1. Neuschwander-Tetri BA. Non-alcoholic fatty liver disease. Bio Med Central Medicine. 2017;15:1-6. https://doi.org/10.1186/s12916-017-0806-8
2. Di Ciaula A, Passarella S, Shanmugam H, Noviello M, Bonfrate L, Wang DQ, Portincasa P. Nonalcoholic fatty liver disease (NAFLD). Mitochondria as players and targets of therapies? International Journal of Molecular Sciences. 2021;22(10):5375. https://doi.org/10.3390/ijms22105375
3. Kang C, Ji LL. Role of PGC-1α in muscle function and aging. Journal of Sport and Health Science. 2013;2(2):81-6. https://doi.org/10.1016/j.jshs.2013.03.005
4. Léveillé M, Besse-Patin A, Jouvet N, Gunes A, Sczelecki S, Jeromson S, Khan NP, Baldwin C, Dumouchel A, Correia JC, Jannig PR. PGC-1α isoforms coordinate to balance hepatic metabolism and apoptosis in inflammatory environments. Molecular Metabolism. 2020;34:72-84. https://doi.org/10.1101/703678
5. Mills EL, Harmon C, Jedrychowski MP, Xiao H, Garrity R, Tran NV, Bradshaw GA, Fu A, Szpyt J, Reddy A, Prendeville H. UCP1 governs liver extracellular succinate and inflammatory pathogenesis. Nature Metabolism. 2021;3(5):604-17. https://doi.org/10.1038/s42255-021-00389-5
6. Galloway CA, Yoon Y. Mitochondrial morphology in metabolic diseases. Antioxidants & Redox Signaling. 2013;19(4):415-30. https://doi.org/10.1089/ars.2012.4779
7. Archer SL. Mitochondrial dynamics—mitochondrial fission and fusion in human diseases. New England Journal of Medicine. 2013;369(23):2236-51. https://doi.org/10.1056/nejmra1215233
8. Li R, Toan S, Zhou H. Role of mitochondrial quality control in the pathogenesis of nonalcoholic fatty liver disease. Aging (Albany NY). 2020;12(7):6467. https://doi.org/10.18632/aging.102972
9. Orci LA, Gariani K, Oldani G, Delaune V, Morel P, Toso C. Exercise-based interventions for nonalcoholic fatty liver disease: a meta-analysis and meta-regression. Clinical Gastroenterology and Hepatology. 2016;14(10):1398-411. https://doi.org/10.1016/j.cgh.2016.04.036
10. Cho J, Johnson BD, Watt KD, Niven AS, Yeo D, Kim CH. Exercise training attenuates pulmonary inflammation and mitochondrial dysfunction in a mouse model of high-fat high-carbohydrate-induced NAFLD. Bio Med Central Medicine. 2022;20(1):429. https://doi.org/10.1186/s12916-022-02629-1
11. Evangelista FS, Ferreira MM, Fortunato‐Lima VC, Correa SM, Vecchiatto B, Martucci LF, et al. Metabolic cooperation between adipose tissue and skeletal muscle mediates the prevention of NAFLD through aerobic physical exercise. The FASEB Journal. 2022;36. https://doi.org/10.1096/fasebj.2022.36.s1.r3228
12. Mostafavian M, Abdi A, Mehrabani J, Barari A. Effect of eight weeks of aerobic progressive training with capsaicin on changes in PGC-1α and UPC-1 expression in visceral adipose tissue of obese rats with diet. Complementary Medicine Journal. 2020;10(2):106-17. https://doi.org/10.32598/cmja.10.2.627.4
13. Gonçalves IO, Passos E, Diogo CV, Rocha-Rodrigues S, Santos-Alves E, Oliveira PJ, et al. Exercise mitigates mitochondrial permeability transition pore and quality control mechanisms alterations in nonalcoholic steatohepatitis. Applied Physiology, Nutrition, and Metabolism. 2016;41(3):298-306. https://doi.org/10.1139/apnm-2015-0470
14. Hu Z, Zhang H, Wang Y, Li B, Liu K, Ran J, Li L. Exercise activates Sirt1-mediated Drp1 acetylation and inhibits hepatocyte apoptosis to improve nonalcoholic fatty liver disease. Lipids in Health and Disease. 2023;22(1):33. https://doi.org/10.1186/s12944-023-01798-z
15. Rasht I. The interaction effect of aerobic exercise and atorvastatin consumption on the expression level of MFN1/2 and DRP1 in hepatocytes of the rat liver with type 2 diabetes. Journal of Ardabil University of Medical Sciences. 2022;21(4):388-401. [In Persion]. https://doi.org/10.52547/jarums.21.4.388
16. Akyüz F, Demir K, Özdil S, Aksoy N, Poturoglu S, Ibrişim D, Kaymakoglu S, Besısık F, Boztas G, Çakaloglu Y, Mungan Z. The effects of rosiglitazone, metformin, and diet with exercise in nonalcoholic fatty liver disease. Digestive Diseases and Sciences. 2007;52:2359-67. https://doi.org/10.1007/s10620-006-9145-x
17. Gu J, Liang H, Ge X, Xia D, Pan L, Mi H, Ren M. A study of the potential effect of yellow mealworm (Tenebrio molitor) substitution for fish meal on growth, immune and antioxidant capacity in juvenile largemouth bass (Micropterus salmoides). Fish & Shellfish Immunology. 2022;120:214-21. https://doi.org/10.1016/j.fsi.2021.11.024
18. Caldas B.V, Guimarães V.H.D, Ribeiro G.H.M, dos Santos T.A.X, Nobre D.A, de Castro, R.J.S, et al. Effect of dietary supplementation withTenebrio molitor wholemeal and fermented flour modulating adipose lipogenesis gene expression in obese mice. Journal of Insects as Food and Feed. 2023;9(5):625-636. https://doi.org/10.3920/jiff2022.0070
19. Lee JY, Im AR, Shim KS, Ji KY, Kim KM, Kim YH, Chae S. Beneficial effects of insect extracts on nonalcoholic fatty liver disease. Journal of Medicinal Food. 2020;23(7):760-71. https://doi.org/10.1089/jmf.2019.4536
20. Ham JR, Choi RY, Lee Y, Lee MK. Effects of edible insect Tenebrio molitor larva fermentation extract as a substitute protein on hepatosteatogenesis and proteomic changes in obese mice induced by high-fat diet. International Journal of Molecular Sciences. 2021;22(7):3615. https://doi.org/10.3390/ijms22073615
21. Wang DQ, Schmitz F, Kopin AS, Carey MC. Targeted disruption of the murine cholecystokinin-1 receptor promotes intestinal cholesterol absorption and susceptibility to cholesterol cholelithiasis. The Journal of Clinical Investigation. 2004;114(4):521-8. https://doi.org/10.1172/jci200416801
22. Li J, Huang L, Xiong W, Qian Y, Song M. Aerobic exercise improves non-alcoholic fatty liver disease by down-regulating the protein expression of the CNPY2-PERK pathway. Biochemical and Biophysical Research Communications. 2022;603:35-40. https://doi.org/10.1016/j.bbrc.2022.03.008
23. Kim SY, Park JE, Han JS. Tenebrio molitor (mealworm) extract improves insulin sensitivity and alleviates hyperglycemia in C57BL/Ksj-db/db mice. Journal of Life Science. 2019;29(5):570-9. https://doi.org/10.1007/s13596-024-00813-7
24. Payne CL, Scarborough P, Rayner M, Nonaka K. A systematic review of nutrient composition data available for twelve commercially available edible insects, and comparison with reference values. Trends in Food Science & Technology. 2016;47:69-77. https://doi.org/10.1016/j.tifs.2015.10.012
25. Kang Y, Applegate CC, He F, Oba PM, Vieson MD, Sánchez-Sánchez L, Swanson KS. Yellow mealworm (Tenebrio molitor) and lesser mealworm (Alphitobius diaperinus) proteins slowed weight gain and improved metabolism of diet-induced obesity mice. The Journal of Nutrition. 2023;153(8):2237-48. https://doi.org/10.1016/j.tjnut.2023.06.014
26. Popov DV, Lysenko EA, Miller TF, Bachinin AV, Perfilov DV, Vinogradova OL. The effect of single aerobic exercise on the regulation of mitochondrial biogenesis in skeletal muscles of trained men: A time-course study. Human Physiology. 2015;41:296-303. https://doi.org/10.1134/s0362119715030123
27. Kianmehr P, Azarbayjani MA, Peeri M, Farzanegi P. Synergic effects of exercise training and octopamine on peroxisome proliferator-activated receptor-gamma coactivator-1a and uncoupling protein 1 mRNA in heart tissue of rat treated with deep frying oil. Biochemistry and Biophysics Reports. 2020;22:100735. https://doi.org/10.1016/j.bbrep.2020.100735
28. Mj G. Brief intense interval exercise activates AMPK and p38 MAPK signaling and increases the expression of PGC-1alpha in human skeletal muscle. Journal Appl Physiology. 2009;106:929-34. https://doi.org/10.1152/japplphysiol.90880.2008
29. Takahashi H, Kotani K, Tanaka K, Egucih Y, Anzai K. Therapeutic approaches to nonalcoholic fatty liver disease: exercise intervention and related mechanisms. Frontiers in Endocrinology. 2018;9:588. https://doi.org/10.3389/fendo.2018.00588
30. Mozaffaritabar S, Koltai E, Zhou L, Bori Z, Kolonics A, Kujach S, Gu Y, Koike A, Boros A, Radák Z. PGC-1α activation boosts exercise-dependent cellular response in the skeletal muscle. Journal of Physiology and Biochemistry. 2024;80(2):329-35. https://doi.org/10.1007/s13105-024-01006-1
31. Mou YL, Zhao R, Lyu SY, Zhang ZY, Zhu MF, Liu Q. Crocetin protects cardiomyocytes against hypoxia/reoxygenation injury by attenuating Drp1-mediated mitochondrial fission via PGC-1α. Journal Geriatr Cardiol. 2023;20(1):68-82. https://doi.org/10.26599/1671-5411.2023.01.001
32. Gill JF, Delezie J, Santos G, McGuirk S, Schnyder S, Frank S, et al. PGC-1α regulates mitochondrial calcium homeostasis, SR stress and cell death to mitigate skeletal muscle aging. BioRxiv. 2019;23:451229. https://doi.org/10.1101/451229
33. Turkyilmaz A, Lee Y, Lee MK. Fermented extract of mealworm (Tenebrio molitor larvae) as a dietary protein source modulates hepatic proteomic profiles in C57BLKS/J-db/db mice. Journal of Insects as Food and Feed. 2023;9(9):1199-210. https://doi.org/10.3920/jiff2022.0162
34. Seo M, Goo TW, Chung MY, Baek M, Hwang JS, Kim MA, Yun EY. Tenebrio molitor larvae inhibit adipogenesis through AMPK and MAPKs signaling in 3T3-L1 adipocytes and obesity in high-fat diet-induced obese mice. International Journal of Molecular Sciences. 2017;18(3):518. https://doi.org/10.3390/ijms18030518
35. Ringseis R, Peter L, Gessner DK, Meyer S, Most E, Eder K. Effect of Tenebrio molitor larvae meal on the antioxidant status and stress response pathways in tissues of growing pigs. Archives of Animal Nutrition. 2021;75(4):237-50. https://doi.org/10.1080/1745039x.2021.1950106
36. Lee JB, Kwon DK, Jeon YJ, Song YJ. Mealworm (Tenebrio molitor)-derived protein supplementation attenuates skeletal muscle atrophy in hindlimb casting immobilized rats. Journal of Physiological Investigation. 2021;64(5):211-7. https://doi.org/10.4103/cjp.cjp_40_21
37. Hermans WJ, Senden JM, Churchward-Venne TA, Paulussen KJ, Fuchs CJ, Smeets JS, et al. Insects are a viable protein source for human consumption: from insect protein digestion to postprandial muscle protein synthesis in vivo in humans: a double-blind randomized trial. The American Journal of Clinical Nutrition. 2021;114(3):934-944. https://doi.org/10.1093/ajcn/nqab115
38. Moberg M, Apró W, Ekblom B, Van Hall G, Holmberg HC, Blomstrand E. Activation of mTORC1 by leucine is potentiated by branched-chain amino acids and even more so by essential amino acids following resistance exercise. American Journal of Physiology-Cell Physiology. 2016;310(11):C874-84. https://doi.org/10.1152/ajpcell.00374.2015
39. Kimball SR. Interaction between the AMP-activated protein kinase and mTOR signaling pathways. Medicine and Science in Sports and Exercise. 2006 Nov 1;38(11):1958. https://doi.org/10.1249/01.mss.0000233796.16411.13