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Abstract 

Accurate rainfall prediction is crucial for effective water resource management, especially in arid 

and semi-arid regions. This study proposes a novel hybrid approach, combining the Non-linear 

Auto Regressive with eXogenous inputs (NARX) neural network with a Genetic Algorithm (GA) 

for parameter optimization, aiming to improve daily rainfall prediction in Khorasan Razavi 

province, Iran. The performance of the proposed NARXGA model was compared with several 

benchmark models, including traditional time series models ARIMA, Holt-Winters Exponential 

Smoothing (HWES), and machine learning models, such as LSTM, CNN1D and the standalone 

NARX network. The models were trained and tested using five years of daily meteorological data 

from Mashhad. The results showed that the NARXGA model achieved the lowest Mean Squared 

Error (MSE) on both the training and test datasets, with values of 9.7453 and 11.5565, respectively, 

thus showing that the method can more effectively capture the non-linear patterns in rainfall data. A 

convergence analysis of the GA was also provided, as well as histograms of the error distributions, 

which further validated the superior performance of the proposed NARXGA model. This research 

highlights the potential of hybrid AI models for enhancing rainfall prediction accuracy and 

providing valuable insights for water management and drought mitigation in arid and semi-arid 

regions. 

Keywords: Genetic Algorithm, Hybrid Model, Khorasan Razavi Province, NARX Neural Network, 

Rainfall Prediction. 

 

1. Introduction 

Accurate prediction of rainfall plays an 

important part in proper management of the 

water resources, particularly in arid and semi-

arid regions. Rainfall plays a central part in the 

hydrologic cycle as an important factor, 

influencing agricultural production, drought 

mitigation, and flood control. With the 

ongoing climate change and increasing needs 

for water, accurate forecasting methods have 

never been of such prominence as they are 

today (Baig et al., 2024). 

Traditional rain forecasting models are 

based on sophisticated mathematical 

formulations and physical mechanisms that 

require big sets of data and a great amount of 

computational resources (Barrera-Animas et 

al., 2022). However, with advances in artificial 

intelligence (AI) and machine learning (ML), 

there is the promise of using data-driven 

techniques for the building of more accurate 

and computationally less expensive models 

(Bochenek and Ustrnul, 2022). Among 

severaltechniquesof AI, artificial neural 

networks (ANNs) have gained prominence as 

an efficient tool for representing complex non-

linear relationships between meteorological 

variables (Y.LeCun et al., 2015). Recurrent 

neural networks with their ability of sequential 

processing of the data have emerged as a 

common approach for time series forecasting 

(Hochreiter et al., 1997). 

Aside from that, hybrid model strategies 

that merge optimization techniques with AI 
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techniques have gained prominence in recent 

years. Genetic algorithms (GAs), inspired by 

the natural process of selection, are an 

extremely effective model for parameter 

optimization and model improvement 

(Goldberg, 1989). By the combination of the 

virtues of ANNs and GAs, more advanced 

hybrid models with more predictive strength 

than traditional methods may be developed 

(Kaveh and Mesgari, 2023). 

This study investigates the potential of a 

hybrid Non-linear Auto Regressive with 

eXogenous inputs (NARX) network and 

genetic algorithm (NARXGA) for rainfall 

prediction in Khorasan Razavi province, Iran. 

This region faces severe water scarcity 

challenges, making accurate rainfall 

forecasting essential for supporting sustainable 

agricultural practices and mitigating drought 

and flood risks (Zabihi et al., 2022). Our 

approach aims to improve prediction accuracy 

by fine-tuning the parameters of the NARX 

neural network with the GA optimization. This 

study also examines the performance of the 

proposed NARXGA model against traditional 

ANN architectures, including NARX, Non-

linear Auto-Regressive (NAR), and Non-linear 

Input Output (NIO) networks to evaluate its 

effectiveness. 

The main objectives of this research are to: 

• Develop a hybrid NARXGA model for 

daily rainfall prediction using meteorological 

data. 

• Compare the performance of the 

proposed NARXGA model with that of 

traditional ANNs (NARX, NAR, and NIO) in 

a real-world setting. 

• Evaluate the effectiveness of the 

genetic algorithm in fine-tuning the weights of 

the NARX model. 

• Demonstrate how a hybrid approach 

can be utilized for more efficient and accurate 

rainfall forecasting. 

Artificial Neural Networks (ANNs) have 

extensively been utilized in a variety of 

hydrologic environments owing to their ability 

to model complicated nonlinear relationships 

(Dotse et al., 2024). Different ANN 

architectures, such as Feedforward Neural 

Networks (FFNNs) and Recurrent Neural 

Networks (RNNs), have been utilized in 

explaining the spatiotemporal dynamics of 

precipitation (El Shafie et al., 2012; Akbari 

Asanjan et al., 2018). Specifically, RNNs—

i.e., the Long Short-Term Memory (LSTM) 

networks and the Gated Recurrent Units 

(GRUs)—have proved superior in time series 

forecasting due to their ability to handle long-

distance dependencies of the input data 

(Priatna and Djamal, 2020; Pujara and Paudel, 

2024). 

Despite their demonstrated effectiveness, 

artificial neural networks have some 

limitations. They require extensive amounts of 

training data and can be overfitting if not 

thoroughly trained. Moreover, the weights and 

biaswithin artificial neural networks are often 

initialized in an arbitrary way and thus may 

lead to inconsistent results (Sun et al., 2018). 

Choosing the best architecture for artificial 

neural networks may also be difficult when 

there is no prior experience. More recent 

studies have tackled the challenge of the need 

for hybrid models to address these limitations. 

Hybrid models that bring together the best 

of different methodologies have gained much 

prominence in rainfall forecasting. Usually, 

these models harness artificial intelligence 

together with optimization methodologies for 

improvement. For instance, the combination of 

artificial neural networks (ANNs) with 

wavelet transform and decomposition 

methodologies has proved beneficial by 

accurately capturing a wide range of temporal 

scales in evidence with rainfall phenomenon 

(Wei and You, 2022).  

Hybrid models have also been developed 

by fusing Support Vector Machines (SVMs) 

with ANNs. These have proved superior in 

comparison with models developed based on 

individual models (Xiang et al., 2018). These 

studies emphasize the importance of 

identifying a proper hybrid model for 

successful rainfall forecasting. 

In recent years, combining artificial neural 

networks (ANNs) with evolutionary 

algorithms, including genetic algorithms 

(GAs), has produced promising results (Pham 

et al., 2024). Evolutionary algorithms provide 

an efficient method for the optimization of 

ANN architectures and parameters, thus 

enhancing predictive robustness and accuracy. 

The combination of evolutionary algorithms 

and ANNs addresses the limitations related to 

their respective methodologies alone, resulting 

in forecasting models that are both robust and 
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adaptable. For example, in a study in 2023, it 

was shown that a recurrent neural network 

optimized using particle swarm optimization 

(PSO) performed better than traditional RNNs 

in the application of rainfall forecasting 

(Nemade et al., 2023). In this study, a hybrid 

model combining PSO with Long Short-Term 

Memory (LSTM) networks was used to 

forecast monthly rainfall, using PSO to 

optimize the model. Likewise, in another 

study, the authors hybridized genetic 

algorithms (GA) and particle swarm 

optimization (PSO) with a backpropagation 

algorithm in training a radial basis function 

network for the prediction of monthly 

precipitation (Wu et al., 2015). 

Additionally, in an independent study, the 

researchers presented a methodology that 

utilizes deep reinforcement learning for the 

improvement of the structure of a hybrid 

model for rain forecasting, incorporating 

convolutional networks and genetic 

algorithms, thus making the hybrid model 

more robust for this particular task (Ngan et 

al., 2023). Another novel hybrid model was 

developed that combines Convolutional Neural 

Networks (CNNs) with the Gray Wolf 

Optimizer (GWO) for forecasting runoff for 

the year 2023 in a semiarid watershed (Aoulmi 

et al., 2023). Additionally, yet another study 

engaged a remote-sensing-derived data with 

meteorological inputs for conducting hourly 

rainfall forecasting using a hybrid model that 

combines the usage of an Auto-encoder and an 

LSTM network (Ponnoprat, 2021). Finally, a 

recent research effort employed a hybrid 

genetic algorithm-support vector machine 

(GA-SVM) model for forecasting rainfalls for 

2024 that showed a higher prediction quality 

compared with the traditional support vector 

machine (SVM) (Lai et al., 2024). 

Forecasting of rain in semi-arid and arid 

regions has specific challenges owing to 

limited records of available rainfalls, wide 

variability of rainfalls, and complexities in 

climatic conditions. There therefore arises an 

urgent need for specialized approaches in data-

driven models for forecasting rainfalls. Recent 

studies have witnessed many researchers focus 

on the development of specialized models for 

specific geographical regions. For example, 

researchers have developed a hybrid model for 

predicting drought in an arid region using data 

collected by satellite remote sensing (Baig et 

al., 2024). 

In particular, NARX networks combined 

with GAs present an effective approach for 

building robust and adaptive models for 

predicting rainfall in regions, such as 

Khorasan Razavi, where data is sparse and the 

rainfall pattern is very complex. These regions 

are typically characterized by high variability 

in space and time, which further justifies the 

use of a hybrid approach that can capture both 

spatial and temporal dependencies, such as the 

NARXGA proposed in this study. 

 

2. Materials and Methods 

2.1. NARX 

NARX network is a recurrent neural 

network (RNN) with specific usage for time 

series forecasting. The topology of NARX 

network includes an input layer, a hidden 

layer, and an output layer with feedback from 

the output layer to the input layer. The 

feedback provides NARX network with the 

ability to model temporal dependences of the 

data. The NARX network can be expressed 

with the following equation: 

y(t)=f(y(t-1), y(t-2), …, y(t-dy), 

x(t), x(t-1), …,x(t-dx)) 
(1) 

where: 

• 𝑦(𝑡)is the output at time 𝑡. 

• 𝑥(𝑡)is the external input at time 𝑡. 

• 𝑑𝑦 and 𝑑𝑥 are the time lags for the 

feedback and external inputs, respectively. 

• 𝑓is a non-linear activation function. 

A typical NARX neural network comprises 

an input layer, hidden layer, output layer, and 

input delay function. Its basic structure is 

shown in Figure 1. 

 

 
Fig. 1. Schematic diagram of NARX neural 

network structure. 
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The NARX network is trained using a 

backpropagation algorithm. The parameters of 

the network (weights and biases) are randomly 

initialized, and these parameters are updated 

iteratively to minimize the difference between 

the predicted and the actual rainfall values. 

 

2.2. Genetic Algorithm 

Genetic Algorithm (GA) is a stochastic 

optimization technique inspired by the process 

of natural selection. It starts with an initial 

population of candidate solutions 

(chromosomes) and iteratively evolves this 

population by applying genetic operators such 

as selection, crossover, and mutation to find 

the optimal solution. The steps of the GA are 

described as follows: 

1. Initialization: A population of 

candidate solutions (chromosomes) is 

generated randomly. 

2. Fitness Evaluation: Each candidate is 

evaluated using a fitness function. 

3. Selection: Candidates with higher 

fitness are probabilistically chosen to serve as 

parents for the next generation. 

4. Crossover: Selected parent 

chromosomes exchange segments of their 

genetic information (using a single-point or 

multi-point crossover) to produce new 

offspring that combine traits from both 

parents. 

5. Mutation: With a low probability, 

random alterations (mutations) are applied to 

the offspring’s genes. This step helps maintain 

genetic diversity and prevents premature 

convergence. 

6. Replacement: The offspring are added 

to the existing population, thus creating the 

next generation. The worst individuals of the 

population are removed to maintain the 

population size. 

7. Termination: The algorithm repeats 

the evaluation, selection, crossover, mutation, 

and replacement steps until a stopping 

criterion is met, such as reaching a predefined 

number of iterations or observing no 

significant improvement over several 

generations. 

To evaluate the performance of the 

proposed model, several benchmark models, 

including traditional time series models and 

machine learning approaches, were 

implemented.  

2.3. Autoregressive Integrated Moving 

Average (ARIMA) 

ARIMA is a popular statistical time series 

forecasting model capturing autocorrelations 

of data. It has three components: 

Autoregression (AR), Integration (I), and 

Moving Average (MA)(Nelson, 1998). The 

AR part represents the dependence of an 

observation on some number of past 

observations, the I part represents non-

stationarity through differencing, and the MA 

part represents the dependence of an 

observation on a residual error from applying a 

moving average model to past observations. 

ARIMA model is specified by three 

parameters: (p, d, q). Here, p is the number of 

lagged observations in the autoregressive or 

AR component, d is the number of times 

differencing is applied, and q is the order of 

moving average component. 

 

2.4. Holt-Winters’ Exponential 

Smoothing (HWES) 

HWES extends simple exponential 

smoothing by adding components for trend 

and seasonality. It is widely used for 

forecasting seasonal data, making it an 

effective method for short-term water 

consumption forecasting in areas with distinct 

seasonal patterns (Lima et al., 2019). HWES 

consists of three main components:  

• Level (𝑙𝑡): The smoothed estimate of 

the series at time 𝑡. 

• Trends (𝑏𝑡): The estimated change in 

the series over time. 

• Seasonality (𝑠𝑡): The seasonal pattern 

in the data. 

 

2.5. Long Short-Term Memory (LSTM) 

LSTM is among the Recurrent Neural 

Networks (RNN) employed in recognizing 

long-term dependencies in sequence data 

through memory cells that retain information 

over long durations. LSTM has extensively 

been used for time series forecasting, 

including rainfall prediction, as it is capable of 

handling non-linear trends and detecting long-

term patterns(Hochreiter et al., 1997). An 

LSTM cell contains three major 

gates(Salehinejad et al., 2017): 

• Forget Gate (𝑓𝑡): Decides how much of 

the past information should be discarded. 

• Input Gate (𝑖𝑡): Controls what new 
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information is stored in the cell state. 

• Output Gate (𝑜𝑡): Determines the next 

hidden state. 

Each LSTM cell updates its internal cell 

state (𝑐𝑡) and hidden state (ℎ𝑡) using these 

gates. 

 

2.6. Convolutional Neural Network 

(CNN) 

Originally developed for image processing, 

CNNs have been adapted for time series 

forecasting by capturing local patterns in the 

data through convolutional filters. CNN 

models with 1D filters have been successfully 

applied to water consumption prediction, 

particularly for short-term forecasting (Wu, 

2017). A 1D CNN consists of multiple layers: 

a) Convolutional Layer: Extracts features 

from the input time series using 1D filters 

(kernels). Each filter slides over the input 

sequence to learn patterns. The output is a 

feature map that highlights important temporal 

dependencies. 

b) Pooling Layer: Reduces dimensionality 

and extracts dominant features. Max pooling 

or average pooling is used to downsample the 

feature maps. 

c) Fully Connected (Dense) Layer: 

Connects extracted features to the output 

prediction. The output can be a single value 

(regression) or a class label (classification). 

 

2.7. Methodology 

This section outlines the methodology 

adopted for rainfall prediction in Khorasan 

Razavi province, Iran. We propose a hybrid 

model that combines the Non-linear Auto 

Regressive with eXogenous inputs (NARX) 

neural network with a Genetic Algorithm (GA) 

for parameter optimization. The details of the 

model architecture, the GA optimization 

process, and the dataset used are described in 

this section. 

The dataset for this study consists of daily 

meteorological data from six weather stations 

located in Khorasan Razavi province, 

Iran.Figure 2 illustrates a map showing the 

geographical locations of selected 

meteorological stations in Khorasan Razavi 

Province with green color. Table 1 provides a 

detailed description of these stations, including 

their station code, name, latitude, longitude, 

and elevation. 

 

 

 
Fig. 2. The geographical locations of meteorological stations in Khorasan Razavi Province 
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The data spans from 2007 to 2011 and 

includes six key features that are highly 

influential on rainfall: 

1. Total Cloud Cover 

2. Maximum Wind Speed 

3. Maximum Wind Direction 

4. Relative Humidity 

5. Minimum Absolute Temperature (in 

degrees Celsius) 

6. Maximum Absolute Temperature (in 

degrees Celsius) 
 

Table 1. Used meteorological stations in Razavi 

province 
Station 

Code 

Station 

Name 

Latitude 

(°N) 

Longitude 

(°E) 

Elevation 

(m) 

MSH Mashhad 36.26 59.62 995 

NYS Nishapur 36.21 58.83 1250 

SBZ Sabzevar 36.21 57.67 978 

THE 
Torbat 

Heydariyeh 
35.27 59.22 1329 

TJM Torbat Jam 35.18 60.83 950 

GNP Gonabad 34.36 58.75 1105 

 

The dataset is divided into two subsets: 

80% for training the model and 20% for 

testing its performance. This split ensures that 

the model's performance is evaluated on data it 

has not seen during training. Figure 3 shows 

this division in the rainfall data completely. 

The data is normalized using a min-max 

scaling method to ensure all features are 

within the same range, thus avoiding biased 

training. The scaling is given as follows: 

𝑣𝑖
′ =

𝑣𝑖 − 𝑚𝑖𝑛𝑉

𝑚𝑎𝑥𝑉 − 𝑚𝑖𝑛𝑉
 (2) 

where: 

• 𝑣𝑖 is the original feature value. 

• 𝑣𝑖
′ is the normalized feature value. 

• 𝑚𝑖𝑛𝑉is the minimum value of feature 𝑣. 

• 𝑚𝑎𝑥𝑉is the maximum value of feature 𝑣. 

 

In this study, the NARX network is 

configured such that 𝑦(𝑡) represents the 

predicted rainfall and 𝑥(𝑡) denotes the 

meteorological features. A hyperbolic tangent 

activation function is used in the hidden layer 

because it effectively captures non-linear 

relationships while maintaining a smooth 

gradient, reducing the risk of vanishing 

gradients. While a linear transfer function is 

applied in the output layer ensures that the 

network can produce continuous rainfall 

predictions without restrictions on the output 

range.  

The network consists of a single hidden 

layer with 10 neurons based on preliminary 

experiments, where increasing the number of 

neurons beyond this value resulted in marginal 

improvements while significantly increasing 

computational complexity. This configuration 

balances accuracy and computational 

efficiency. The time lags for both the output 

(𝑑𝑦) and external inputs (𝑑𝑥) were set to 10, 

determined through trial-and-error testing 

using different lag values. A lag of 10 

provided the best trade-off between capturing 

long-term dependencies and avoiding 

excessive dimensionality, which could lead to 

overfitting. 

To address the limitations of traditional 

training methods, a GA is employed to 

optimize the weights and biases of the NARX 

network. The steps of the GA in this research 

are described as follows: 

 

1. Initialization: An initial population of 

chromosomes is created where each 

chromosome represents a set of weights and 

biases of the NARX network. Each weight and 

bias is represented by a gene with random 

values within a defined range (e.g., [-5, 5]). 

The chromosomes are randomly generated 

within this range. 

2. Evaluation: The fitness of each 

chromosome is calculated using a fitness 

function which evaluates the performance of 

the NARX network with that specific set of 

weights and biases. In this study, the fitness 

function is based on the Mean Squared Error 

(MSE) between the predicted and observed 

rainfall values. The MSE is given by the 

following equation: 

𝑀𝑆𝐸 =
1

𝑛
∑(𝑦𝑖 − 𝑦̃𝑖)

2

𝑛

𝑖=1

 (3) 

where: 

• 𝑛 s the number of training samples. 

• 𝒚𝒊 is the actual rainfall value. 

• 𝒚̃𝒊 is the predicted rainfall value. 
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Fig. 3. The situation of the train and test data of rainfall 

 

3. Selection: We used Roulette wheel 

selection for this step, with the higher fitness 

individuals being more likely to be selected. 

4. Crossover: In this study, single-point 

crossover is used. 

5. Mutation: A random value within a 

given range is added to a randomly selected 

gene. 

6. Replacement: The offspring are added 

to the existing population, thus creating the 

next generation. The worst individuals of the 

population are removed to maintain the 

population size. 

7. Termination: The algorithm is 

terminated when a pre-defined number of 

iterations is reached or when the fitness of the 

best performing chromosome has not 

improved in several generations, as specified 

in the parameters of the GA. 

The proposed model, called NARXGA, 

integrates the NARX network with the GA 

optimization. This can be explained in the 

following steps: 

1. Initialize the NARX model and 

population of chromosomes based on its 

architecture. 
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2. Use the training dataset to evaluate the 

fitness of each chromosome by calculating the 

MSE of the NARX network using the weights 

and biases specified by the chromosome. 

3. Apply the genetic algorithm to find the 

best chromosomes based on their fitness. 

4. Update the NARX network weights 

and biases using the best chromosome found 

by the GA. 

5. Use the trained NARX network for 

prediction using the testing dataset. 

6. Evaluate the performance of the trained 

NARX network by calculating its MSE and 

comparing with other approaches. 

This framework enables the parameters of 

the NARX network to be optimized to achieve 

higher prediction accuracy, while taking into 

account the non-linearity of rainfall prediction. 

The details of the evaluation metrics and the 

comparison of the NARXGA model with other 

benchmark models are given in the next 

section. 

 

3. Results and Discussion 

This section presents the experimental 

results obtained from the implementation of 

the proposed NARXGA model for rainfall 

prediction in Khorasan Razavi province. We 

also compare the results of the NARXGA 

model with the results obtained from other 

benchmark models, including traditional time 

series models ARIMA, Holt-Winters 

Exponential Smoothing (HWES), and machine 

learning models, such as LSTM, CNN1D and 

the standalone NARX network. 

Hyperparameter tuning is crucial for 

improving the predictive performance of time 

series forecasting models. In this study, grid 

search and cross-validation techniques were 

used to optimize the hyperparameters of each 

model. For machine learning models, training 

was conducted for 100 epochs with early 

stopping based on validation loss, using the 

Adam optimizer with learning rate decay. 

Statistical models were trained using 

maximum likelihood estimation. The 

optimized hyperparameters for each model are 

summarized in Table 2. 

To assess the performance of the proposed 

NARXGA model and other benchmark 

models, we use the Mean Squared Error 

(MSE) as the evaluation metric. A lower MSE 

value indicates better prediction accuracy. We 

calculate the MSE for both the training and 

test datasets to evaluate the model's learning 

and generalization capability. 

Figure 4 presents the Mean Squared Error 

(MSE) results of the proposed NARXGA 

model and other benchmark models for rainfall 

prediction in Khorasan Razavi province. 

Figure 1 shows the average values of MSE for 

different methods, along with the 

corresponding values for training and test 

datasets. 
 

Table 2. Summary of the hyperparameters used in the experiments 
Models hyperparameters 

LSTM 
#LSTM units # layers 

Dropout 

rate 

Learning 

rate 
Batch size Optimizer  

128 2 0.2 0.001 64 Adam  

CNN1D 
#filters Kernel size 

Activation 

function 

Pooling 

size 

Learning 

rate 
Batch size Optimizer 

64 3 ReLU 2 0.001 64 Adam 

ARIMA 
p1 d2 q3  

2 1 2  

HWES 
α β4 γ5 

Seasonal 

period 
 

optimized optimized optimized optimized  

NARX 

# Neurons of 

Hidden layer 
𝑑𝑥 𝑑𝑦 𝑓  

10 10 10 
hyperbolic 

tangent 
 

 

 

 
1- autoregressive order 

2- degree of differencing 

3- moving average order 

4- Trend smoothing 

5- Seasonal smoothing 
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Fig. 4. Mean squared error (MSE) of different rainfall prediction models 

 

In Figure 4, the y-axis shows the Mean 

Squared Error (MSE) of the predictions. This 

value, expressed in the square of the rainfall 

unit (e.g., mm²), indicates how far off the 

predicted values are from the actual 

measurements—a lower MSE means higher 

prediction accuracy. 

As shown in Figure 4, the proposed 

NARXGA model achieved the lowest MSE on 

both the training and test datasets, with values 

of 9.7453 and 11.5565, respectively. This is a 

strong indication that the hybrid approach 

performs better than other benchmark models. 

The ARIMA model showed the worst 

performance with MSE values of 13.601 and 

17.378 for the training and test sets, 

respectively. This indicates that this traditional 

time series model is not ideal for capturing the 

complex patterns and non-linearities in rainfall 

data. Similarly, the Holt-Winters Exponential 

Smoothing (HWES) model also performed 

relatively poorly with MSE values of 14.243 

and 16.726 for the training and test data 

respectively, thus making it unsuitable for the 

given data. The LSTM model showed 

improved performance over ARIMA and 

HWES, yielding an MSE of 10.552 for 

training and 12.697 for the test data.  

This shows that LSTMs are able to handle 

temporal dependencies better, due to their 

feedback loop mechanism. The CNN1D model 

also showed similar performance, with MSE 

of 10.927 for the training dataset and 13.021 

for the test data. Although CNNs can 

effectively extract features, they do not always 

perform well on time series datasets. The 

standalone NARX model showed moderate 

results, with an MSE of 11.935 on training and 

13.323 for the test data. This further highlights 

the importance of optimizing neural network 

architectures for the given task. The 

NARXGA model's improved performance is 

likely due to the GA's ability to fine-tune the 

parameters of the NARX network, thus 

helping to capture the complex non-linear 

relationships in the data and reduce overfitting. 

In addition to the Mean Squared Error (MSE) 

analysis presented in Figure 4, scatter plots in 

Figure 5were generated for both the training 

and testing phases to further evaluate the 

predictive performance of the models. These 

scatter plots illustrate the correlation between 

actual and predicted rainfall values, providing 

insights into the model’s ability to capture 

variability in the data. 

Figure 6 illustrates the convergence of the 

genetic algorithm (GA) in optimizing the 

weights of the NARX network in the 

NARXGA model. The plot shows the best 

fitness value (lower is better) achieved by the 

GA over 100 iterations. Figure 7 illustrates the 

time series plots of observational rainfall 

values alongside predictions made by 

NARXGA model. In these plots, the black line 

represents the actual rainfall data, while the 

blue line represents the predicted values from 

NARXGA model. 
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We believe that NARXGA unifies the 

benefits of NARX model with parameter 

optimization using the genetic algorithm and 

thus delivers better predictions for rainfall than 

traditional models. The utilization of the 

genetic algorithm aids in the accurate 

adjustment of parameters, which subsequently 

contributes to improved generalization 

effectiveness while addressing the 

complexities that exist in rainfall data more 

effectively.

 

 

 

 
Fig. 5. Scatter plots for both the training and testing phases of different models 
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Continued Figure 5 
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Fig. 6. The convergence of the genetic algorithm (GA) in optimizing the weights of the NARX network in 

the NARXGA model 

 

 

 
Fig. 7. Observational and prediction of rainfall by NARXGA model 

 

Importantly, the research underlines the 

major relevance of proper parameter 

optimization for machine learning in obtaining 

desirable results. 

The results of this study demonstrate that the 

proposed NARXGA model outperforms 

traditional time series models (ARIMA, 

HWES) and machine learning models (LSTM, 

CNN1D) in rainfall prediction. By leveraging 

the optimization capability of Genetic 

Algorithms (GA), our model achieved the 

lowest Mean Squared Error (MSE) among all 

tested approaches, highlighting its effectiveness 

in capturing non-linear dependencies in rainfall 

data. 

Several previous studies have explored 

different approaches to rainfall prediction. For 

instance, Poornima and Pushpalatha 

(Poornima and Pushpalatha, 2019) implement 

an LSTM-based model for rainfall forecasting. 

This suggests that while LSTM networks are 

effective in time series forecasting, the 

additional parameter optimization provided by 

GA enhances the predictive performance. 

A study by Ngan et. al (Ngan et al., 2023) 

employed a combination of CNN and GA for 

forecasting rain. Although convolutional 
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neural networks (CNNs) are extremely potent 

feature extractors, they are not as suitable for 

sequential dependencies like recurrent-based 

NARX models. Our findings confirm the same 

as the individual model of our work based on 

CNN1D had higher errors than that of the 

NARXGA model. 

Furthermore, earlier work by Le et al. (Le 

et al., 2020) demonstrated that conventional 

NARX models can identify non-linear time 

series patterns, but they tend to suffer from 

local minima issues when trained with 

standard backpropagation methods. The 

present study circumvents this restriction by 

including Genetic Algorithms for weight 

optimization, resulting in a more resilient 

model with enhanced generalization. 

In contrast to the majority of traditional 

machine learning models with hand-tuned 

hyperparameters, our approach employs GA to 

automatically optimize the parameters of the 

NARX network. This reduces the risk of poor 

performance caused by incorrect 

hyperparameter selection and enhances the 

model's ability to capture complex rainfall 

patterns. The good performance of NARXGA 

in our study is a testament to the excellence of 

evolutionary optimization techniques in time 

series forecasting. 

In spite of its strengths, the suggested 

model possesses shortcomings. A significant 

one is the small dataset (records of rainfall 

only for 5 years), and this will limit the model 

in identifying long-term climatic trends. 

Additional years of data included in the 

dataset, along with the inclusion of external 

meteorological factors like atmospheric 

pressure and wind patterns, can provide more 

precise forecasts. 

 

4. Conclusion  

This study has presented a novel hybrid 

approach, NARXGA, for daily rainfall 

prediction in Khorasan Razavi province, Iran. 

The proposed model combines the Non-linear 

Auto Regressive with eXogenous inputs 

(NARX) neural network with a Genetic 

Algorithm (GA) for parameter optimization, 

aiming to enhance the accuracy and reliability 

of rainfall predictions in a region that is highly 

susceptible to drought and water scarcity. 

Through experimentation, the performance 

of the NARXGA model was compared with 

that of several benchmark models, including 

ARIMA, HWES, LSTM, CNN1D and NARX. 

The results clearly indicate that the NARXGA 

model outperforms all benchmark models, 

achieving the lowest Mean Squared Error 

(MSE) values on both training and test 

datasets. Specifically, the NARXGA model 

yielded an MSE of 9.7453 on the training 

dataset and 11.5565 on the test dataset, 

demonstrating superior predictive power. This 

can be attributed to the ability of the GA to 

effectively optimize the parameters of the 

NARX network. 

The convergence analysis of the GA in 

Figure 1 shows that the GA is capable of 

iteratively improving the weights and biases of 

the NARX model, resulting in a final model 

that is well adapted to the given data and 

captures non-linear relationships. The 

histograms of error distribution for all the 

compared methods also corroborate this 

observation. As can be seen from Figures 2-5, 

the NARXGA model produces more 

consistent results that are more concentrated 

around the zero-error point compared to other 

benchmark models, thus signifying a lower 

error rate. 

Despite these promising results, the model 

has certain limitations. NARXGA’s 

performance is sensitive to the choice of GA 

parameters (e.g., mutation rate, population 

size), and tuning these requires domain 

expertise or heuristic search. Moreover, the 

model’s reliance on historical data patterns 

may limit its adaptability under sudden 

climatic shifts or unseen weather anomalies. 

Future research could explore hybridization 

with adaptive learning mechanisms or 

ensemble strategies to improve generalizability 

across different climatic zones. 

This study contributes to the advancement 

of rainfall prediction through multiple key 

innovations. First, it introduces a hybrid 

model—NARXGA—that integrates Nonlinear 

Autoregressive models with exogenous inputs 

(NARX) and Genetic Algorithms (GA) for 

parameter optimization. By leveraging the 

strengths of both recurrent neural networks 

and evolutionary algorithms, the proposed 

model addresses limitations of traditional 

time-series approach and enhances predictive 

reliability in complex environmental 

conditions. Second, the model's practical 
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relevance has been demonstrated using real 

meteorological data from Khorasan Razavi 

province in Iran—an arid region where 

accurate rainfall forecasting is crucial for 

effective water resource management and 

agricultural planning. This empirical 

validation highlights the applicability and 

robustness of the model in a real-world 

context. Moreover, experimental results 

indicate that NARXGA outperforms several 

baseline artificial neural network architectures 

in terms of prediction accuracy. This 

improvement underscores the value of GA-

based optimization in fine-tuning network 

parameters such as weights and biases. Finally, 

the proposed method maintains computational 

efficiency despite its enhanced performance. 

Its relatively simple structure offers a viable 

alternative to more complex deep learning 

models, making it especially suitable for 

operational deployment in data-scarce or 

resource-limited environments. 

The results of this research have practical 

implications for water resource management 

and agricultural planning in arid and semi-arid 

regions. The findings from this research can be 

utilized for early drought warning systems, 

irrigation planning, and other applications that 

rely on accurate rainfall predictions. 

Several avenues for future research have 

been identified. These include: 

1. Expanding Dataset: Future studies can 

be performed using larger datasets with more 

features to further improve the accuracy of the 

model and to fully test the proposed method. 

2. Spatial Analysis: Future research can 

focus on developing models that take spatial 

variability into account for more accurate 

regional rainfall prediction. Spatial 

information can be obtained from weather 

stations or remote sensing data. 

3. Alternative Optimization Techniques: 

The performance of the proposed framework 

can be evaluated by integrating other 

evolutionary algorithms, including particle 

swarm optimization (PSO) or ant colony 

optimization (ACO) algorithms, which can 

potentially lead to even better results. 

4. Deep Learning Integration: Exploring 

the use of deep learning methods within the 

proposed model, such as incorporating 

convolutional layers within the NARX model, 

can also further improve results. 

5. Real-time Implementation: Testing the 

NARXGA on real-time data for practical 

applications will also be useful in fully 

evaluating the model. 
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