
تعداد نشریات | 21 |
تعداد شمارهها | 312 |
تعداد مقالات | 3,299 |
تعداد مشاهده مقاله | 3,463,328 |
تعداد دریافت فایل اصل مقاله | 2,548,245 |
بررسی پاسخهای بیوشیمیایی و فیزیولوژیک گیاه دارویی شاهی (Lepidium sativum) به محلولپاشی متیلجاسمونات و تنش کمآبی | ||
تنشهای محیطی در علوم زراعی | ||
مقالات آماده انتشار، پذیرفته شده، انتشار آنلاین از تاریخ 15 اردیبهشت 1404 اصل مقاله (1.72 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22077/escs.2025.7287.2275 | ||
نویسندگان | ||
محدثه شمس الدین سعید* 1؛ رزیتا کبیری2 | ||
1استادیار گروه تولیدات گیاهی دانشکده کشاورزی بردسیر، دانشگاه شهید باهنر کرمان | ||
2مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی کرمان، سازمان تحقیقات، آموزش و ترویج کشاورزی (AREEO) | ||
چکیده | ||
به منظور بررسی تاثیر محلول پاشی برگی متیلجاسمونات بر برخی شاخصهای فیزیولوژیکی و آنزیم-های آنتیاکسیدان گیاه دارویی شاهی (Lepidium sativum) تحت شرایط تنش کمآبی، آزمایشی در قالب طرح فاکتوریل بر پایه بلوکهای کامل تصادفی با سه تکرار در سال زراعی 1401-1402 انجام پذیرفت. تیمارهای آزمایشی شامل کاربرد برونزای متیلجاسمونات (0 (شاهد)، 50 و 100 میکرومولار) و تنش کمآبی (100 و50 درصد ظرفیت زراعی) بودند. نتایج نشان داد که تنش کمآبی موجب کاهش معنیدار وزن خشک گیاه، مقدار پروتئین و افزایش محتوی پراکسیداسیون لیپیدهای غشاء و به دنبال آن نشت یونی گردید. اگرچه فعالیت آنزیمهای آنتیاکسیدان شامل سوپر اکسید دیسموتاز، گایاکل پراکسیداز، آسکوربات پراکسیداز و کاتالاز و همچنین تنظیم کنندههای اسمزی ازجمله محتوی پرولین و قندهای محلول به ترتیب حدود 59.2، 74.3، 62.8، 62.7، 77.5 و 40.3 درصد در گیاهان تحت شرایط تنش کمآبی در مقایسه با شاهد بدون تنش کمآبی ، افزایش داشت اما مشخص نمود که مهار گونههای فعال اکسیژن خارج از توان گیاه شاهی بوده است. بنابراین کاهش محتوی مالون دی آلدئید (36.2 %) و نشت یونی (26.7 %) و افزایش 23.5 درصدی محتوی پروتئین از طریق القای مکانیسمهای دفاعی گیاه ازجمله افزایش فعالیت آنزیمهای آنتیاکسیدان و اسمولیتها، تنها با محلولپاشی غلظت 100 میکرومولار متیلجاسمونات در گیاه دارویی شاهی تحت شرایط تنش کمآبی موثر بوده است. بر اساس نتایج تحقیق حاضر میتوان چنین اظهار داشت که متیلجاسمونات بهعنوان یک مولکول پیامرسان با افزایش توان آنتیاکسیدانهای آنزیمی (SOD، CAT، GPX و APX) و افزایش تنظیم کنندههای اسمزی (پرولین و قندهای محلول) در سلول، منجر به کاهش پراکسیداسیون لیپیدهای غشاء و کاهش مقدار مالون دیآلدئید تولیدی گردیده که به دنبال آن پایداری غشاء سلولی، کاهش نشت یونی و افزایش وزن خشک را تحت شرایط تنش کمآبی به همراه داشته است؛ بنابراین به نظر میرسد کاربرد غلظت 100 میکرو مولار متیلجاسمونات در گیاه شاهی میتواند در کاهش تنش کمآبی مفید باشد و نهایتاً گامی بهسوی تحقق اهداف کشاورزی پایدار در کشور باشد. | ||
کلیدواژهها | ||
مالون دیآلدئید؛ محرک های زیستی؛ مکانیسم دفاع آنتی اکسیدان؛ نشت یونی | ||
مراجع | ||
Afsharmohammdian, M., Ghanati, F., Ahmadiani, S., Sadrzamani, K., 2016. Effect of drought stress on the activity of antioxidant enzymes and soluble sugars content of pennyroyal (Mentha pulegium L.). Nova Biologica Reperta. 3, 228-237. [In Persian]. https://doi.org/10.21859/acadpub.nbr.3.3.228 Anjum, S.A., Wang, L., Farooq, M., Khan, I., Xue, L., 2011. Methyl jasmonate‐induced alteration in lipid peroxidation, antioxidative defense system and yield in soybean under drought. Journal of Agronomy and Crop Science. 197, 296-301. https://doi.org/10.1111/j.1439-037X.2011.00468.x Asadi Karam, E., Asrar, Z., Keramat, B., 2016. Impact of methyl jasmonate on reducing of oxidative stress in Garden cress (Lepidium sativum L.) under copper stress. Journal of Plant Research (Iranian Journal of Biology). 28, 684-694. [In Persian]. https://dor.isc.ac/dor/20.1001.1.23832592.1395.29.2.1.5 Asghari, J., Mahdavikia, H., Rezaei-Chiyaneh, E., Banaei-Asl, F., Amani Machiani, M., Harrison, M.T., 2023. Selenium nanoparticles improve physiological and phytochemical properties of basil (Ocimum basilicum L.) under drought stress conditions. Land. 12, 164. https://doi.org/10.3390/land12010164 Ashrafi, M., Azimi-Moqadam, M.R., Mohsenifard, E., Shekari, F., Jafary, H., Moradi, P., Pucci, M., Abate, G., Mastinu, A., 2022. Physiological and molecular aspects of two Thymus species differently sensitive to drought stress. BioTech. 11, 8. https://doi.org/10.3390/biotech11020008 Baghizadeh, A., Vakili Shahrbabaki, M.A., Bayani A., Tohidi Z., 2020. Evaluation of interaction effect of drought stress with ascorbic acid on some physiological and morphological characteristics of Cumin (Cuminum cyminum L.). Iranian Journal of Plant and Biotechnology. 15, 11-22. [In Persian]. Bates, L.S., Waldern, R.P., Tare, I.D., 1973. Rapid determination of free proline for water stress studies. Plant and Soil. 29, 205-207. http://doi.org/10.1007/BF00018060 Ben Hamed, K., Castagna, A., Salem, E., Ranieri, A., Abdelly, C., 2007. Sea fennel (Crithmum maritimum L.) under salinity conditions: a comparison of leaf and root antioxidant responses. Plant Growth Regulation. 53, 185-194. http://doi.org/10.1007/s10725-007-9217-8 Bradford, M.M., 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry. 72, 248-254. http://doi.org/10.1006/abio.1976.9999 Dar, T.A., Uddin, M., Khan, M.M.A., Hakeem, K.R., Jaleel, H., 2015. Jasmonates counter plant stress: A review. Environmental and Experimental Botany. 115, 49-57. https://doi.org/10.1016/j.envexpbot.2015.02.010 Dhindsa, R.S., Dhindsa, P., Torpe, A., 1981. Leaf senescence correlated with increased levels of membrane permeability and lipid peroxidation and decrease levels of superoxide dismutase and catalase. Journal of Experimental Botany. 32, 93-101. https://doi.org/10.1093/jxb/32.1.93 Elewa, T.A.A., Sadak, M., Saad, A., 2017. Proline treatment improves physiological responses in quinoa plants under drought stress. Bioscience Research. 14, 21-33. Fabriki-Ourang, S. and Shahabzadeh, H., 2018. The effect of abiotic elicitors on antioxidants and phytochemical traits of celandine (Chelidonium majus) under drought stress. Iranian Journal of Field Crop Science. 50, 139-150. [In Persian]. https://doi.org/10.22059/IJFCS.2018.250266.654435 Farsi, M., Abdollahi, F., Salehi, A., Ghasemi, S., 2020. Effect of methyl jasmonate on growth and essential oil content of marjoram (Origanum majorana L.) under drought stress conditions. Journal of Plant Research (Iranian Journal of Biology). 33, 698-712. [In Persian]. https://dor.isc.ac/dor/20.1001.1.23832592.1399.33.3.14.8 Gokavi, S.S., Malleshi, N.G., Guo, M., 2004. Chemical composition of garden cress (Lepidium sativum) seeds and its fractions and use of bran as a functional ingredient. Plant Foods for Human Nutrition. 59, 105-111. https://doi.org/10.1007/s11130-004-4308-4 Goshasbi, F., Heidari, M., Sabbagh, K., Makarian, H., 2020. Effect of irrigation interval, bio and non-biofertilizers on yield components and some of biochemical compounds in Thyme (Thymus vulgaris L.). Journal of Horticultural Plants Nutrition. 3, 51-68. [In Persian]. https://doi.org/10.22070/HPN.2020.5084.1070 Guo, Z., Ou, W., Lu, S., Zhong, Q., 2006. Differential responses of antioxidative system to chilling and drought in four rice cultivars differing in sensitivity. Plant Physiology and Biochemistry. 44, 828-836. https://doi.org/10.1016/j.plaphy.2006.10.024 Hassanzadeh Ghortepeh, A., Amirnia, R., Heydarzadeh, S., 2020. The effect of manure application on physiological traits of Cichorium intybus L. in response to drought stress. Journal of Agricultural Science and Sustainable Production. 30, 133-146. [In Persian]. https://dor.isc.ac/dor/20.1001.1.24764310.1399.30.3.8.3 Heath, R.L., Packer, L., 1969. Photo peroxidation in isolated chloroplast. I. kinetics and stoichiometry of fatty acid peroxidationArchives of Biochemistry and Biophysics. 125, 189-198. https://doi.org/10.1016/0003-9861(68)90654-1 Huang, H., Liu, B., Liu, L., Song, S., 2017. Jasmonate action in plant growth and development. Journal of Experimental Botany. 68, 1349-1359. https://doi.org/10.1093/jxb/erw495 Javadi, T., Rohollahi, D., Ghaderi, N., Nazari, F., 2017. Mitigating the adverse effects of drought stress on the morpho-physiological traits and anti-oxidative enzyme activities of Prunus avium through β-amino butyric acid drenching. Scientia Horticulturae. 218, 156-163. https://doi.org/10.1016/j.scienta.2017.02.019 Kabiri, R., Hatami, A., Oloumi, H., Naghizadeh, M., Nasibi, F., Tahmasebi, Z., 2018. Foliar application of melatonin induces tolerance to drought stress in Moldavian balm plants (Dracocephalum moldavica) through regulating the antioxidant system. Folia Horticulturae. 30, 155-167. https://doi.org/10.2478/fhort-2018-0016 Kalariya K. A., Shahi D., Lal Saran P., Meena R. P., Gajbhiye N., Sarkar R., Geetha K. A., 2023. Effect of genotypes and foliar spray of methyl jasmonate and salicylic acid on andrographolide yield in Andrographis paniculata (Burm. f.) Wall. ex Nees. under semi-arid climate. Bulletin of the National Research Centre. 47, 34. https://doi.org/10.1186/s42269-023-01009-w Keshtkar, A., Aien, A., Naghavii, H., Najafi Nezhad, H., 2021. Effect of foliar application of jasmonic acid and drought stress on yield and some agronomic and physiologic traits of quinoa (Chenopodium quinoa Willd) cultivars. Environmental Stresses in Crop Sciences. 14, 403-414. [In Persian]. https://doi.org/10.22077/escs.2020.2402.1711 Khazaie, H.R., Nadjafi, F., Bannayan, M., 2008. Effect of irrigation frequency and planting density on herbage biomass and oil production of thyme (thymus vulgaris) and hyssop (Hyssopus officinalis). Industrial Crop and Products. 27, 315-321. https://doi.org/10.1016/j.indcrop.2007.11.007 Mahabub Alam, M.D., Kamrun, N., Hasanuzzaman, M., Masayuki, F., 2014. Exogenous jasmonic acid modulates the physiology, antioxidant defense and glyoxalase systems in imparting drought stress tolerance in different Brassica species. Plant Biotechnology Reports. 8, 279-293. https://doi.org/10.1007/s11816-014-0321-8 Malekpoor, F., Salimi, A., Ghasemi Pirbalouti, A., 2015. Effects of Jasmonic acid on essential oil yield and chemical compositions of two Iranian landraces of basil (Ocimum basilicum) under reduced irrigation. Journal of Herbal Drugs. 6, 13-22. Miranshahi, B., Sayyari, M., 2016. Methyl jasmonate mitigates drought stress injuries and affects essential oil of summer savory. Journal of Agricultural Science and Technology. 18, 1635-1645. https://dorl.net/dor/20.1001.1.16807073.2016.18.6.11.9 Mohsenzadeh, S., Hoseinkhani Hezaveh, M., Zamanpour Shahmansouri, H., 2020. Some physiological characteristics of the medicinal plant Lavandula angustifolia in response to drought stress, compost and vermicompost. Journal of Plant Production. 27, 149-162. https://doi.org/10.22069/JOPP.2020.16619.2520 Nakano, Y., Asada, K., 1981. Hydrogen peroxide is scavenged by ascorbate specific peroxidase in spinach chloroplasts. Plant and Cell Physiology. 22, 867-880. https://doi.org/10.1093/oxfordjournals.pcp.a076232 Norastehnia, A., Yousefzadeh, G., 2017. Improving the growth of tobacco (Nicotiana tabacum L.) seedling by methyl jasmonate under drought stress. Nova Biologica Reperta. 3, 308-318. [In Persian]. https://doi.org/10.21859/acadpub.nbr.3.4.308 Ostadi, A., Javanmard, A., Amani Machiani, M., Sadeghpour, A., Maggi, F., Nouraein, M., Morshedloo, M.R., Hano Ch., Lorenzo, J.M., 2022. Co-application of TiO2 nanoparticles and Arbuscular Mycorrhizal fungi improves essential oil quantity and qualityof Sage (Salvia officinalis L.) in drought stress conditions. Plants. 11, 1659. https://doi.org/10.3390/plants11131659 Radwan, A., Kleinwachter, M., Selmar, D., 2017. Impact of drought stress on specialized metabolism: Biosynthesis and the expression of monoterpene synthases in sage (Salvia officinalis). Phytochemistry. 141, 20-26. https://doi.org/10.1016/j.phytochem.2017.05.005 Rahmani, V., Movahhedi Dehnavi, M., Yadavi, A., Balouchi, H.R., Hamidian, M., 2020. Physiological responses of black cumin (Nigella sativa L.) to calcium silicate under drought and salinity stresses with iso-osmotic potential. Plant Process and Function. 9, 77-90. [In Persian]. https://dorl.net/dor/20.1001.1.23222727.1399.9.39.3.2 Roe, J.H., 1955. The determination of sugar in blood and spinal fluid with anthrone reagent. Journal of Biological Chemistry. 212, 335-343. https://doi.org/10.1016/S0021-9258(18)71120-4 Sadeghipour, O., 2017. Effect of methyl jasmonate on antioxidant enzymes activity and nutrients content of cowpea under salinity stress. Crops Improvement (Journal of Agricultural Crops Production). 19, 653-669. [In Persian]. https://doi.org/10.22059/jci.2017.60470 Shan, X., Zhang, Y., Peng, W., Wang, Z., Xie, D., 2009. Molecular mechanism for jasmonate-induction of anthocyanin accumulation in Arabidopsis. Journal of Experimental Botany. 60(13), 3849-3860. https://doi.org/10.1093/jxb/erp223 Soorni, J., Roustakhiz, J., Salimi, Kh., Noori, M., 2021. Effects of drought stress on yield and yield-related traits, antioxidant enzymes and essential oil content of some Cumin (Cuminum cyminum L.) ecotypes. Environmental Stresses in Crop Sciences. 13, 1125-1134. [In Persian]. https://doi.org/10.22077/escs.2020.2395.1624 Vatankhah, E., Kalantari, B., Andalibi, B., 2017. Effects of methyl jasmonate and salt stress on physiological and phytochemical characteristics of peppermint (Mentha piperita L.). Iranian Journal of Medicinal and Aromatic Plants. 33, 449-465. [In Persian]. https://doi.org/10.22092/ijmapr.2017.107594.1848 Wang, S.Y., Bowman, L., Ding, D., 2008. Methyl jasmonate enhances antioxidant activity and flavonoid content in blackberries (Rubus sp.) and promotes anti proliferation and promotes anti proliferation of human cancer cells. Food Chemistry. 107, 1261-1269. https://doi.org/10.1016/j.foodchem.2007.09.065 Yun-Xia, G., Li-Jun, Z., Feng-hai, L., Zhi-bin, C., Che, W., Yun-cong, Y., Zhen-hai, H., Jie, Z., Zhen-sheng, S., 2010. Relationship between jasmonic acid accumulation and senescence in drought -stress. African Journal of Agriculture Research. 5, 1978-1983 Zahedi, M., Hosseini, M., Moharrami, F., 2019. The effect of methyl jasmonate on some physiological and biochemical characteristics of strawberry (Fragaria × ananassa cv. Paros) under drought stress. Plant Process and Function. 8, 249-262. [In Persian]. https://dorl.net/dor/20.1001.1.23222727.1398.8.33.15.5 Zhang, Z., Pang, X., Duan, X., Ji, Z.L., Jiang, Y., 2005. Role of peroxidase in anthocyanine degradation in litchi fruit pericarp. Food Chemistry. 90, 47-52. https://doi.org/10.1016/j.foodchem.2004.03.023 | ||
آمار تعداد مشاهده مقاله: 26 تعداد دریافت فایل اصل مقاله: 10 |