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ABSTRACT 
Remote sensing data, owing to their extensive spatial coverage, spectral diversity, and integration capabilities, are widely 

recognized as one of the most effective tools for mineral prospecting. Given that many large mineral deposits are associated 
with altered zones, identifying these alterations can serve as a valuable guide for mineral exploration. In this study, satellite 
imagery from ASTER and Sentinel-2A was utilized to detect dolomitic, silicic, iron oxide, sericite, and argillic alterations. To 
minimize atmospheric effects, radiometric corrections were applied to the data. Subsequently, spectral analyses were 
conducted using advanced techniques such as the Spectral Angle Mapper (SAM), Matched Filter (MF), and Mixture Tuned 
Matched Filter (MTMF) methods. These approaches were employed to enhance the accuracy of alteration mapping. The results 
obtained from these methods were consistent with those derived from band ratio techniques and false-color composite 
imagery, further validating the findings. The northern and southern regions of the study area were identified as highly 
promising zones for mineralization. A strong correlation was observed between the identified alterations and geological 
lineaments, indicating significant mineral potential in these areas. To further refine the assessment of this potential, it is 
recommended that future studies integrate ground-based surveys and geochemical analyses. Such complementary approaches 
would provide a more comprehensive understanding of the mineralization processes and improve the precision of resource 
estimation. 
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I. INTRODUCTION 

Remote sensing is the science of acquiring information 
about objects by measuring electromagnetic radiation, 
primarily through the reflection and emission of 
sunlight, without direct physical contact. This data, when 
properly processed and analyzed, can provide valuable 
insights about the studied area(Aggarwal, 2004; 
Campbell et al., 2011; Schowengerdt, 2006). Nowadays, 
remote sensing techniques are widely utilized in various 
fields, one of the most significant applications being 
mineral resource exploration. Remote sensing allows for 
the accurate and rapid identification of mineral deposits 
across large areas, both directly and indirectly, at low 
costs. It is also widely used in preliminary exploration to 
produce geological base maps and to identify and 
differentiate mineralization-controlling features (Amer 
et al., 2012; Pour et al., 2013; Sadek et al., 2006; Shebl et 
al., 2021). Satellite data are collected digitally, allowing 
for the application of mathematical methods and image 
processing techniques to enhance and clarify the data. 

Remote sensing is especially valuable for detecting 
lineaments and identifying altered zones, key indicators 
in geological studies. Lineaments, which include faults, 
joints, and fractures, can serve as pathways for mineral-
rich fluids and help pinpoint potential mineralized 
zones. Remote sensing techniques such as directional 
filtering and edge detection analysis are instrumental in 
detecting these geological structures, which play a 
critical role in locating mineral deposits (Ahmadi et al., 
2021; Dasgupta et al., 2019; Marghany et al., 2010). 
Hydrothermal alterations, resulting from chemical 
changes in rocks due to hot fluids, are often associated 
with significant mineral deposits. Spectral data obtained 
from remote sensing can detect the spectral differences 
between various minerals, accurately identifying altered 
zones that often indicate the presence of valuable metals 
such as copper and gold (Hdeid et al., 2024; Pour et al., 
2013; Yao et al., 2021). 

ASTER and Sentinel-2A satellite imagery are 
commonly used in geological studies and mineral 

mailto:Hosseinzadeh.hassan70@gmail.com
https://jgm.birjand.ac.ir/
https://birjand.ac.ir/en
http://creativecommons.org/licenses/by/4.0/?ref=chooser-v1


 

103 
Vol 2, No. 2 / Summer 2024 
 

 
Application of SAM and MTMF methods … 

exploration to identify alterations and lineaments. Each 
of these satellites offers unique spectral features that are 
particularly effective in highlighting geological 
structures and hydrothermal alteration minerals. ASTER 
imagery, with its shortwave infrared (SWIR) and 
thermal bands, is highly effective in identifying minerals 
associated with argillic and phyllic alterations, allowing 
for detecting areas with mineralization potential. 
Additionally, Sentinel-2A imagery, with its high spectral 
resolution, allows for the detailed identification of 
lineaments and fractures (Chen et al., 2022; Hu et al., 
2018; Tompolidi et al., 2020).  

Directional filters, a type of image processing method 
in remote sensing, are used to detect abrupt changes in 
reflectance in various directions, helping to identify 
lineaments such as geological faults and fractures. These 
methods enhance linear structures, providing useful 
information about potential pathways for mineral fluid 
flow and thus potential mineralized areas (Ahmadi et al., 
2021). 

Techniques for highlighting hydrothermal alterations, 
including false-color composites, band ratios, SAM 
(Spectral Angle Mapper), and MTMF (Matched Filter and 
Mixture Tune Matched Filter), are powerful tools for 
identifying hydrothermal alteration minerals on the 
surface. False-color composites visually display spectral 
differences between rocks and minerals by combining 
appropriate bands. In contrast band ratios enhance 
specific spectral features of alteration minerals, such as 
iron-rich or clay minerals. The SAM method identifies 
alteration zones by comparing the spectral signature of 
each pixel to that of target minerals. The MTMF method, 
a specialized tool for processing hyperspectral data, 
operates in two stages. First, the Matched Filter (MF) 
directly detects pixels similar to the target spectrum, 
generating a probability map for the presence of the 
desired mineral or feature. In the second stage, MTMF 
uses noise and background information to separate the 
pixels related to the target mineral from the background, 
increasing detection accuracy. This technique, by 
reducing noise and focusing on specific spectral features, 
is effectively employed in identifying potential 
mineralized areas (Honarmand et al., 2018; Hosseinjani 
et al., 2011; Yousefi et al., 2018). The primary objective 
of this study is the delineation and identification of 
hydrothermal alteration zones associated with lead-zinc 
mineralization in the Neygan exploration area, utilizing 
satellite imagery and advanced image processing 
techniques. This research focuses on the analysis of 
remote sensing data and the application of sophisticated 
image processing methods to detect spectral patterns 
linked to alteration minerals such as sericite, chlorite, 
carbonates, iron oxides, and silica. These minerals are 
key indicators for identifying hydrothermal 
environments and base metal mineralization. The 
outcomes of this study are anticipated to reduce 

exploration costs and time while providing enhanced 
insights into the controlling mechanisms of 
mineralization and the evolutionary processes of 
hydrothermal systems within the Nignan region. 

II.  LITERATURE REVIEW 

In remote sensing studies and mineral exploration, 
various methods have been employed to identify and 
highlight alterations associated with mineral deposits. 
Among these, false-color composites and band ratios are 
considered fundamental and initial techniques. Due to 
their simplicity and quick application, they play a 
significant role in the early stages of satellite image 
processing. These methods visually differentiate 
spectral variations between rocks and minerals by 
combining different bands from multispectral images. 
For example, by selecting three specific bands from 
satellite images and assigning them to the red, green, and 
blue channels, areas with potential alterations can be 
highlighted. Moreover, band ratios create a ratio 
between specific bands, which is particularly effective in 
identifying iron-bearing and clay minerals, enhancing 
the visibility of alteration zones. However, despite their 
usefulness in distinguishing initial spectral variations, 
these methods have limitations. Due to spectral 
interferences and noise in the data, false-color 
composites and band ratios may face challenges in 
accurately identifying specific minerals and 
differentiating alteration zones. Therefore, advanced 
methods such as SAM have become necessary. SAM 
compares the spectral signature of each pixel with the 
spectral signature of target minerals, identifying regions 
with similar spectral characteristics. One of the main 
advantages of SAM is that it reduces the impact of 
lighting variations, making it especially effective for 
accurately identifying alteration minerals across 
different areas. This method is highly efficient in 
delineating mineral potential zones and can be 
considered a more advanced tool than basic false-color 
composites and band ratios. However, SAM also has 
limitations when detecting regions with low signal-to-
noise ratios. This is where the MTMF method emerges as 
a more powerful tool. MTMF combines spectral 
matching techniques with noise reduction, allowing not 
only the identification of pixels with spectra close to the 
target but also the removal of noise and background 
information from the results. Consequently, identifying 
minerals and alterations is carried out with higher 
accuracy. In summary, false-color composites and band 
ratios are helpful for quickly and initially identifying 
alteration zones. However, due to limitations in 
accurately distinguishing minerals, more advanced 
methods such as SAM and MTMF become essential. SAM 
focuses on precise spectral comparison, while MTMF 
excels in noise reduction and highlighting specific 
features, making them highly efficient tools for detailed 
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mineral exploration and identifying areas with high 
mineral potential (Amer et al., 2012; Hosseinjani et al., 
2011; Kodama et al., 2010; Yousefi et al., 2018). 

One of the early studies in this field was conducted by 
van der Meer et al. (2012), which assessed the 
effectiveness of various image-processing methods for 
identifying and mapping mineral alterations. The study 
concluded that spectral methods such as SAM and 
MTMF, particularly when combined with hyperspectral 
data, are highly accurate in identifying minerals 
associated with mineral deposits. The research 
highlighted that MTMF performs better under complex 
spectral conditions, providing detailed insights into 
target areas, and underlining its importance in mineral 
exploration (Van der Meer et al., 2012). Additionally, 
Pour and Hashim (2014) utilized the MTMF method on 
hyperspectral Hyperion data in southern Iran, 
demonstrating that this method is exact and effective in 
identifying and distinguishing minerals associated with 
hydrothermal gold deposits. Their findings showed that 
MTMF, by eliminating noise and irrelevant information, 
has a high capability in highlighting target minerals and 
determining areas with mineral potential (Beiranvand 
Pour et al., 2014). Honarmand et al. (2018) examined the 
effect of using different reference spectra in the SAM 
method for mapping hydrothermal alterations in the 
Cenozoic Magmatic Arc of Kerman (KCMA), Iran. This 
area includes significant porphyry copper deposits such 
as the Miduk and Chah-Firouzeh mines. In this study, 
three types of reference spectra, including image 
spectra, USGS spectral library, and field samples, were 
used for the SAM algorithm. The results were evaluated 
and confirmed by field investigations and laboratory 
analyses, including thin section studies, XRD analysis, 
and VNIR-SWIR reflectance spectroscopy. The highest 
accuracy of 74.01% and a Kappa coefficient of 0.65 were 
achieved using field sample spectra as the reference. 
SAM results were also compared with the MTMF 
method, revealing that over 90% of the known copper 
mineralization zones were within the enhanced 
alteration zones (Honarmand et al., 2018). Nouri et al. 
(2019) focused on using ASTER sensor data to identify 
hydrothermal alteration zones related to polymetallic 
mineralization in the Toroud-Chah Shirin magmatic belt 
in northern Iran. The researchers employed techniques 
such as Selective Principal Component Analysis (SPCA), 
Band Ratio Matrix Transformation (BRMT), SAM, and 
MTMF. The results effectively identified alteration zones 
and mineral assemblages, which were validated through 
fieldwork and laboratory analyses (Noori et al., 2019). 
Similarly, Esmaeilzadeh et al. (2023) identified 
hydrothermal alterations associated with porphyry 
copper-gold mineralization in the Sonajil region of Iran 
using ASTER data and various image processing 

techniques. Spectral methods such as SAM and MTMF 
were applied for precise alteration detection. SAM 
helped identify specific minerals based on reference 
spectra, while MTMF distinguished the target mineral 
spectra from complex backgrounds. The results showed 
a strong correlation with regional lithology, confirming 
the presence of porphyry deposits, and further 
geochemical and geophysical investigations were 
recommended (Esmaeilzadeh et al., 2023). 

Overall, these credible studies demonstrate that SAM 
and MTMF methods are advanced and practical tools for 
identifying and mapping mineral alterations. Utilizing 
these methods significantly enhances the accuracy and 
efficiency of exploratory studies. 

III.  GEOLOGY OF THE STUDY AREA 

The study area is part of east of Iran and located 50 
km northwest of Boshrouyeh, in the Ferdows County, 
and 16 km west of the village of Nignan. It is part of the 
1:100,000 geological map of Eshqh Abad (Aghanabati et 
al., 1994) (Error! Reference source not found.). 
According to the map, the Yaghman Shah rock formation 
consists of pink to yellow marls, dark gray shales, and 
sandstone with interbeds of sandy limestones. Overlying 
the Yaghman Shah formation is a sequence of limestone, 
marl, and shale belonging to the Ghal’eh Dokhtar 
formation. Most of the lead and zinc mineral deposits 
and indications in this area are associated with the 
dolomitic and limestone formations of Shotori, Jamal, 
and Shemshak. These deposits are often related to faults 
within the limestone-dolomitic formations (Aghanabati 
et al., 1994). 

IV. PREPROCESSING AND PROCESSING OF SATELLITE 

IMAGES 

A. Satellite Images 
The ASTER sensor is a multispectral sensor developed 

by NASA and METI (Japan’s Ministry of Economy, Trade, 
and Industry). This sensor covers three spectral ranges: 
Visible and Near Infrared (VNIR) bands, ranging from 
0.52 to 0.86 µm; Shortwave Infrared (SWIR) bands, 
ranging from 1.6 to 2.43 µm; and Thermal Infrared (TIR) 
bands, ranging from 8.125 to 11.65 µm. These 
capabilities allow ASTER to provide valuable 
information regarding surface characteristics, including 
mineral compositions and thermal variations (Schmugge 
et al., 2003). Sentinel-2, part of the European Union’s 
Copernicus program, is managed by ESA (European 
Space Agency). This multispectral sensor contains 13 
bands, including VNIR bands from 0.4 to 1.0 µm and 
SWIR bands ranging from 1.375 to 2.28 µm. Sentinel-2 
also includes special bands for water detection and 
vegetation monitoring (Spoto et al., 2012). 
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Fig. 1. Geological Map of the study area based on the 1:100,000 geological map of ESGH ABAD 

 

The SWIR bands on the ASTER sensor (bands 5 to 9) 
are crucial for detecting clay and silicate minerals such 
as kaolinite, montmorillonite, illite, and sericite found in 
argillic and phyllic alterations, as well as chlorite, 
epidote, and sericite in propylitic alteration zones. These 
minerals exhibit distinctive reflective characteristics in 
the SWIR bands. Specifically, clay minerals and 
phyllosilicates are well-recognized in these bands due to 
their strong reflection and distinctive absorption 
features in this spectral range. Additionally, the TIR 
bands (bands 10 to 14) on ASTER are particularly 
effective for identifying silicate minerals such as quartz 
and feldspar, commonly present in phyllic alteration 
zones and silicification. Quartz, often found in alteration 

zones associated with metal deposits, exhibits strong 
reflectance in thermal bands, making it easily 
identifiable. Thermal and hydrothermal alterations, 
often accompanied by temperature shifts and 
silicification, can also be detected using TIR bands. 
Sentinel-2 features numerous bands within the VNIR 
range highly sensitive to iron oxides. These bands reveal 
strong reflectance from iron oxides like hematite, 
limonite, and goethite, making it possible to identify 
these mineral changes due to their distinctive 
reflectance in this spectral range (Hu et al., 2018; 
Kabolizadeh et al., 2022) (  Fig. 1). 

 

 

 
  Fig. 1. Comparison of ASTER and SENTINEL Bands (Kabolizadeh et al., 2022) 
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B. Pre-Processing of Satellite Images 
1) Radiometric correction  
Radiometric correction refers to a process where the 
brightness values or pixel intensities of a satellite image 
are adjusted to eliminate or reduce atmospheric effects, 
solar angle variations, and surface conditions. These 
corrections enhance the quality of images, making the 
data more reliable for quantitative and qualitative 
analysis in fields like geology, agriculture, and 
environmental studies. Atmospheric effects such as light 
absorption and scattering by air molecules and 
suspended particles can alter the amount of energy 
reaching the sensor. Additionally, variations in solar 
illumination angle and topographical conditions like 
slope and surface orientation can influence reflected 
light intensity. The Internal Average Relative Reflectance 
(IARR) method is a straightforward and practical 
approach for radiometric correction, especially in 
situations where atmospheric data is unavailable or 
calibrated images are not accessible. IARR operates on 
the assumption that each satellite image contains areas 
with relatively consistent reflectance across the entire 
image. To implement IARR, the average reflectance of all 
pixels in each spectral band is calculated. Then, the 
reflectance of each pixel in each spectral band is divided 
by the average of that band. This process mitigates 
external factors such as atmospheric conditions and 
solar angles, resulting in an image that better reflects 
surface features without atmospheric interference. One 
of the key advantages of the IARR method is that it does 
not require external data or complex atmospheric 
models, making it highly suitable for areas where precise 
atmospheric data is unavailable (Bernstein et al., 2012; 
Kayadibi, 2011). Fig. 3 Shows the Spectral Profile of a 
Pixel before and after IARR correction. 
 
2) Vegetation Removal 

In geological studies, particularly when investigating 
hydrothermal alterations, removing vegetation and 
utilizing the Normalized Difference Vegetation Index 
(NDVI) is crucial. NDVI is a tool for detecting and 
assessing vegetation cover. Healthy vegetation reflects 
high near-infrared and low red light, which results in 
higher NDVI values. Conversely, areas with sparse or no 
vegetation yield lower NDVI values. 

 

𝑁𝐷𝑉𝐼 =
𝑁𝐼𝑅 − 𝑅𝑒𝑑

𝑁𝐼𝑅 + 𝑅𝑒𝑑
 (1) 

 

 
In geological surveys, vegetation cover can obscure 

the underlying geological features. Hydrothermal 
alterations are often detected by spectral differences in 

the reflected light from minerals, but vegetation may 
mask these reflective patterns, making mineral spectral 
analysis difficult. Removing vegetation from satellite or 
aerial images allows geologists to focus more on the 
underlying geological structures and areas with 
potential alterations (Okada et al., 1993; Pour et al., 
2013). 

C. Satellite Image Processing 

1) Lineament Enhancement using Directional 
Filters 

Directional filters are employed in image processing 
to detect edges and structural features in specific 
directions. These filters analyze variations in intensity 
across different directions, enhancing structures such as 
lineaments (distinct lines or edges) in satellite images. 
Directional filters are a spatial filter that is applied to 
images as small matrices. They use convolution to 
measure intensity changes across various directions. 
The filters are tuned to specific orientations (e.g., 0, 45, 
90, and 135 degrees), with convolution being a 
mathematical operation where the filter (or kernel) is 
applied over the original image. Each filter element is 
multiplied by the pixel values within a specific image 
area, and the results are summed. This process 
highlights particular features and identifies sudden 
changes in intensity. Lineaments often appear as edges 
in satellite images, reflecting abrupt shifts in brightness 
or reflectance, possibly indicating geological structures 
such as faults, fractures, or lithological boundaries. 
Directional filters are designed to be sensitive to changes 
in a specific direction. For instance, 0° and 90° filters 
detect horizontal and vertical changes, while 45° and 
135° detect diagonal changes. When applied to an image, 
the directional filter calculates brightness variations in 
the designated direction. Sudden changes, such as a 
lineament, will be highlighted and clearly shown after 
filtering. By identifying these sudden brightness 
variations and enhancing them in various directions, 
directional filters assist in detecting lineaments in 
satellite images. These filters make it easier to identify 
linear structures, such as faults or other geological 
features, prominently visible in the images (Marghany et 
al., 2010; Scharcanski et al., 1997; Trahanias et al., 1996). 

After enhancing potential lineaments using 
directional filters in ENVI software, the lineaments were 
accurately extracted using Geomatica software (Fig. 3 
and Fig. 4). 
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Fig. 2. Spectral Profile of a Pixel before and after IARR correction 

 

 
Fig. 3. Density Map of the probable lineaments extracted 

 

 
Fig. 4. Probable Lineaments of the Study Area extracted from 
SENTINEL 2A imagery and the rose diagram of the lineaments 

 

2) False Color Composite 
Satellite images, particularly multispectral ones, 

operate in different spectral ranges and capture images 
in various bands. There are two primary methods for 
displaying and analyzing multispectral satellite images: 
True Color Composite and False Color Composite. 

- True Color Composite: In this method, the spectral 
bands closest to the visible range of human sight (red, 
green, and blue) are assigned to the red (R), green (G), 
and blue (B) channels of the image, respectively. This 
combination creates an image resembling how the 
human eye would naturally views the landscape. It 
accurately depicts surface features such as vegetation, 
water, roads, and buildings.  

- False Color Composite: In this technique, spectral 
bands are selected in a way that doesn't necessarily 
correspond to human-visible colors. For instance, Near-
Infrared (NIR) bands are often assigned to one of the 
visible color channels (red, green, or blue). This method 
helps highlight specific features of the Earth's surface 
that are not readily observable in true-color composite 
images. False color composite is frequently used for 
analyzing vegetation, identifying mineral alterations, or 
studying geological structures. 

As a result, true color composite is utilized for a 
natural representation of the Earth's surface, whereas 
false color composite is used to emphasize particular 
features not easily visible in the visible spectral range 
(Boloki et al., 2010; Feizi et al., 2012). 

In this study, the RGB=432 combination from Landsat 
8 satellite imagery was used to display the true color 
composite of the region (Fig. 5). 

The false color composite with RGB=468 from ASTER 
satellite imagery was employed to visualize alteration 
zones associated with mineralization. In this composite, 
propylitic alterations are displayed in shades of green to 
blue, while argillic alterations appear in pink to red. 
Furthermore, the false color composite with RGB=461 in 
ASTER images displayed argillic alterations and iron 
oxides. In this combination, argillic alterations appear 
green to blue, and iron oxides are visualized in red to 
orange (Feizi et al., 2012) (Fig. 6 and Fig. 7). 
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Fig. 5. True Color Composite (RGB432) from Landsat satellite 

imagery 
 

 
Fig. 6. RGB468 from ASTER satellite for displaying propylitic 

(olive green) and argillic (pink) alterations 
 

 
Fig. 7. RGB461 from ASTER satellite to show sericitic and 
argillic alterations (green to blue) and iron oxides (red to 

orange) 

 
3) Band Ratio Method 

The band ratio method is one of the most widely used 
techniques for identifying areas containing specific 
minerals. In this method, to generate an image 
highlighting a particular mineral or alteration type, the 
band in which the mineral has the highest reflectance is 
divided by the band with the highest absorption. The 
result is a black-and-white image where bright spots 
indicate the highest ratio values, signifying the greatest 
likelihood of the target mineral's presence 
(Kasmaeeyazdi et al., 2022; Pour et al., 2018). 

In this study, various band ratios (Table 1) were used 
to enhance iron oxides, argillic alterations, silicification, 
dolomitization, and sericitization, all associated with 
metal mineralization. The results, along with 
explanations, are provided in Fig. 8 through Fig. 19. 

All black-and-white images generated by various 
methods were classified using the thresholding method 
based on the mean and standard deviation. For images 
where high values are favorable, the anomaly threshold 
was set at μ+2σ, and for images where low values are 
favorable, the anomaly threshold was set at μ-2σ. 
 

Table 1:Band ratios used in this research 

Reference Description Bandratio Satellite image 

(Ding et al., 2023) 

Areas containing ferric iron oxide (Fe³⁺) 2/1 

ASTER 

Areas containing ferrous iron oxide (Fe²⁺) (5/3)+(1/2) 
Areas containing carbonates, chlorite, and epidote (7+9)/8 
Areas containing chlorite and epidote (6+9)/(7+8) 
Areas containing dolomite (6+8)/7 
Areas containing muscovite, illite, and smectite (5+7)/6 
Identification of areas containing alunite and kaolinite (4+6)/5 
Identification of areas containing quartz 14/12 

(Kasmaeeyazdi et al., 2022) 

Areas containing iron oxides 4/2 

SENTINEL 2A 
Areas containing iron oxides 4/3 
Areas containing ferric iron oxide (Fe³⁺) 11/8 
Areas containing ferrous iron oxide (Fe²⁺) 4/11 
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Fig. 8. Band ratio 2/1 of ASTER satellite imagery for the identification of areas containing ferric iron oxide (Fe³⁺) 

 

  
Fig. 9. Band ratio (5/3) + (1/2) of ASTER satellite imagery for the identification of areas containing ferrous iron oxide 

(Fe²⁺). 

 

  
Fig. 10. Band ratio (7+9)/8 of ASTER satellite imagery for the identification of areas containing carbonates, chlorite, 

and epidote 
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Fig. 11. Band ratio (6+9)/(7+8) of ASTER satellite imagery for the identification of areas containing chlorite and 

epidote 

 

  
Fig. 12. Band ratio (6+8)/7 of ASTER satellite imagery for the identification of areas containing dolomite 

 

  
Fig. 13. Band ratio (5+7)/6 of ASTER satellite imagery for the identification of areas containing muscovite, illite, and 

smectite 
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Fig. 14. Band ratio (4+6)/5 of ASTER satellite imagery for the identification of areas containing alunite and kaolinite 

 

  
Fig. 15. Band ratio 14/12 of ASTER satellite imagery for the identification of areas containing quartz 

 

  
Fig. 16. Band ratio 4/2 of Sentinel satellite imagery for the identification of areas containing iron oxides 
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Fig. 17. Band ratio 4/3 of Sentinel satellite imagery for the identification of areas containing iron oxides 

 

  
Fig. 18. Band ratio 11/8 of Sentinel satellite imagery for the identification of areas containing ferric iron oxide (Fe³⁺) 

 

  
Fig. 19. Band ratio 4/11 of Sentinel satellite imagery for identifying areas containing ferrous iron oxide (Fe²⁺) 
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D. Advanced ASTER Image Processing 

In this section, endmembers (minerals) from ASTER 
satellite imagery were extracted using the Sequential 
Maximum Angle Convex Cone (SMACC) algorithm. These 
endmembers were then compared with spectral 
libraries to identify mineral types and determine the 
alteration zones in the study area. 

 
1) Selecting the Appropriate Spectral Profile 

An endmember is the reflectance spectrum of a pure 
material detected by the sensor. Spectra extracted from 
satellite imagery that represent specific materials are 
referred to as endmembers. In this study, the SMACC 
algorithm (Gruninger et al., 2004) was used to extract 
endmembers from ASTER satellite images of the Shadan 
region .  

After initial corrections, a 6-band set from the imagery 
was prepared. Given the presence of 6 separate bands in 
the shortwave infrared (SWIR) range of the 
electromagnetic spectrum, the ASTER sensor easily 
differentiates and classifies various minerals in 
porphyry copper alteration zones. Clay minerals, due to 
the presence of AlOH and MgOH bonds in their 
composition, exhibit high absorption at wavelengths of 
2.22 µm, 2.17 µm, 2.26 µm, and 2.35 µm, which enables 
their better identification (Hosseinjani et al., 2011). 

In this research, 30 endmembers were extracted from 
the 6-band set. These were compared to 6-band spectra 
from the USGS spectral library, and the endmembers that 
closely matched alteration-related minerals associated 
with porphyry copper deposits were selected. 

 
2) Identifying and Selecting Extracted Endmembers 
From the 30 extracted endmembers, after comparison 
with reference spectra, key endmembers related to 
alteration minerals were identified. Endmembers 8 and 
17 were selected for dolomite and calcite, 20 and 29 for 
chlorite and epidote, 13 and 18 for jarosite, 28 for 
kaolinite, and 7, 12, 14, and 22 for muscovite (Fig. 20 to 
Fig. 24). 
 

 
Fig. 20. Comparison of Library Spectral Profiles with Selected 

Endmembers for Chlorite and Epidote Minerals 

 
Fig. 21. Comparison of Library Spectral Profiles with Selected 

Endmembers for Dolomite and Calcite Minerals 

 
Fig. 22. Comparison of Library Spectral Profiles with Selected 

Endmembers for the Kaolinite Mineral 
 

 
Fig. 23. Comparison of Library Spectral Profiles with Selected 

Endmembers for the Jarosite Mineral 
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Fig. 24. Comparison of Library Spectral Profiles with Selected 

Endmembers for Muscovite and Sericite Minerals 
 

3) Delineating Areas Containing Selected 
Endmembers 

To delineate areas containing different materials, 
supervised classification methods were used after 
selecting appropriate endmembers. As previously 
mentioned, classification methods can be divided into 
two categories: Per-pixel and sub-pixel classifications. In 
this study, Per-pixel classification using the SAM method 
and sub-pixel classification using MTMF were employed. 

a) Per-Pixel Classification 

In Per-pixel classification, each pixel is compared with 
a reference spectrum and assumed to represent a single 
pure material. Hence, there is no mixing within the pixel, 
and only the degree of similarity to the reference 
spectrum is assessed. One such method is the Spectral 
Angle Mapper (SAM). SAM is a rapid classification 
method that assesses the similarity between image 
spectra and reference spectra to map geological units. 
This process involves calculating the spectral angle 
between the image spectra and reference spectra, 
producing outputs that indicate angular distances 
between zero and one, with smaller angles indicating 
greater similarity. Darker pixels in SAM images 
represent areas with smaller spectral angles, showing 
the highest similarity to the reference spectrum. 

The SAM algorithm calculates similarity using the 
following equation: 

 

𝛼 = 𝑐𝑜𝑠−1 [
∑ 𝑡𝑖𝑟𝑖

𝑛𝑏
𝑖=1

[∑ 𝑡𝑖
2𝑛𝑏

𝑖=1 ]1/2[∑ 𝑟𝑖
2𝑛𝑏

𝑖=1 ]1/2
]  (2) 

 
Where n is the number of bands, 𝑡𝑖 represents the test 

spectrum, and 𝑟𝑖  represents the reference spectrum. This 

algorithm has been widely used by remote sensing 
scientists for lithological unit mapping. In SAM, the 
darkest points in the image are identified as the target 
areas (Mirsepahvand et al., 2022; Tangestani et al., 
2008). The results of this method are presented in the 
Fig. 25 to Fig. 31. 

 

 
Fig. 25. Rule File for Endmember No. 8 Related to Calcite 

and Dolomite Minerals 
 

 
Fig. 26. SAM-Derived Segmented Regions for Endmembers 

No. 8 and 17 
 

 
Fig. 27. SAM-Derived Segmented Regions for Endmembers 

No. 13 and 18 
 



 

115 
Vol 2, No. 2 / Summer 2024 
 

 
Application of SAM and MTMF methods … 

 
Fig. 28. SAM-Derived Segmented Regions for Endmembers 

No. 7, 12, 14, and 22 
 

 
Fig. 29. SAM-Derived Segmented Regions for Endmember No. 

27 
 

 
Fig. 30. SAM-Derived Segmented Regions for Endmembers 

No. 15, 20, and 29 
 

 
Fig. 31. SAM-Derived Segmented Regions for Endmember No. 

28 
 

b) Sub-Pixel Classification 

Full-pixel classification assumes each pixel represents 
a single pure material, which is not always valid. The 
spatial resolution of sensors like ASTER (15m to 90m) 
often covers mixed materials within a pixel. Some 
surface materials inherently have mixed properties. In 
contrast to traditional classification where a pixel is 
assumed to be pure and assigned to a single material, 
sub-pixel classification allows a pixel to represent more 
than one material. The Mixture-Tuned Matched Filtering 
(MTMF) approach is one of the sub-pixel classification 
methods used to separate mixed materials within a pixel. 

MTMF does not require knowledge of all the 
endmembers in the image, which is one of its key 
advantages. By introducing even a single spectrum, this 
method can filter and refine the pixels. MTMF results are 
displayed as two images: the matched filter (MF) image 
and the infeasibility image. By comparing the data in 
these two images in a two-dimensional space, pixels with 
high MF values and low infeasibility scores can be 
identified and evaluated for mapping (Hosseinjani et al., 
2011; Modabberi et al., 2017; Tayebi et al., 2015). Fig. 32 
and Fig. 33 show the MF and infeasibility images for 

endmember 8. The classified results of dividing MF by 
infeasibility for the end members are presented in Fig. 
34 to Fig. 40. 
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Fig. 32. Image Resulting from the Application of the Matched 

Filter for Endmember No. 8 
 

 
Fig. 33. Image Resulting from the infeasibility for 

Endmember No. 8 
 

 
Fig. 34. Image Resulting from Dividing MF by Infeasibility for 

Endmember No. 8 

 
Fig. 35. MTMF-Derived Segmented Regions for Endmembers 

No. 8 and 17 
 

 
Fig. 36. MTMF-Derived Segmented Regions for Endmembers 

No. 13 and 18 
 

 
Fig. 37. MTMF-Derived Segmented Regions for Endmembers 

No. 7, 12, 14, and 22 
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Fig. 38. MTMF-Derived Segmented Regions for Endmember 

No. 27 

 
Fig. 39. MTMF-Derived Segmented Regions for Endmembers 

No. 15, 20, and 29 
 

V. DISCUSSION 

In this study, dolomitic, silicic, iron oxide, sericite, and 
argillic alterations were highlighted using false color 
composite and various band ratio methods from satellite 
images. Following this, two spectral analysis techniques 
were applied for more precise identification and 
differentiation of key minerals associated with these 
alterations: SAM (Spectral Angle Mapper) for full-pixel 
identification and MTMF (Mixture Tuned Matched 
Filtering) for sub-pixel identification. 

In the SAM method, the spectral angle between image 
pixels and reference mineral spectra was calculated to 

map areas containing specific minerals. This method, 
due to its ability to detect pixels whose spectra closely 
resemble the reference spectra, offers high accuracy in 
mineral discrimination. Additionally, the MTMF method, 
based on a composite analysis and adaptive filtering 
approach, facilitated the detection of minerals at sub-
pixel levels. This method is beneficial in regions where 
minerals exist in combination with other materials or in 
small quantities. The results from these analyses showed 
that the mineral maps produced using SAM and MTMF 
methods align closely with the outcomes from band ratio 
and false color composite techniques. This consistency 
between various methods increases confidence in the 
existence of alterations associated with mineralization in 
the studied area. 
By analyzing satellite imagery and integrating the 
results, the northern and southern parts of the study 
area were identified as promising regions for further 
exploration. Significant alteration zones are observed in 
both sections. A large portion of the area is affected by 
iron oxide and dolomitic alterations, indicative of 
hydrothermal activities and associated alteration 
processes. Additionally, a limited area exhibited sericite 
alteration, which corresponds to the presence of 
minerals such as muscovite and sericite. Argillic and 
propylitic alterations were observed only in limited 
northern zones and the western boundary outside the 
study area. These alterations typically occur in 
hydrothermal systems and suggest potential areas of 
high mineralization prospects (Fig. 41). 

 

 
Fig. 40. MTMF-Derived Segmented Regions for Endmember 

No. 28 
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Fig. 41. Separated alteration regions of the study area 

 

Hydrothermal systems are one of the primary 
mechanisms for mineral deposition, formed by complex 
processes of heat and material transfer within host 
rocks. One of the key indicators of hydrothermal activity 
is the presence of iron oxides such as hematite (Fe₂O₃) 
and goethite (FeO(OH)), which often result from 
chemical alterations and oxidation of hydrothermal 
fluids in the presence of oxygen. These oxides not only 
serve as by-products of hydrothermal processes but also 
act as important geochemical indicators for base metal 
mineralization, including copper (Cu) and iron (Fe), as 
well as precious metals like gold (Au) (Pirajno, 2008). 
Dolomitic alteration (CaMg(CO₃)₂) in hydrothermal 
environments is an indicator of hydrothermal fluids rich 
in magnesium. This type of alteration is usually 
associated with medium to high-temperature alteration 
processes, which form as hydrothermal fluids interact 
with carbonate rocks. Dolomite, due to its suitable 
crystalline structure and chemical stability, acts as an 
ideal host for the deposition of minerals like galena 
(PbS), sphalerite (ZnS), fluorite (CaF₂), and barite 
(BaSO₄). The presence of these minerals suggests the 

transfer of elements within hydrothermal systems and 
deposition within fractured and faulted environments 
through which the fluid flows (Leach et al., 2010). 
Additionally, the genetic link between hydrothermal 
alterations and geological structures, particularly 
lineaments and faults, indicates that these structures act 
as main channels for the transport of hydrothermal 
fluids. In this process, the pressure concentration and 
high temperatures along fault zones facilitates the 
deposition of base metals and sulfide minerals (such as 
pyrite, chalcopyrite (CuFeS₂), and sphalerite). This 
suggests the concentration of vein-type mineralization 
along these structures and highlights the importance of 
detailed structural analysis in evaluating the mineral 
potential of an area (Hedenquist et al., 1994). 

Given the widespread dolomitic and iron oxide 
alterations, the area holds significant potential for lead 
and zinc mineralization. The dolomitic alteration, as a 
prominent feature in the region, points to hydrothermal 
activities with magnesium-rich chemical compositions 
that could create favorable conditions for the deposition 
of lead minerals like galena (PbS) and zinc minerals like 
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sphalerite (ZnS). This alteration typically occurs in 
medium to high-temperature hydrothermal systems, 
where dolomite acts as an ideal host, providing the right 
conditions for the accumulation and concentration of 
these metals. In addition to lead and zinc, the region has 
promising potential for iron mineralization due to the 
widespread presence of iron oxides like hematite and 
goethite. These oxides, as products of hydrothermal 
activities, could indicate alteration processes related to 
iron ore formation. Furthermore, hydrothermal 
activities associated with iron oxides and argillic and 
sericitic alterations increase the potential for gold in the 
region. In areas where hydrothermal alterations, 
especially sericitic and argillic, are present, there is also 
a likelihood of gold mineralization. Thus, the presence of 
a suite of base metals such as lead, zinc, iron, and gold, 
along with industrial minerals like fluorite and barite, 
indicates the high potential of the area for multiple types 
of mineralization. 

VI. CONCLUSION 

In this study, the application of spectral analysis 
methods SAM and MTMF allowed for accurate 
discrimination of key minerals, with results that closely 
matched other methods. The northern and southern 
parts of the area were identified as promising zones for 
further exploration, especially given the extensive 
alterations associated with hydrothermal activities. The 
strong relationship between alterations and geological 
structures, such as lineaments, suggests a high potential 
for mineralizing base metals like copper, iron, lead, and 
zinc, as well as precious metals like gold and industrial 
minerals like fluorite and barite. Future studies should 
focus more on these areas, particularly along lineaments, 
with detailed ground sampling and geochemical 
analyses to refine the results of this study and more 
precisely evaluate the mineral potential of the region. 
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