data and offered a detailed comparison of different ML 
algorithms in predicting and modeling soil behaviors. 
This review paper highlighted the principles of various 
ML algorithms, their characteristics, limitations, and 
methodologies in constructing ML-based soil 
constitutive models. The findings indicated that long 
short-term memory (LSTM) networks and their variants 
are particularly effective for this purpose . 

Zhang et al. (2022) discussed the establishment of a 
constitutive model for sand under monotonic loading 
using SVM technology. They explained the complexity of 
sand's deformation mechanisms, especially under 
varying stress paths, and how traditional mathematical 
models may not capture the responses adequately. The 
authors conducted triaxial tests on Fujian sand to gather 
data, which was then employed to train SVM models 
using different optimization algorithms. The study 
found that incorporating PSO (particle swarm 
optimization) and GWO (grey wolf optimization) 
algorithms in the SVM model offers better predictions 
for the deformation modulus of sand, with GWO-SVM 
being the most effective under monotonic loading 
conditions. Wu and Wang (2022) presented a novel 
approach to constitutive modeling of natural sands by 
incorporating the effects of particle shape using deep 
learning techniques. Traditional methods often 
overlook these effects, leading to limitations in 
understanding granular material behavior. An LSTM 
network, a type of deep learning model, was developed 
to analyze how particle shape, confining pressure, and 
initial sample density affect the constitutive behavior of 
the sands. The effectiveness of this model was validated 
through comparisons with numerical simulation results 
and triaxial test data. Eghbalian et al. (2023) presented 
a physics-informed deep neural network architecture 
developed for surrogate modeling in classical elasto-
plasticity, termed the Elasto-Plastic Neural Network 
(EPNN). This model incorporates essential physics 
aspects, facilitating efficient network training with 
reduced data while enhancing extrapolation 
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capabilities. The EPNN was adaptable to various 
elastoplastic materials, including sand. Zhang et al. 
(2023)  discussed the application of ML in the 
constitutive modeling of sand and clay, focusing on 
improving interpretability and reducing dependency on 
large datasets. They proposed a data-driven approach 
that incorporates established theoretical knowledge 
and uncertainty in predictions. The study evaluated the 
performance of pure and physics-constrained data-
driven models, highlighting the efficacy of the latter in 
predicting soil behavior, especially in cases with sparse 
data. Guan and Yang (2023) presented a novel hybrid 
deep learning model designed to predict the monotonic 
and cyclic responses of sand under various loading 
conditions. They utilized LSTM and temporal 
convolutional networks (TCN). The study involved 
analyzing a synthetic dataset generated by a 
constitutive model to determine the optimal 
arrangement of LSTM and TCN layers, comparing the 
performance of the hybrid model against individual 
LSTM and TCN models. Results demonstrated the 
superior predictive performance of the hybrid model, 
achieving high accuracy in replicating the constitutive 
responses of sand under both monotonic and cyclic 
loading. Wu et al. (2023) discussed an ML framework for 
predicting the stress-strain behavior and shear-induced 
contact fabric evolution of granular materials during 
triaxial shearing tests. They emphasized the use of a 
multi-layer perceptron (MLP) neural network that 
requires only the initial void ratio of the granular 
sample as input to predict its constitutive response. 
Their findings suggested that ML-based constitutive 
modeling can effectively capture the behavior of 
granular materials. Dornheim et al. (2024) focused on 
the application of neural networks in constitutive 
modeling. They outlined the evolution of constitutive 
models from traditional physics-based approaches to 
advanced ML methods, with a particular emphasis on 
the capabilities of neural networks. The authors 
highlighted the advantages of ML techniques in 
performing rapid numerical simulations compared to 
more complex physics-based models. Wang et al. (2024) 
provided a comprehensive overview of the applications 
of ML in the study of granular materials. They detailed 
various ML methods, particularly neural networks, and 
their effectiveness in modeling the constitutive behavior 
of granular materials. Eidgahee and Shiri (2024) 
discussed the modeling of the stress-strain behavior of 
frozen sandy soil using ML techniques, specifically 
ANNs. A comprehensive database from triaxial tests was 
created to train the ANN models on the relationships 
between deviatoric stresses, volumetric strains, and key 
variables such as temperature and confining pressure. 
The findings suggested that the models can predict the 
stress-strain behavior of frozen soil with significant 
accuracy. Noor et al. (2025) presented a study on a 
recursive Bayesian neural network (rBNN) framework 

designed for the constitutive modeling of sands under 
monotonic loading. They highlighted the importance of 
data-driven deep learning models in creating predictive 
constitutive models. Validation of the proposed 
framework was conducted using two datasets, 
demonstrating its capability to provide robust 
predictions. Yao et al. (2025) presented a study on a 
short-sequence ML framework designed for predicting 
the constitutive relationships of sand. They reported 
that classical numerical methods face challenges with 
complex material behavior and iterative processes. The 
study highlighted the effectiveness of the full sequence 
strategy using MLP and LSTM models . 

In summary, the review of relevant literature 
indicates that a notable surge has occurred in the 
application of ML for sand constitutive modeling since 
2020. This is because ML techniques offer a promising 
approach to modeling sand behavior by learning from 
existing experimental/modeling data and capturing 
complex patterns. These models reduce the need for 
extensive calibration of material parameters. To 
replicate the constitutive behaviors of Toyoura sand 
under triaxial compression monotonic loadings, we 
initially employed a well-established critical state 
constitutive model (Imam, 1999; Imam et al. 2005) and 
re-validated the constitutive model based on existing 
experimental observations of Toyoura sand. ML 
techniques have not been applied to the critical state 
constitutive model mentioned above. In this research, 
we focused on predicting Toyoura sand behavior under 
monotonic loadings by applying three different ML 
techniques to the numerical predictions of the 
aforementioned constitutive model. We adopted four 
inputs (namely axial strain, void ratio, critical state void 
ratio, and dilatancy rate) generated using the validated 
critical state constitutive model to estimate the deviator 
and volumetric behaviors of Toyoura sand. We utilized 
different ML methods to achieve this goal and to address 
the constitutive behaviors of Toyoura sand under 
triaxial drained and undrained compression monotonic 
loadings. 

II. CONSTITUTIVE MODELING 

The critical state constitutive model developed by 
Imam (1999) and Imam et al. (2005) was initially 
adopted in this research. To ensure that the numerical 
results generated by this critical state constitutive 
modeling are valid and correct, the constitutive 
modeling was implemented numerically, and the 
consistency condition was satisfied for all strain 
increments. To avoid excessive lengthening of the 
manuscript, the reader is referred to Imam et al. (2005)  
for full details of the constitutive model, including 
elasticity, yield function, stress-dilatancy relationship, 
hardening law, stress-strain relationships, and 
calibration procedure. A single set of material 
parameters was used in all predictions made by the 
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constitutive model. Table 1 presents the values assigned 
for the model parameters in this study. Experimental 
data points were extracted from Imam et. al. (2005). 

In Table 1, 𝜑𝜇  is almost equal to the interparticle 

friction angle, 𝜑𝑐𝑠  is the critical state friction angle, 𝐺𝑎  
and 𝐾𝑎  are reference elastic moduli, 𝑒𝑐𝑠 is the critical 
state void ratio, 𝑝 is the mean effective normal stress, 

and the other parameters are constitutive model 
parameters.  

Fig. 1 shows experimental observations and 
constitutive modeling results for Toyoura sand under 
drained triaxial compression loadings. The laboratory 
data have been obtained under three different initial 
void ratios (e=0.81, e=0.886, and e=0.96) and a constant 
confining pressure (Pc=500 kPa). As observed, there are 
perfect agreements between experimental observations 
and constitutive modeling results in all cases. This re-
confirms the validity of the constitutive model 
developed by Imam (1999) and Imam et al. (2005). Figs. 
2-3 exhibit experimental and constitutive modeling 

results for Toyoura sand under undrained triaxial 
compression loadings. The laboratory data have been 
acquired under two different initial void ratios (e=0.735 
and e=0.833) and three confining pressures (Pc=100 
kPa, Pc=1000 kPa, and Pc=2000 kPa). The comparison 
between experimental and modeling results suggests 
the great capability of the constitutive model, and it once 
again verifies the validity of the proposed constitutive 
model.  

Since a continuous and incremental record of 
experimental data is not usually publicly available to 
researchers, using data from a constitutive model whose 
validity has already been verified is an alternative way 
of applying data-driven approaches for engineering 
purposes. In the following sections, the data generated 
through the validated constitutive model are employed 
to predict Toyoura sand behaviors under drained and 
undrained triaxial compression loadings. 
 

 

 
Table 1. Material parameters and their values assigned in the constitutive modeling adopted in the current study 

𝑘𝑝 𝜑𝜇 𝑎𝑝 𝜑𝑐𝑠 𝑘𝑃𝑇 𝑎𝑃𝑇 𝐺𝑎 𝐾𝑎  ℎ 𝐶 𝑘𝑓  𝑒𝑐𝑠 

1.2 21 0.18 31 1.25 0.15 8e6 8.5e6 1 6e-3 0.75 
−0.0063477𝑝3 + 0.0367𝑝2

− 0.11991𝑝
+ 0.92548 (𝑝 𝑖𝑛 𝑀𝑝𝑎) 

 

 

 
Fig. 1. Laboratory observations and predicted deviator and volumetric behaviors by constitutive modeling for Toyoura 

sand under drained triaxial compression loadings  
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Fig. 2 Laboratory observations and predicted deviator stress vs. axial strain and deviator stress vs. mean 
effective normal stress by constitutive modeling for Toyoura sand under undrained triaxial compression 

loadings (initial void ratio=0.735) 

 

 
Fig. 3 Laboratory observations and predicted deviator stress vs. axial strain and deviator stress vs. mean effective 

normal stress by constitutive modeling for Toyoura sand under undrained triaxial compression loadings (initial void 
ratio=0.833) 
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III. METHODOLOGY 

A. Data Collection and Processing 

The dataset employed in this study comprises a set of 
key parameters associated with the constitutive 
behaviors of the Toyoura sand samples extracted from 
the constitutive modeling validated above. These 
parameters include axial strain (ea), void ratio (e), 
critical state void ratio (ecs), dilatancy rate (d), deviator 
stress (q), volumetric strain (ev), and mean effective 
normal stress (p). These parameters play a crucial role 
in analyzing the mechanical behavior of sands, and 
hence,  they have been selected as influential 
parameters in ML analyses. The value of axial strain is of 
paramount importance in strain-control physical or 
numerical tests, making its consideration essential in 
ML studies. The value of the void ratio and its 
relationship with the corresponding critical state void 
ratio, which determines the values of the state 
parameter in conventional critical state models, 
suggests whether the sand is on the loose/wet side or 
the dense/dry side of the critical state line. This directly 
affects the deviatoric and volumetric responses of sands 
tested under a given confining pressure. Therefore, 
considering these parameters as influential parameters 
on the mechanical behaviors of sands is logical. The 
value of the dilatancy rate (d) determines whether the 
sand is under compression or dilation. Besides, the 
change in the sign of d (namely a zero value for d) 
dictates a temporary steady state, which is called phase 
transformation and it is a critical parameter in the sand 
constitutive behavior. Thus, it is rational to take 
parameter d into account during ML analysis. 
The collected data were subjected to comprehensive 
statistical and quantitative preprocessing procedures. 
This included conducting correlation analysis to identify 
the relationships between variables, performing 
sensitivity analysis to determine the influence of each 
parameter, and carrying out thorough evaluation and 
validation processes to ensure data reliability and 
robustness. Following the preprocessing phase, various 
ML models were developed and applied to both training 
and testing datasets. The performance of these models 
was systematically evaluated based on appropriate 
metrics to determine their predictive capabilities and 
generalization potential. A detailed summary of the 
statistical analyses and model evaluation results is 
provided in Table 2. 

In addition to standard descriptive statistics, 
skewness and kurtosis values were examined to assess 
the distribution characteristics of the dataset. Skewness 
provides insight into the asymmetry of the data, while 
kurtosis reflects the presence of outliers or extreme 
values through the "tailedness" of the distribution. High 
skewness may indicate the presence of bias in certain 
input features, which can affect the sensitivity of ML 
models, particularly distance-based algorithms like 

KNN. Similarly, high kurtosis can suggest the presence 
of heavy tails or outliers, which may influence models 
such as decision trees or random forests, potentially 
leading to overfitting or decreased generalization (See 
Table 2). Recognizing these distribution properties 
helped guide the preprocessing stage and informed the 
selection and tuning of ML algorithms to ensure 
robustness and accuracy. 

B. ML Methods 

The model outputs correspond to q and ev (drained 
tests) and q and p' (undrained tests), and reflect the 
results derived from analyzing and processing the input 
parameters within the proposed framework. To 
examine the influence of each input parameter on the 
target output, their variations concerning the output are 
illustrated in Fig. 4 according to the constitutive 
modeling results. This figure aids in a better 
understanding of the relationships between model 
variables and demonstrates how the system responds to 
changes in different parameters. In the subsequent 
sections of this study, a brief description of the 
algorithms employed will be provided to familiarize 
readers with the methodologies applied in the modeling 
process. These explanations will serve as a foundation 
for a deeper comprehension of the model's performance 
and the validity of the obtained results. 

The selection of DT, KNN, and RF in this study was 
motivated by their complementary strengths in 
modeling nonlinear relationships and handling complex 
datasets. DT offers high interpretability and is capable 
of capturing nonlinear patterns with a simple tree-
based structure. KNN is a non-parametric method that 
performs well in capturing local relationships without 
making strong assumptions about the underlying data 
distribution. RF, as an ensemble method, combines 
multiple decision trees to enhance prediction accuracy 
and reduce overfitting. These algorithms were chosen 
due to their proven effectiveness in regression tasks, 
their adaptability to various data characteristics, and 
their relatively low requirement for parameter tuning 
compared to more complex ML models such as deep 
neural networks. 

 
1) Decision Tree (DT) 

The Decision Tree (DT) algorithm is widely 
recognized in ML for its effectiveness in both 
classification and regression tasks. It operates as a 
predictive model that systematically partitions data into 
subsets based on feature values. The process begins by 
selecting a feature to divide the dataset, aiming to create 
the most informative split possible. At each decision 
node, a single feature is chosen to separate the data into 
two or more branches, to maximize the purity of the 
resulting groups (De Ville, 2013). 
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Drained 

  
Undrained (e=0.735) 

  
Undrained (e=0.833) 

  
Fig. 4. Constitutive Responses/Behaviors Used as References for Developing ML Models 

This selection is guided by a cost function or splitting 
criterion that assesses the quality of each potential split. 
Commonly used criteria include Entropy, which is 
typically applied in classification problems, and the Gini 
Index, often used in regression. The tree continues to 
split the data recursively until it satisfies certain 
stopping conditions—such as all samples in a node 
belonging to the same class, reaching a predefined 
maximum depth, or exhausting all available features. 

To assess the effectiveness of each split, the DT 
algorithm relies on metrics like Entropy and the Gini 
Index. Entropy quantifies the amount of uncertainty or 
randomness in the dataset, and the goal during training 

is to reduce entropy as much as possible with each split, 
leading to clearer, more accurate decision paths. The 
formula for calculating entropy is as follows: 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑆) = − ∑ 𝑃𝑖 log2(𝑃𝑖)

𝑘

𝑖=1

 (1) 

Where 𝑃𝑖  is the probability of a data point belonging 
to class 𝑖, and 𝑘 is the number of classes. Conversely, the 

Gini Index evaluates the "impurity" of the data during 
the splitting process. The formula for calculating the 
Gini Index is as follows: 

 

𝐺𝑖𝑛𝑖(𝑆) = 1 − ∑ 𝑃𝑖
2𝑘

𝑖=1                                                       (2) 
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Where 𝑃𝑖  is the probability of a data point belonging 

to class 𝑖, and 𝑘 is the number of classes. Furthermore, 

the Information Gain (IG) criterion is employed to 
identify the optimal feature for splitting. Information 
Gain measures the reduction in entropy resulting from 
the split, and its formula is: 

𝐼𝐺(𝑆, 𝐴) = 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑆) − ∑
|𝑆𝑣|

|𝑆|
. 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑆𝑣)

𝑣𝜖𝑉𝑎𝑙𝑢𝑒𝑠(𝐴)

 (3) 

Where 𝑆 is the dataset, 𝐴 is the selected feature for 
splitting, and 𝑆𝑣 represents the subsets of data that the 
feature 𝐴 divides. |𝑆𝑣| is the number of data points in the 
subset 𝑆𝑣 . Due to its simplicity and interpretability, DTs 

are widely recognized as one of the most popular 
algorithms in ML. 
 
2) K-Nearest Neighbors (KNN) 

The K-Nearest Neighbors (KNN) algorithm is a 
popular ML method utilized for both classification and 
regression tasks. As a non-parametric and instance-
based learning technique, KNN does not assume a 
predefined mathematical model for the data. Instead, it 
stores the training dataset and makes predictions by 
evaluating the similarity between data points (Peterson, 
2009). KNN is especially useful for problems with 
complex, nonlinear decision boundaries (Fig. 5). 

 

 
Fig. 5 KNN algorithm 

 

The KNN algorithm functions on the principle of 
similarity between data points. When making 
predictions for a new data point, the algorithm identifies 
the K nearest neighbors from the training dataset and 
assigns an output based on their values. The K value is a 
hyperparameter that significantly affects the model's 
performance. A smaller K results in a more flexible 
decision boundary, while a larger K creates a smoother 
decision boundary by incorporating a greater number of 
neighbors. 

To determine the nearest neighbors, KNN uses a 
distance metric. The Euclidean distance is the most 
commonly employed metric, which is calculated as: 

𝑑(𝑋𝑖 , 𝑋𝑗) = √ ∑ (𝑥𝑖,𝑚 − 𝑥𝑗,𝑚)
2

𝑛

𝑚=1

 (4) 

Where 𝑋𝑖  and 𝑋𝑗  are two data points, and 𝑛 is the 

number of features. Other distance metrics, such as 
Manhattan distance and Minkowski distance, may also 
be utilized based on the specific requirements of the 
problem. In a classification problem, KNN assigns a class 
label to a new data point based on the majority vote of 
its 𝐾 nearest neighbors. The predicted class �̂� is 

determined as: 

�̂� = arg 𝑚𝑎𝑥 ∑ 𝐼(𝑦𝑖 = 𝑐)

𝐾

𝑖=1

 (5) 

Where 𝑦𝑖  represents the class of the 𝑖 − 𝑡ℎ neighbor, 
and 𝐼(𝑦𝑖 = 𝑐) is an indicator function that equals 1 if 𝑦𝑖   
belongs to class 𝑐, and 0 otherwise. In certain situations, 

a weighted voting approach is applied, where closer 
neighbors have a greater influence on the decision-
making process. 

For regression tasks, KNN predicts the output by 
computing the average of the 𝐾 nearest neighbors’ 

values: 

�̂� =
1

𝐾
∑ 𝑦𝑖

𝐾

𝑖=1

 (6) 

Another approach is to use distance-weighted 
regression, where nearer neighbors have a larger 
influence on the final prediction. 

�̂� =

∑
𝑦𝑖

𝑑(𝑋, 𝑋𝑖)
𝐾
𝑖=1

∑
1

𝑑(𝑋, 𝑋𝑖)
𝐾
𝑖=1

 (7) 

Because KNN does not build an explicit model, it is 
commonly classified as a lazy learning algorithm. Rather 
than performing calculations during the training phase, 
it stores all training instances and computes distances 
only when making predictions. This method makes KNN 
very flexible but also computationally costly, 
particularly with large datasets. Despite its simplicity, 
KNN is still a popular algorithm in ML due to its capacity 
to manage nonlinear decision boundaries and its 
versatility in handling various types of data. 

 

3) Random Forest (RF) 

Random Forest (RF) is a widely used ML method 
recognized for its efficiency in classification and 
regression tasks, especially when working with large 
and intricate datasets. Its effectiveness in reducing 
variance and preventing overfitting has led to its broad 
adoption. RF is an ensemble learning technique that 
merges multiple decision trees (DTs), where each tree is 
trained independently on a random subset of the data 
(Rigatti, 2017). The final prediction is generated by 
averaging the outputs from these individual trees (Fig. 
6). 



 

165 
Vol 2, No. 3 / Autumn 2024 
 

 
Machine learning-based predictions for … 

 
Fig. 6. The RF algorithm 

 
The RF algorithm starts by generating random 

samples from the training dataset through bootstrap 
sampling (sampling with replacement). Each decision 
tree (DT) is trained on a distinct random subset of the 
data. To increase diversity among the trees, a random 
selection of features is made at each node. When making 
predictions, the results from all trees are combined. For 
classification tasks, the final prediction is determined by 
a majority vote, whereas for regression tasks, the 
predictions are averaged. 

In classification, the final prediction for a new sample 
𝑥 is computed using the following formula, where 𝑇1,
𝑇2, … , 𝑇𝑛 represent the decision trees and 𝐶1, 𝐶2, … ,
𝐶𝑛 are the possible classes: 

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 (𝑥) = arg 𝑚𝑎𝑥 (∑ 𝐼(𝑇𝑗(𝑥) = 𝐶𝑖)

𝑛

𝑗=1

) (8) 

Here, 𝐼 is an indicator function that equals 1 if 𝑇𝑗(𝑥) 

equals 𝐶𝑖  and 0 otherwise.  
For regression tasks, the final prediction for a new 
sample 𝑥 is calculated as the average of the predictions 
from all the decision trees: 

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 (𝑥) =
1

𝑛
∑ 𝑇𝑗(𝑥)

𝑛

𝑗=1

 (9) 

where 𝑇𝑗(𝑥) is the predicted value from the decision tree 

𝑇𝑗  for the sample 𝑥. 

 
4) Strengths and Limitations of Algorithms 

ML algorithms are powerful tools for analyzing large 
and complex datasets, enabling effective data 
processing and providing accurate and reliable results. 
These algorithms are capable of identifying patterns and 
relationships within the data, facilitating predictions 
and informed decision-making across various scientific 
and industrial fields. However, each algorithm comes 
with its own set of features, advantages, and limitations 
that need to be carefully considered. The subtle 
differences between algorithms highlight the 
importance of a thorough evaluation of their unique 
characteristics and constraints, which is crucial for 
making informed decisions when selecting and 
implementing the appropriate model. The advantages 
and disadvantages of the models used in this study are 

clearly outlined in Table 3, providing a better 
understanding of their capabilities and the challenges 
associated with their use.  

PSO is a population-based optimization algorithm 
inspired by the social behavior of birds flocking or fish 
schooling. Each individual in the population, called a 
particle, represents a potential solution. These particles 
explore the solution space by adjusting their positions 
based on their own experience and that of their 
neighbors. The algorithm updates the velocity and 
position of each particle to converge towards the global 
optimum. Due to its simplicity and efficiency, PSO is 
commonly used for optimizing hyperparameters in ML 
models and has been successfully applied in various 
geotechnical studies. 

IV. RESULTS AND DISCUSSION 

A. Data Division into Training and Testing Sets 

At the outset of this study, all input parameters were 
comprehensively collected and thoroughly analyzed to 
ensure the quality and adequacy of the initial dataset for 
subsequent processing. For the computational 
procedures, ML algorithms were selected and 
implemented in the MATLAB environment. After 
identifying and selecting the most relevant parameters, 
the input data were divided into two independent sets: 
one for training the models and the other for testing, to 
evaluate the performance of the algorithms. Finally, the 
accuracy and efficiency of each method were calculated, 
and the results were presented graphically through 
comparative charts to enable a more detailed analysis 
and interpretation. 

The random selection of input data based on 
predefined ratios for dataset partitioning can 
significantly influence the final accuracy of ML 
algorithms. To mitigate the potential effects of 
randomness in data splitting and to enhance the 
reliability of the results, each algorithm was evaluated 
through ten independent runs. In each run, the dataset 
was randomly divided, and the model's performance 
was assessed using the coefficient of determination (R2) 
as the evaluation metric. The average R2 values obtained 
from these ten repetitions were reported as the final 
results for each algorithm. This multi-run evaluation 
strategy ensures that the outcomes are stable, 
reproducible, and generalizable, thereby providing a 
dependable representation of the factual accuracy and 
performance of the algorithms. 

In this section of the study, various data percentages 
ranging from 10% to 80%, with a step size of 10%, were 
analyzed. These percentages serve as a key parameter 
in determining the training-to-testing data ratio during 
the data-splitting process in ML. The primary objective 
of this analysis is to assess the impact of different 
training-to-testing ratios on the performance of ML 
models and to optimize the training process 
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accordingly. This evaluation helps to understand better 
how the amount of training data influences prediction 
accuracy and model generalization. The findings can 
provide useful guidance for selecting an optimal data 
split ratio, ensuring sufficient data for learning while 
maintaining reliable evaluation capabilities. The 
corresponding numerical values and results are 
presented in Table 4. 

The primary criterion for selecting the final results in 
this study is based on the overall training/testing ratio 
(combined ratio). Accordingly, for each of the evaluated 
ML algorithms, the maximum value obtained for the 
performance metric (such as the coefficient of 
determination, R2) is identified and used as the basis for 
the final analysis. Subsequently, to enhance 
understanding and visualize the performance of these 
algorithms under optimal conditions, corresponding 
regression plots are generated. These plots, presented 
in Fig. 7, illustrate the relationship between the actual 
(modeling) and ML-predicted values, highlighting the 
models’ ability to reconstruct real data accurately. This 
approach provides a comprehensive view of the models' 
effectiveness across different scenarios and serves as a 

foundation for a more precise comparison of 
algorithmic performance. 

 
B. Performance of Each Method in the Training and 

Testing Phases 

The results obtained from the regression analyses 
and R² values are presented in graphical form, where 
the training set (Train), test set (Test), and their 
combined performance are simultaneously displayed. 
These plots clearly illustrate the model’s fit to the data 
and provide a visual representation of prediction 
accuracy. 

In this study, the regression equations have been 
specifically designed and implemented for analyzing 
and predicting the behavior of various systems. To 
achieve higher accuracy, diverse ML methods have been 
utilized, each of which has been able to simulate the 
complex relationships between inputs and outputs and 
provide precise predictions. These models are capable 
of generating accurate and corresponding outputs 
based on input data and can be effectively used in 
decision-making processes and optimization. 
 

 

Table 3. Strengths and Limitations of ML Algorithms 

Algorithm Strength Limitation 

DT 
 Simple to understand and explain 

 Capable of processing both numerical and categorical 
variables 

 Tends to overfit the data 

 Can be affected by minor fluctuations in the dataset 

KNN 
 Straightforward and easy-to-understand 

 Eliminates the need for a training phase 

 Requires significant computational resources at the 
prediction stage Susceptible to the influence of noisy data 

RF 
 Efficiently processes large volumes of data 

 Effectively resists overfitting tendencies 

 May lack interpretability 

 Requires significant computational resources 
 

Table 4. Final R2 Values for Each Layer Across ML Methods 
  Drained 
  e = 0.810, q e = 0.810, ev e = 0.886, q e = 0.886, ev  e = 0.960, q e = 0.960, ev 
 Precision DT KNN RF DT KNN RF DT KNN RF DT KNN RF DT KNN RF DT KNN RF 

T
es

t/
T

ra
in

 (
A

ll
) 

10-90% 0.9772 0.9980 0.9760 0.7359 0.7204 0.8692 0.9587 0.9978 0.9668 0.9582 0.9980 0.9313 0.9535 0.9970 0.9747 0.9733 0.9992 0.9655 
20-80% 0.3953 0.9562 0.8484 0.7448 0.7428 0.7416 0.8358 0.7456 0.8957 0.5401 0.8829 0.5143 0.9421 0.8905 0.8000 0.8497 0.9295 0.8928 
30-70% 0.1602 0.6007 0.9116 0.7441 0.7341 0.7489 0.9071 0.7124 0.9084 0.3157 0.6812 0.6268 0.9419 0.8938 0.7552 0.5468 0.6244 0.9574 
40-60% 0.4993 0.2434 0.7446 0.7430 0.7588 0.7441 0.6111 0.7560 0.8114 0.3778 0.5527 0.7070 0.9271 0.9412 0.9209 0.4570 0.5762 0.9597 
50-50% 0.4507 0.7856 0.8254 0.7562 0.7241 0.7557 0.8861 0.6501 0.8076 0.4064 0.5860 0.3770 0.9474 0.8618 0.3538 0.7780 0.7885 0.9598 
60-40% 0.6597 0.8954 0.9055 0.7125 0.7235 0.7694 0.9022 0.7224 0.8770 0.5694 0.8165 0.9081 0.9473 0.6482 0.8237 0.4454 0.8952 0.9598 
70-30% 0.5448 0.6315 0.6790 0.7530 0.7739 0.7408 0.8027 0.9345 0.8936 0.2819 0.5428 0.6794 0.9380 0.9015 0.7096 0.8918 0.8693 0.9599 
80-20% 0.4132 0.9034 0.9455 0.7891 0.9800 0.7991 0.9082 0.4769 0.3404 0.2668 0.7885 0.8548 0.9487 0.2824 0.7609 0.8688 0.6036 0.9399 

 Undrained (e=0.735) 
  Pc = 100, p Pc = 100, q Pc = 1000, p Pc = 1000, q Pc = 2000, p Pc = 2000, q 
 Precision DT KNN RF DT KNN RF DT KNN RF DT KNN RF DT KNN RF DT KNN RF 

T
es

t/
T

ra
in

 (
A

ll
) 

10-90% 0.9966 0.9998 0.9971 0.9964 0.9997 0.9973 0.9973 0.9997 0.9987 0.9915 0.9977 0.9883 0.9958 0.9995 0.9989 0.8567 0.9685 0.7906 
20-80% 0.1250 0.9200 0.1333 0.5346 0.7900 0.6720 0.4400 0.5100 0.1577 0.2160 0.7900 0.5546 0.2405 0.5900 0.1462 0.6020 0.9300 0.1032 
30-70% 0.3484 0.9100 0.7031 0.2920 0.8900 0.4888 0.2484 0.8900 0.4968 0.7440 0.5900 0.3304 0.1360 0.8000 0.4959 0.6972 0.5000 0.6935 
40-60% 0.6384 0.5600 0.1496 0.1617 0.8400 0.4320 0.7626 0.7700 0.5766 0.8184 0.9000 0.5106 0.5104 0.8900 0.5214 0.3240 0.7200 0.2021 
50-50% 0.6935 0.7800 0.1760 0.2303 0.7300 0.2720 0.4914 0.7600 0.7644 0.8170 0.4200 0.3150 0.1980 0.8900 0.1008 0.0864 0.9200 0.3854 
60-40% 0.2542 0.4200 0.3864 0.5733 0.4000 0.1920 0.0798 0.8300 0.7533 0.1328 0.6500 0.2160 0.4224 0.3800 0.4346 0.5920 0.8700 0.2958 
70-30% 0.1870 0.8200 0.1800 0.7216 0.6700 0.5460 0.6900 0.7100 0.0968 0.1935 0.2400 0.5278 0.3024 0.5600 0.4675 0.4080 0.9200 0.7980 
80-20% 0.4293 0.5200 0.5561 0.7626 0.2900 0.2162 0.4788 0.8300 0.4144 0.2262 0.8600 0.1326 0.2430 0.4200 0.2590 0.4599 0.8500 0.5658 

 Undrained (e=0.833) 
  Pc = 100, p Pc = 100, q Pc = 1000, p Pc = 1000, q Pc = 2000, p Pc = 2000, q 
 Precision DT KNN RF DT KNN RF DT KNN RF DT KNN RF DT KNN RF DT KNN RF 

T
es

t/
T

ra
in

 (
A

ll
) 

10-90% 0.9957 0.9998 0.9996 0.9499 0.9614 0.8525 0.9971 0.9985 0.9990 0.9593 0.9786 0.9376 0.9776 0.9972 0.9925 0.8567 0.9685 0.7906 
20-80% 0.3626 0.9500 0.2080 0.6417 0.8600 0.5850 0.3008 0.7400 0.0792 0.3978 0.8700 0.2816 0.1224 0.3700 0.0700 0.5950 0.9500 0.3560 
30-70% 0.4524 0.8900 0.1806 0.3348 0.5400 0.1365 0.5467 0.5900 0.1053 0.0532 0.6000 0.3915 0.4278 0.9400 0.3186 0.3504 0.7700 0.3552 
40-60% 0.5551 0.9300 0.1080 0.4209 0.3100 0.3588 0.1482 0.9000 0.5859 0.4785 0.3700 0.3192 0.5104 0.6900 0.7743 0.2204 0.6100 0.1242 
50-50% 0.2268 0.8600 0.3705 0.3864 0.6900 0.7553 0.2814 0.8700 0.7410 0.3219 0.9500 0.1950 0.3723 0.8700 0.4263 0.4020 0.3200 0.4888 
60-40% 0.2625 0.5200 0.3120 0.5920 0.5200 0.1560 0.6660 0.6300 0.7056 0.2418 0.4000 0.5329 0.2914 0.7600 0.1988 0.2130 0.4400 0.5304 
70-30% 0.5369 0.4700 0.4088 0.3108 0.7600 0.2277 0.6808 0.1400 0.4180 0.4345 0.9000 0.5688 0.7636 0.4000 0.6164 0.5328 0.4200 0.2596 
80-20% 0.2590 0.8400 0.3150 0.4824 0.8300 0.2688 0.2214 0.6800 0.2871 0.1513 0.8000 0.2697 0.5440 0.6900 0.2967 0.2862 0.9500 0.4698 
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Three different ML methods were employed for 
analysis and prediction to evaluate the performance of 
each algorithm under various conditions. These 
methods were specifically chosen to simulate and model 
the complex relationships among the data and were 
selected to address the particular problems of this 
research. The selection of these algorithms was based 
on their ability to accurately simulate system behavior 
and provide reliable predictions under different 
scenarios. 

After applying these algorithms and analyzing the 
results obtained, the best outcomes and performance of 
each method were determined based on prediction 
accuracy and how well they aligned with real data. 
These results are comprehensively presented in Table 5, 
which serves as a basis for evaluating and comparing the 
performance of different models in accurately 
predicting system behavior. This analysis can also guide 
us in selecting the most suitable model based on the 
specific needs of the research. 

DT, KNN, and RF were utilized for data analysis and 
prediction. These methods were selected due to their 
ability to analyze complex and nonlinear relationships 
in the data and provide accurate predictions in various 
applications. Each of these algorithms is widely used in 
ML tasks for its high capacity to model system behaviors 
and deliver reliable results. 

To enhance the accuracy of the models and optimize 
their performance, the Particle Swarm Optimization 
(PSO) algorithm was employed. PSO, as an evolutionary 
search method, was applied in the process of fine-tuning 
and selecting the optimal set of parameters for each 
model. This algorithm continuously searches the 
parameter space to find the best combination of 
parameters that maximizes the prediction accuracy of 
the models. The integration of PSO significantly 
improved the hyperparameter tuning process and 
increased the efficiency of the ML techniques in data 
analysis and predictive modeling. This approach, 
particularly beneficial in cases with complex and 
nonlinear data, has a significant impact on improving 
the accuracy of predictions and optimizing the results 
derived from the models. Overall, combining these ML 
algorithms with PSO contributes to increased accuracy, 
efficiency, and robustness in generating more precise 
and reliable predictions. 

In ML models, various parameters control the 
performance of the model. Each of these parameters 
directly impacts the model's results and needs to be 
carefully tuned to achieve optimal performance. Below 
is an explanation of some of the most important 
parameters for different ML models. 

For the DT model, the MinLeafSize parameter defines 
the minimum number of data samples in each leaf, 
which influences the model's complexity and 
overfitting. This parameter is directly related to 
overfitting because if the number of samples in the 

leaves is too small, the model may become overly 
sensitive to the details in the training data. On the other 
hand, the MaxNumSplits parameter, which specifies the 
maximum number of allowed splits in the tree, affects 
the tree’s depth and the model's ability to distinguish 
between data points. This parameter is also critical in 
preventing excessive complexity in the tree, which can 
reduce the risk of overfitting. 

For the KNN model, the NumNeighbors parameter 
determines the number of nearest neighbors considered 
during prediction. This parameter impacts the 
predictions as too few neighbors can make the model 
highly sensitive to small changes in the data, while too 
many neighbors may lead to the loss of important 
features in the data. Additionally, the DistanceMetric 
parameter, which measures the similarity between 
samples, affects how distances between data points are 
calculated and how the best predictions are chosen. 

In the RF model, the NumTrees parameter defines 
the number of decision trees in the forest. The more 
trees there are, the more data the model can analyze, 
and the higher the prediction accuracy. The 
NumPredictorsToSample parameter, which controls the 
number of features to be considered for each tree, is 
crucial in preventing overfitting and enhancing the 
model's diversity. By selecting random features for each 
tree, the model avoids overfitting and gains the ability to 
generalize to new data. 

Overall, these parameters are critical for fine-tuning 
the performance of ML models. They have a profound 
impact on factors such as sensitivity, accuracy, and the 
likelihood of overfitting. Optimizing these parameters 
can significantly improve model performance and 
prediction accuracy, making the process of selecting and 
adjusting these parameters an essential part of 
designing effective ML models. 

Table 6 presents the optimal parameter values for 
each ML method using the PSO algorithm. These values 
have been carefully selected to achieve the best possible 
performance for each model and accurately represent 
the optimal settings for various parameters in each 
algorithm. The selection of these values ensures that 
each model, when using the optimized parameters, can 
deliver more precise and efficient results. The use of the 
PSO algorithm as the optimizer has significantly 
improved the accuracy and efficiency of the parameter 
search process. In general, PSO, as a metaheuristic 
search method, has been able to perform the parameter 
tuning process more effectively, leading to more 
accurate results in selecting the optimal values. This 
improvement in the parameter selection process has 
contributed significantly to enhanced prediction 
accuracy and the overall efficiency of the ML models. 
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Drained 

   
E = 0.81, q E = 0.81, ev E = 0.886, q 

   

E = 0.886, ev E = 0.960, q E = 0.960, ev 

Undrained (e = 0.735) 

   
Pc = 100, p Pc = 100, q Pc = 1000, p 

 
Fig. 7. Accuracy of different ML methods in different percentages of training-to-test data on Test/Train (All) 
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Pc = 1000, q Pc = 2000, p Pc = 2000, q 

Undrained (e = 0.833) 
   

   
Pc = 100, p Pc = 100, q Pc = 1000, p 

   
Pc = 1000, q Pc = 2000, p Pc = 2000, q 

 

Fig. 7. (continued) 
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Table 5. The best results 

Drained Undrained (e=0.735) Undrained (e=0.833) 

e 
=

 0
.8

1
0

, q
 

DT 

Test 0.9670 

P
c 

=
 1

0
0

, p
 

DT 

Test 0.9953 

P
c 

=
 1

0
0

, p
 

DT 

Test 0.9951 

Train 0.9875 Train 0.9979 Train 0.9964 

All 0.9772 All 0.9966 All 0.9957 

KNN 

Test 0.9959 

KNN 

Test 0.9995 

KNN 

Test 0.9997 

Train 1.0000 Train 1.0000 Train 1.0000 

All 0.9980 All 0.9998 All 0.9998 

RF 

Test 0.9775 

RF 

Test 0.9963 

RF 

Test 0.9995 

Train 0.9744 Train 0.9978 Train 0.9998 

All 0.9760 All 0.9971 All 0.9996 

e 
=

 0
.8

1
0

, e
v

 

DT 

Test 0.6230 

P
c 

=
 1

0
0

, q
 

DT 

Test 0.9954 

P
c 

=
 1

0
0

, q
 

DT 

Test 0.9154 

Train 0.9994 Train 0.9973 Train 0.9857 

All 0.7891 All 0.9964 All 0.9499 

KNN 

Test 0.6404 

KNN 

Test 0.9993 

KNN 

Test 0.9243 

Train 1.0000 Train 1.0000 Train 1.0000 

All 0.8002 All 0.9997 All 0.9614 

RF 

Test 0.7697 

RF 

Test 0.9972 

RF 

Test 0.8787 

Train 0.9817 Train 0.9974 Train 0.8270 

All 0.8692 All 0.9973 All 0.8525 

e 
=

 0
.8

8
6

, q
 

DT 

Test 0.9465 

P
c 

=
 1

0
0

0
, p

 

DT 

Test 0.9961 

P
c 

=
 1

0
0

0
, p

 

DT 

Test 0.9962 

Train 0.9711 Train 0.9985 Train 0.9980 

All 0.9587 All 0.9973 All 0.9971 

KNN 

Test 0.9956 

KNN 

Test 0.9994 

KNN 

Test 0.9970 

Train 1.0000 Train 1.0000 Train 1.0000 

All 0.9978 All 0.9997 All 0.9985 

RF 

Test 0.9642 

RF 

Test 0.9985 

RF 

Test 0.9986 

Train 0.9695 Train 0.9989 Train 0.9994 

All 0.9668 All 0.9987 All 0.9990 

e 
=

 0
.8

8
6

, e
v

 

DT 

Test 0.9520 

P
c 

=
 1

0
0

0
, q

 

DT 

Test 0.9907 

P
c 

=
 1

0
0

0
, q

 

DT 

Test 0.9643 

Train 0.9645 Train 0.9923 Train 0.9542 

All 0.9582 All 0.9915 All 0.9593 

KNN 

Test 0.9960 

KNN 

Test 0.9954 

KNN 

Test 0.9576 

Train 1.0000 Train 1.0000 Train 1.0000 

All 0.9980 All 0.9977 All 0.9786 

RF 

Test 0.9360 

RF 

Test 0.9890 

RF 

Test 0.9366 

Train 0.9267 Train 0.9876 Train 0.9386 

All 0.9313 All 0.9883 All 0.9376 

e 
=

 0
.9

6
0

, q
 

DT 

Test 0.9493 

P
c 

=
 2

0
0

0
, p

 

DT 

Test 0.9948 

P
c 

=
 2

0
0

0
, p

 

DT 

Test 0.9747 

Train 0.9578 Train 0.9968 Train 0.9806 

All 0.9535 All 0.9958 All 0.9776 

KNN 

Test 0.9939 

KNN 

Test 0.9991 

KNN 

Test 0.9944 

Train 1.0000 Train 1.0000 Train 1.0000 

All 0.9970 All 0.9995 All 0.9972 

RF 

Test 0.9637 

RF 

Test 0.9988 

RF 

Test 0.9918 

Train 0.9858 Train 0.9991 Train 0.9933 

All 0.9747 All 0.9989 All 0.9925 

e 
=

 0
.9

6
0

, e
v 

DT 

Test 0.9746 

P
c 

=
 2

0
0

0
, q

 

DT 

Test 0.8486 

P
c 

=
 2

0
0

0
, q

 

DT 

Test 0.8486 

Train 0.9720 Train 0.8648 Train 0.8648 

All 0.9733 All 0.8567 All 0.8567 

KNN 

Test 0.9983 

KNN 

Test 0.9379 

KNN 

Test 0.9379 

Train 1.0000 Train 1.0000 Train 1.0000 

All 0.9992 All 0.9685 All 0.9685 

RF 

Test 0.9608 

RF 

Test 0.8240 

RF 

Test 0.8240 

Train 0.9703 Train 0.7586 Train 0.7586 

All 0.9655 All 0.7906 All 0.7906 
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Table 6. The optimal parameter values for ML methods using PSO 
Drained Undrained (e=0.735) Undrained (e=0.833) 

e 
=

 0
.8

1
0

, q
 DT 

MinLeafSize 2 

P
c 

=
 1

0
0

, p
 

DT 
MinLeafSize 5 

P
c 

=
 1

0
0

, p
 

DT 
MinLeafSize 5 

MaxNumSplits 78 MaxNumSplits 53 MaxNumSplits 48 

KNN 
NumNeighbors 1 

KNN 
NumNeighbors 1 KN

N 

NumNeighbors 1 

DistanceMetric 5 DistanceMetric 2.12 DistanceMetric 5 

RF 

NumTrees 20 

RF 

NumTrees 10 

RF 

NumTrees 142 

NumPredictorsToSampl
e 

3 NumPredictorsToSample 3 NumPredictorsToSample 
3 

e 
=

 0
.8

1
0

, e
v

 DT 
MinLeafSize 5 

P
c 

=
 1

0
0

, q
 

DT 
MinLeafSize 4 

P
c 

=
 1

0
0

, q
 

DT 
MinLeafSize 2 

MaxNumSplits 93 MaxNumSplits 94 MaxNumSplits 64 

KNN 
NumNeighbors 1 

KNN 
NumNeighbors 1 KN

N 

NumNeighbors 1 

DistanceMetric 4.405 DistanceMetric 5 DistanceMetric 2.36 

RF 

NumTrees 96 

RF 

NumTrees 10 

RF 

NumTrees 10 

NumPredictorsToSampl
e 

4 NumPredictorsToSample 3 NumPredictorsToSample 
1 

e 
=

 0
.8

8
6

, q
 DT 

MinLeafSize 2 

P
c 

=
 1

0
0

0
, p

 DT 
MinLeafSize 4 

P
c 

=
 1

0
0

0
, p

 DT 
MinLeafSize 2 

MaxNumSplits 100 MaxNumSplits 94 MaxNumSplits 100 

KNN 
NumNeighbors 1 

KNN 
NumNeighbors 1 KN

N 

NumNeighbors 1 

DistanceMetric 2.14 DistanceMetric 1.46 DistanceMetric 3.35 

RF 

NumTrees 10 

RF 

NumTrees 47 

RF 

NumTrees 34 

NumPredictorsToSampl
e 

4 NumPredictorsToSample 3 NumPredictorsToSample 
3 

e 
=

 0
.8

8
6

, e
v

 DT 
MinLeafSize 2 

P
c 

=
 1

0
0

0
, q

 DT 
MinLeafSize 4 

P
c 

=
 1

0
0

0
, q

 DT 
MinLeafSize 2 

MaxNumSplits 37 MaxNumSplits 92 MaxNumSplits 100 

KNN 
NumNeighbors 1 

KNN 
NumNeighbors 1 KN

N 

NumNeighbors 1 

DistanceMetric 3.5 DistanceMetric 5 DistanceMetric 3.11 

RF 

NumTrees 10 

RF 

NumTrees 15 

RF 

NumTrees 10 

NumPredictorsToSampl
e 

2 NumPredictorsToSample 3 NumPredictorsToSample 
3 

e 
=

 0
.9

6
0

, q
 DT 

MinLeafSize 2 

P
c 

=
 2

0
0

0
, p

 DT 
MinLeafSize 4 

P
c 

=
 2

0
0

0
, p

 DT 
MinLeafSize 2 

MaxNumSplits 100 MaxNumSplits 82 MaxNumSplits 100 

KNN 
NumNeighbors 1 

KNN 
NumNeighbors 1 KN

N 

NumNeighbors 1 

DistanceMetric 1 DistanceMetric 1.29 DistanceMetric 1 

RF 

NumTrees 10 

RF 

NumTrees 51 

RF 

NumTrees 113 

NumPredictorsToSampl
e 

2 NumPredictorsToSample 3 NumPredictorsToSample 
3 

E
 =

 0
.9

6
0

, e
v

 DT 
MinLeafSize 2 

P
c 

=
 2

0
0

0
, q

 DT 
MinLeafSize 3 

P
c 

=
 2

0
0

0
, q

 DT 
MinLeafSize 2 

MaxNumSplits 100 MaxNumSplits 95 MaxNumSplits 64 

KNN 
NumNeighbors 1 

KNN 
NumNeighbors 1 KN

N 

NumNeighbors 1 

DistanceMetric 1 DistanceMetric 1 DistanceMetric 1 

RF 

NumTrees 10 

RF 

NumTrees 10 

RF 

NumTrees 10 

NumPredictorsToSampl
e 

3 NumPredictorsToSample 3 NumPredictorsToSample 
1 

C. Statistical Criteria in Measuring the Accuracy of 

ML Methods 

These statistical metrics—R2, RMSE, and MAD—are 
essential for evaluating the performance of ML models 
in this study (Table 7). Specifically, they quantify the 
accuracy and reliability of the predictions generated by 
the ML algorithms when compared to the reference 
values obtained from the validated constitutive model. 
The R2 value indicates how well the predicted results 
explain the variance in the data, while RMSE and MAD 
provide insights into the average magnitude of 
prediction errors. These measures are significant for 
comparing the effectiveness of different ML models (DT, 
KNN, and RF) across various stress conditions and soil 
states. By incorporating these metrics, the study 
ensures a rigorous and objective assessment of model 
performance, which is critical for identifying the most 
accurate and generalizable prediction approach for 
sand constitutive behavior.  

By carefully examining these results, a more precise 
and comprehensive analysis of the models' performance 
can be achieved. This detailed evaluation provides 
deeper insights into the performance differences among 

the various algorithms applied in this study. 
Understanding these distinctions is crucial for selecting 
the most suitable model for predictive tasks within the 
specific context of the dataset. 

An important observation arises with the drained 
test conducted at an initial void ratio of 0.81. For this 
particular case, the predictions generated by the DT and 
RF algorithms deviate noticeably from the 
corresponding modeling results. This inconsistency 
suggests limitations in the predictive capability of these 
methods under certain conditions or data 
characteristics. On the other hand, the KNN technique 
stands out by producing predictions that closely align 
with the modeled outcomes, indicating a superior fit for 
this dataset and scenario. In other words, the KNN 
algorithm demonstrates enhanced performance 
compared to both RF and DT across several key 
evaluation metrics. One of the primary reasons for the 
effectiveness of KNN lies in its simplicity and 
adaptability. Unlike more complex models that require 
extensive training and tuning, KNN operates based on 
straightforward principles. It identifies the closest data 
points in the feature space relative to a given test sample 
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and makes predictions grounded in these local 
neighborhoods. This local approach allows KNN to 
capture subtle patterns and relationships that might be 
missed by more global models. This characteristic 
makes KNN particularly suitable for datasets 
characterized by complex, non-linear relationships. 
Since it does not rely on rigid assumptions about data 
distribution or underlying functional forms, KNN can 
flexibly adjust to varying data structures and 
complexities. Furthermore, the results from our dataset 
indicate that KNN consistently delivers reliable and 

stable outcomes, reflected in its superior values of 
accuracy (R2), MAD, and RMSE. 

Specifically, KNN achieves lower error rates and 
higher precision compared to RF and DT, especially in 
cases where data points are closely related and exhibit 
discernible patterns. Its ability to handle small 
variations within the data also contributes significantly 
to its robustness. Even in the presence of noise or 
outliers, KNN maintains a high level of predictive 
accuracy, a property highly desirable in practical 
applications where data quality can be variable. 
 

  

Table 7. Plotted error values of ML methods 

 Drained Undrained (e=0.735) Undrained (e=0.833) 

e 
=

 0
.8

1
0

, q
 M

A
D

 

DT 
Test 36.377 

P
c 

=
 1

0
0

, p
 

DT 
Test 33.825 

P
c 

=
 1

0
0

, p
 

DT 
Test 13.56 

Train 25.061 Train 22.828 Train 10.131 

KNN 
Test 10.798 

KNN 
Test 9.639 

KNN 
Test 3.078 

Train 0 Train 0 Train 0 

RF 
Test 33.926 

RF 
Test 29.941 

RF 
Test 4.489 

Train 39.092 Train 21.01 Train 3.152 

R
M

SE
 

DT 
Test 71.698 

DT 
Test 60.079 

DT 
Test 21.044 

Train 43.595 Train 40.205 Train 17.47 

KNN 
Test 25.487 

KNN 
Test 19.325 

KNN 
Test 5.413 

Train 0 Train 0 Train 0 

RF 
Test 59.596 

RF 
Test 53.519 

RF 
Test 6.985 

Train 74.488 Train 40.534 Train 4.858 

e 
=

 0
.8

1
0

, e
v

 M
A

D
 

DT 
Test 0.0101 

P
c 

=
 1

0
0

, q
 

DT 
Test 38.616 

P
c 

=
 1

0
0

, q
 
DT 

Test 9.841 

Train 0.0063 Train 30.176 Train 2.933 

KNN 
Test 0.0065 

KNN 
Test 14.067 

KNN 
Test 6.197 

Train 0 Train 0 Train 0 

RF 
Test 0.0099 

RF 
Test 30.231 

RF 
Test 7.047 

Train 0.0078 Train 22.792 Train 14.816 

R
M

SE
 

DT 
Test 0.1005 

DT 
Test 74.296 

DT 
Test 54.774 

Train 0.0794 Train 55.351 Train 12.641 

KNN 
Test 0.0806 

KNN 
Test 28.594 

KNN 
Test 39.396 

Train 0 Train 0 Train 0 

RF 
Test 0.0995 

RF 
Test 60.607 

RF 
Test 41.854 

Train 0.0883 Train 49.469 Train 76.67 

e 
=

 0
.8

8
6

, q
 M

A
D

 

DT 
Test 42.344 

P
c 

=
 1

0
0

0
, p

 

DT 
Test 20.771 

P
c 

=
 1

0
0

0
, p

 

DT 
Test 3.223 

Train 24.094 Train 12.166 Train 2.22 

KNN 
Test 11.245 

KNN 
Test 7.55 

KNN 
Test 1.652 

Train 0 Train 0 Train 0 

RF 
Test 200.973 

RF 
Test 12.493 

RF 
Test 1.87 

Train 244.016 Train 8.952 Train 1.157 

R
M

SE
 

DT 
Test 87.985 

DT 
Test 37.174 

DT 
Test 5.142 

Train 58.421 Train 22.116 Train 3.689 

KNN 
Test 25.233 

KNN 
Test 14.081 

KNN 
Test 4.576 

Train 0 Train 0 Train 0 

RF 
Test 379.108 

RF 
Test 23.35 

RF 
Test 3.09 

Train 429.605 Train 19.554 Train 2.037 

e 
=

 0
.8

8
6

, e
v

 M
A

D
 

DT 
Test 0.001 

P
c 

=
 1

0
0

0
, q

 

DT 
Test 38.154 

P
c 

=
 1

0
0

0
, q

 

DT 
Test 10.529 

Train 0.001 Train 31.902 Train 10.915 

KNN 
Test 0 

KNN 
Test 17.454 

KNN 
Test 6.503 

Train 0 Train 0 Train 0 

RF 
Test 0.001 

RF 
Test 28.361 

RF 
Test 10.662 

Train 0.001 Train 29.568 Train 11.34 

R
M

SE
 

DT 
Test 0.002 

DT 
Test 76.369 

DT 
Test 32.924 

Train 0.001 Train 71.728 Train 41.821 

KNN 
Test 0 

KNN 
Test 56.031 

KNN 
Test 40.582 

Train 0 Train 0 Train 0 

RF 
Test 0.002 

RF 
Test 84.145 

RF 
Test 44.509 

Train 0.002 Train 89.078 Train 43.386 
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 Table 7. (continued) 

Drained Undrained (e=0.735) Undrained (e=0.833) 
e 

=
 0

.9
6

0
, q

 M
A

D
 

DT 
Test 46.477 

P
c 

=
 2

0
0

0
, p

 

DT 
Test 13.094 

P
c 

=
 2

0
0

0
, p

 

DT 
Test 10.493 

Train 37.516 Train 8.808 Train 6.279 

KNN 
Test 14.883 

KNN 
Test 4.561 

KNN 
Test 3.824 

Train 0 Train 0 Train 0 

RF 
Test 40.896 

RF 
Test 5.911 

RF 
Test 5.058 

Train 27.031 Train 5.008 Train 5.974 

R
M

SE
 

DT 
Test 82.376 

DT 
Test 24.275 

DT 
Test 29.883 

Train 65.773 Train 17.398 Train 20.854 

KNN 
Test 27.536 

KNN 
Test 10.007 

KNN 
Test 12.82 

Train 0 Train 0 Train 0 

RF 
Test 68.232 

RF 
Test 11.575 

RF 
Test 15.584 

Train 48.267 Train 9.641 Train 17.782 

e 
=

 0
.9

6
0

, e
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M
A

D
 

DT 
Test 0.003 

P
c 

=
 2

0
0

0
, q

 
DT 

Test 46.779 

P
c 

=
 2

0
0

0
, q

 

DT 
Test 8.501 

Train 0.003 Train 34.371 Train 13.546 

KNN 
Test 0.001 

KNN 
Test 11.901 

KNN 
Test 5.537 

Train 0 Train 0 Train 0 

RF 
Test 0.003 

RF 
Test 22.61 

RF 
Test 9.18 

Train 0.003 Train 27.727 Train 12.628 

R
M

SE
 

DT 
Test 0.003 

DT 
Test 115.554 

DT 
Test 44.504 

Train 0.003 Train 101.189 Train 62.195 

KNN 
Test 0.001 

KNN 
Test 39.792 

KNN 
Test 31.964 

Train 0 Train 0 Train 0 

RF 
Test 0.004 

RF 
Test 91.044 

RF 
Test 56.449 

Train 0.004 Train 88.456 Train 71.665 

V. CONCLUSION 

A critical state constitutive model developed at the 
University of Alberta (Canada) was employed to 
simulate the behavior of sands. To ensure the validity 
and authenticity of the numerical results generated by 
this model, the constitutive formulation was 
implemented numerically with the consistency 
condition satisfied for all strain increments. A single, 
consistent set of model parameters was used across all 
predictions, and the comparison between experimental 
data and constitutive model outputs confirmed the 
sound predictive capability of the model. Given the 
common challenge of the lack of continuous and 
incremental experimental data, the use of a previously 
validated constitutive model offers a reliable alternative 
for predicting the behavior of sands. Accordingly, the 
critical state constitutive model was adopted here 
specifically for simulating Toyoura sand constitutive 
behaviors. 

The study further evaluated the drained and 
undrained constitutive behaviors of Toyoura sand 
under triaxial compression monotonic loadings by 
applying three ML algorithms: Decision Tree (DT), K-
Nearest Neighbors (KNN), and Random Forest (RF). The 
performance of these algorithms was rigorously 
assessed using metrics such as the coefficient of 
determination (R2), Mean Absolute Deviation (MAD), 
and Root Mean Square Error (RMSE). Among the models 

tested, KNN consistently demonstrated superior 
performance. Under drained conditions, KNN accurately 
predicted both deviatoric stress (q) and volumetric 
strain (ev) across different initial void ratios (e), with 
high R² values and minimal errors. Similarly, in 
undrained conditions with varying confining pressures 
(Pc) and void ratios, KNN maintained high predictive 
accuracy and robustness, as evidenced by near-zero 
training errors and strong agreement with experimental 
results. These findings underscore the capability of KNN 
to model complex constitutive behaviors reliably, 
outperforming DT and RF in this context. 

Overall, this research illustrates that ML algorithms, 
especially KNN, serve as powerful tools for predicting 
the drained and undrained constitutive responses of 
Toyoura sand with high accuracy. These methods are 
effective in handling complex datasets and provide 
valuable insights for geotechnical engineering 
applications. Considering the highly complex and 
nonlinear nature of sand behavior under cyclic loadings 
involving multiple unloading and reloading cycles with 
hysteresis loops, future work will focus on capturing 
these intricate patterns through advanced ML 
techniques. In particular, deep learning architectures 
such as Long Short-Term Memory (LSTM) neural 
networks and Convolutional Neural Networks (CNN) 
will be explored to model cyclic loading data more 
effectively. 
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