
تعداد نشریات | 21 |
تعداد شمارهها | 314 |
تعداد مقالات | 3,321 |
تعداد مشاهده مقاله | 3,546,595 |
تعداد دریافت فایل اصل مقاله | 2,591,245 |
پاسخ فیزیولوژیک ژنوتیپهای نخود به تنش شوری در شرایط مزرعه | ||
تنشهای محیطی در علوم زراعی | ||
مقالات آماده انتشار، پذیرفته شده، انتشار آنلاین از تاریخ 18 فروردین 1404 اصل مقاله (1001.22 K) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22077/escs.2024.7232.2266 | ||
نویسندگان | ||
حیدر فلیح1؛ جعفر نباتی* 2؛ احمد نظامی3؛ محمد کافی3؛ محمد جواد احمدی2 | ||
1دانشجوی دکتری، گروه اگروتکنولوژی، دانشکده کشاورزی دانشگاه فردوسی مشهد | ||
2استادیار گروه اگروتکنولوژی، دانشکده کشاورزی، دانشگاه فردوسی مشهد | ||
3استاد گروه اگروتکنولوژی، دانشکده کشاورزی، دانشگاه فردوسی مشهد | ||
چکیده | ||
رشد گیاه نخود بهشدت تحت تأثیر تنش شوری قرار میگیرد و عملکرد آن بهطور محسوسی کاهش مییابد. ازاینرو شناسایی ژنوتیپهای متحمل نخود کمک قابلتوجهی در بهبود مقاومت گیاه و افزایش عملکرد در شرایط تنش میکند. این پژوهش در سال 1400-1399 باهدف مطالعه تحمل شوری ژنوتیپهای نخود بهصورت آزمایش کرتهای خردشده در قالب طرح بلوکهای کامل تصادفی در سه تکرار در شرایط مزرعه انجام شد. تنش شوری در دو سطح 6 و 9 دسی زیمنس بر متر و 0.5 دسی زیمنس بر متر (شاهد) بهعنوان کرت اصلی و 9 ژنوتیپ نخود بهعنوان کرت فرعی در نظر گرفته شد. در ژنوتیپهای MCC52، MCC65، MCC77 و MCC92 تنش شوری محتوای رنگدانههای گیاه را کاهش داد. افزایش مهار فعالیت رادیکال آزاد DPPH در ژنوتیپهای MCC12، MCC27، MCC28، MCC72، MCC92 و MCC108 در تنش شوری dS.m-1 9 مشاهده شد. فعالیت آنزیم کاتالاز در شوری dS.m-1 6 در اکثر ژنوتیپهای موردمطالعه افزایش و با افزایش سطح تنش به dS.m-1 9 کاهش یافت. بیشترین فعالیت آنزیم آسکوربات پراکسیداز نیز در شوری dS.m-1 6 در ژنوتیپ MCC29 مشاهده گردید. اعمال تنش شوری در سطح dS.m-1 9 محتوای سدیم در تمامی ژنوتیپها را افزایش داد. در بیش از 65 درصد ژنوتیپهای نخود اعمال تنش شوری dS.m-1 6، منجر به افزایش محتوای پتاسیم در گیاه شد، بااینحال تنش شوری dS.m-1 9 محتوای پتاسیم برگ را کاهش داد. وزن خشک گیاه در بالاترین سطح تنش در ژنوتیپ MCC72، 25% و در ژنوتیپ MCC108 بیشتر از سه برابر در مقایسه با تیمار شاهد افزایش یافت. در ژنوتیپ MCC108 نیز اعمال بالاترین سطح تنش وزن دانه در گیاه را تقریباً 73% درصد در مقایسه با تیمار شاهد افزایش داد. بهطورکلی ازنظر تحمل شوری بین ژنوتیپهای نخود موردمطالعه تنوع بالایی وجود داشت که به نظر میرسد استفاده از آنها در اصلاح تحمل تنش شوری گیاه نخود سودمند باشد. | ||
کلیدواژهها | ||
آنتی اکسیدان؛ آنزیم؛ متابولیت؛ محتوای کلروفیل؛ وزن خشک | ||
مراجع | ||
Abdolinejad, R., Shekafandeh. A., 2014. Salt stress-induced changes in leaf antioxidant activity, proline and protein content in ‘Shah Anjir’and ‘Anjir Sabz’fig seedlings. International Journal of Horticultural Science and Technology. 1, 121-129. https://doi.org/10.22059/ijhst.2014.52782 Abe, N., Murata, T., Hirota, A., 1998. Novel DPPH radical scavengers, bisorbicillinol and demethyltrichodimerol, from a fungus. Bioscience, Biotechnology and Biochemistry. 6, 661-666. https://doi.org/10.1271/bbb.62.661 Abogadallah, G.M., 2010. Antioxidative defense under salt stress. Plant Signal Behavior, 5, 369-374. https://doi.org/10.4161/psb.5.4.10873 Adil, H.I., Cetin, H.I., Yener, M.E., Bayindirh, A., 2007. Subcritical (carbon dioxide + ethanol) extraction of polyphenols from apple and peach pomaces, and determination of the antioxidant activities of the extracts. The Journal of Supercritical Fluids. 43, 55-63. https://doi.org/10.1016/j.supflu.2007.04.012 Al-Amier, H., Craker, L.E., 2007. In vitro selection for stress tolerant spearmint. In: Janick J., Whipkey, A., (eds.), Issues in new crops and new uses. ASHS Press, Alexandria, VA. pp. 306-310 Alhasnawi, A.N., Kadhimi, A.A., Isahak, A., Mohamad, A., Doni, F., Yusoff, W.W., Zain, C.M., 2014. Salinity stress in plant and an important antioxidant enzyme. Life Science Journal. 11, 913-920. https://doi.org/10.7537/marslsj111014.143 Aliabadi-Farahani, H., Valadabadi, S.A., Daneshian, J., Khalvati, M.A., 2009. Evaluation changing of essential oil of balm (Melissa officinalis L.) under water deficit stress conditions. Journal of Medicinal Plant Research. 3, 329-333. https://doi.org/10.5897/JMPR.9000606 AliDinar, H.M., Ebert, G., Ludders, P., 1999. Growth, Chlorophyll Content, Photosynthesis and Water Relations in Guava (Psidium guajava L.) Under Salinity and Different Nitrogen Supply. Gartenbauwissenschaft. 64, 54-59. Ashraf, M., Foolad, M.R., 2007. Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environmental and Experimental Botany. 59, 206–216. https://doi.org/10.1016/j.envexpbot.2005.12.006 Ashraf, M., Ozturk, M., Athar, H.R., 2008. Salinity and Water Stress: Improving Crop Efficiency. Springer, Netherlands. Bates, L.S., Waldren, R.P., Teare, I.D., 1973. Rapid determination of free proline for water-stress studies. Plant and Soil. 39, 205-207. https://doi.org/10.1007/BF00018060 Bray, E.A., 1997. Plant responses to water deficit. Trends in Plant Science. 2, 48–54. Bybordi, A., 2012. Study effect of salinity on some physiologic and morphologic properties of two grape cultivars. Life Science Journal, 9, 1092-1101. https://doi.org/10.7537/marslsj090412.166 Cakmak, I., Kirkby, E.A., 2008. Role of magnesium in carbon partitioning and alleviating photooxidative damage. Physiologia Plantarum. 133, 692-704. https://doi.org/10.1111/j.1399-3054.2007.01042.x Caverzan, A., Casassola, A., Brammer, S.P., 2016. Antioxidant responses of wheat plants under stress. Genetic molecular and Biology. 39, 1-6. https://doi.org/10.1590/1678-4685-GMB-2015-0109 Chartzoulakis, K., Klapaki, G., 2000. Response of two greenhouse pepper hybrids to NaCl salinity during different growth stages. Scientia Horticulturae. 86, 247-260. https://doi.org/10.1016/S0304-4238(00)00151-5 Cicek, N., Cakirlar, H., 2002. The effect of salinity on some physiological parameters in two maize cultivars. Bulgican Journal Plant Physiology. 28, 66-74. Cornic, C., Massacci, A., 1996 Leaf photosynthesis under drought stress. In: Baker, N.R. (ed.), Photosynthesis and Environment. pp. 347-366. Kluwer Academic Publish. Dere, S., Gines, T., Sivaci, R., 1998. Spectrophotometric determination of chlorophyll a, b and total carotenoid contents of some algae species using different solvents. Turkish Journal of Botany 22, 13-17. Dkhil, B.B., Denden, M., 2010. Salt stress induced changes in germination, sugars, starch and enzyme of carbohydrate metabolism in Abelmoschuses culentus L. (Moench.) seeds. African Journal of Agricultural Research. 5, 408-415. https://doi.org/10.5897/AJAR.9000614 Fallah, A., Farahmanfar, E., Moradi, F., 2015. Effect of salt stress on some morphophysiological characters of two rice culitivars during different growth stages at greenhouse. Applied Field Crops Research. 28, 175-182. [In Persian with English abstract]. https://doi.org/10.22092/aj.2015.105720. FAOSTAT. 2021. Rome. Available online: https://www.fao.org/faostat/es/#data/QCL (accessed on 17 December 2021). Firoozeh, R., Khavarinejad, R., Najafi, F., Saadatmand, S., 2019. Effects of gibberellin on contents of photosynthetic pigments, proline, phenol and flavonoid in savory plants (Satureja hortensis L.) under salt stress. Journal of Plant Research (Iranian Journal of Biology). 31, 894-908. [In Persian with English abstract]. http://dorl.net/dor/20.1001.1.23832592.1397.31.4.12.4. Flowers, T. J., Flowers, S.A., 2005. Why does salinity pose such a different problem for plant breeders? Agricultural Water Management. 78, 15-24. https://doi.org/10.1016/j.agwat.2005.04.015 Garratt, L.C., Janagoudar, B.S., Lowe, K.C., Anthony, P., Power, J. B., Davey, M.R., 2002. Salinity tolerance and antioxidant status in cotton cultures. Free Radical Biology and Medicine 33, 502-511. https://doi.org/10.1016/S0891-5849(02)00838-9 Hassani Moghadam, E., Esna-Ashari, M., Rezainejad, A., 2015. Effect of drought stress on some physiological characteristics in six commercial iranian pomegranate (Punica granatum L.) Cultivars. 7, 1-11. [In Persian with English abstract]. Heidari, A., Toorchi, M., Bandehagh, A., Shakiba, M.R., 2011. Effect of NaCl stress on growth, water relations, organic and inorganic osmolytes accumulation in sunflower (Helianthus annuus L.) lines. Universal Journal of Environmental Research and Technology. 1, 351-362. James, R.A., Caemmerer, S.V., Condon, A.G., Zwart, A.B., Munns, R., 2008. Genetic variation in tolerance to the osmotic stress component of salinity stress in durum wheat. Functional Plant Biology 35, 111-123. https://doi.org/10.1071/FP07234 Jukanti A.K, G.P., 2012. Nutritional quality and health benefits of chickpea (Cicer arietinum L): a review. British Journal of Nutrition. 108, 11-26. https://doi.org/10.1017/S0007114512000797 Kibria, M.G., Hossain, M.A., Murata, Y., Hoque, M.A., 2017. Antioxidant defense mechanisms of salinity tolerance in rice genotypes. rice science. 24, 155-162. https://doi.org/10.1016/j.rsci.2017.05.001 Kochaki, A., Zand, A., Banayan Aval, M., Rezvanimoghadam, P., Mahdavi Damghani, A, Jami Al-Ahmadi, M., Vesal, S.R., 2015. Plant Ecophysiology. Ferdowsi University of Mashhad Press. pp 271. [In Persian]. Koyro, H.W., 2000. Effect of high NaCl-salinity on plant growth, leaf morphology and ion composition in leaf tissues of Beta vulgaris ssp. Maritima. Journal of Applied Botany and Food Quality. 74, 67-73. Kumar, S., Beena, A.S., Awana, M., Singh, A., 2017. Physiological, biochemical, epigenetic and molecular analyses of wheat (Triticum aestivum) genotypes with contrasting salt tolerance. Frontiers in Plant Science. 8, 1151. https://doi.org/10.3389/fpls.2017.01151 Maliro, M.F.A., McNeil, D.L., Redden, B., Kollmorgen, J.F., Pittock, C., 2008. Sampling strategies and screening of chickpea (Cicer arietinum L.) germplasm for salt tolerance. Genetic Resources and Crop Evolution. 55: 53-63. https://doi.org/10.1007/s10722-007-9214-9 Masoumzadeh, B.M., Imani, A.A., Khayamaim, S., 2012. Salinity stress effect on proline and chlorophyll rate in four beet cultivars. Scholars Research Library. 3, 5453-5456. Mittler, R., Vanderauwera, S., Gollery, M., Van Breusegem, F., 2004. Reactive oxygen gene network of plant. Trends in Plant Science. 9, 490-498. https://doi.org/10.1016/j.tplants.2004.08.009 Parida, A.K., Das, A.B., 2005. Salt tolerance and salinity effects on plants: a review. Ecotoxicology and Environmental Safety. 60, 324-349. https://doi.org/10.1016/j.ecoenv.2004.06.010 Parvaiz, A., Stayawati, S., 2008. Salt stress and phyto-biochemical responses of plants – a review. Plant, Soil and Environment. 54, 89–99. https://doi.org/10.17221/2774-PSE Pinheiro, C., Chaves, M.M., Ricardo, C.P., 2001. Alterations in carbon and nitrogen metabolism induced by water deficit in the stems and leaves of Lupinus albus L. Journal of Experimental Botany. 52, 1063-70. https://doi.org/10.1093/jexbot/52.358.1063 Rafael, M., Enez-Díaz, J., Castillo, P., Jimenez-Gasco, M.D.M., Landa, B., Navas-Cortes, J.A., 2015. Fusarium wilt of chickpeas: Biology, ecology and management. Crop Protection. 23, 1-12. Rahnama, A., James, R.A., Poustini, K., Munns, R., 2010. Stomatal conductance as a screen for osmotic stress tolerance in durum wheat growing in saline soil. Functional Plant Biology. 37, 255-269. https://doi.org/10.1016/j.cropro.2015.02.023 Rahnemoun, H., Shekari, F., Dejampour, J., Khorshidi, M.B., 2013. Salinity effects on some morphological and biochemical changes of almond. Journal of Crops Improvement. 15, 179-192. [In Persian with English abstract]. https://doi.org/10.22059/jci.2013.36108 Rajabi Dehnavi, A., Zahedi, M., 2020. Effects of foliar application of different ascorbic acid concentrations on the response of sorghum to salinity. Plant Process and Function. 9, 223-241. [In Persian with English abstract]. http://dorl.net/dor/20.1001.1.23222727.1399.9.35.13.4 Redouane, E., Mohamed, N., 2015. Adaptive response to salt stress in sorghum (Sorghum bicolor). American Eurasian Journal of Agricultural and Environmental Sciences. 15, 1351-1360. https://doi.org/10.5829/idosi.aejaes.2015.15.7.12683 Sabaghpour, S.H., 2001. Major diseases of chickpea In Iran. In proceeding of symposium on Grain Legumes in the Mediterranean. Agriculture, (LEGUMED), 25-27 October 2001. Rabat, Morocoo. Sabir, P., Ashraf, M., Hussain, M., Jamil, A., 2009. Relationship of photosynthetic pigments and water relations with salt tolerance of proso millet (Panicum miliaceum L.) accessions. Pakistan Journal of Botany, 41, 2957-2964. https://doi.org/41(6): 2957-2964,2009 Shahid, M. A., Balal, R. M., Pervez, M. A., 2012. Differential response of pea (Pisum sativum L.) genotypes to salt stress in relation to the growth, physiological attributes antioxidant activity and organic solutes. Australian Journal of Crop Science. 6, 828-838. Shobeiri, S., K. Ghassemi-Golezani, A. Golechin and J. Saba., 2007. Effect of water limitation on growth and yield of three chickpea cultivars in Zanjan. Journal of Agricultural Sciences and Natural Resources. 14, 32-43. [In Persia]. Singleton, V.L., Rossi, J.A., 1965. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American Journal of Enology and Viticulture. 16, 144-158. https://doi.org/10.5344/ajev.1965.16.3.144 Smart, R.E., Bingham, G.E., 1974. Rapid estimates of relative water content. Plant Physiology. 53, 258-260. https://doi.org/10.1104/pp.53.2.258 Soori, N., Bakhshi, D., Rezaei Nejad, A., Faizian, M., 2019. Effect of salinity stress on some physiological characteristics and photosynthetic parameters of several Iranian commercial pomegranate genotypes. Plant Process and Function. 8, 155-170. [In Persian with English abstract]. Srinivas, N.D., Rashmi, K.R., Raghavarao, K.S.M.S., 1999. Extraction and purification of a plant peroxidase by aqueous two-phase extraction coupled with gel filtration. Process Biochemistry. 35, 43-48. https://doi.org/10.1016/S0032-9592(99)00030-8 Tari, I., Laskay, G., Takacs, Z., Poor, P., 2013. Response of sorghum to abiotic stresses: A review. Journal of Agronomy and Crop Science. 199, 264-274. https://doi.org/10.1111/jac.12017 Turner, N., Colmer, T., Quealy, J., Pushpavalli, R., Krishnamurthy, L., Kaur, J., Singh, G., Siddique, K., Vadez, V., 2013. Salinity tolerance and ion accumulation in chickpea (Cicer arietinum L.) subjected to salt stress. Plant and Soil. 365, 347-361. https://doi.org/10.1007/s11104-012-1387-0 Vafadar, Z., Rahimmalek, M., Sabzalian, M.R., Nikbakht, A., 2018. Effect of salt stress and harvesting time on morphological and physiological characteristics of Myrtle (Myrthus communis). Plant Process and Function. 7, 33-44. http://dorl.net/dor/20.1001.1.23222727.1397.7.23.18.1 Velikova, V., Yordanov, I., Edreva, A., 2000. Oxidative stress and some antioxidant systems in acid raintreated bean plants. Protective role of exogenous polyamines. Plant Science. 151, 59-66. https://doi.org/10.1016/S0168-9452(99)00197-1 Wang, C.J., Yang, W., Wang, C., Gu, C., Niu, D.D., Liu, H.X., Wang, Y.P. and Guo, J.H., 2012. Induction of drought tolerance in cucumber plants by a consortium of three plant growth promoting rhizobacterium strains. Plos One, 7, 1-12. https://doi.org/10.1371/journal.pone.0052565 Yamaguchi, K., Mori, H., Nishimura, M., 1995. A novel isoenzyme of ascorbate peroxidase localized on glyoxysomal and leaf peroxisomal membranes in pumpkin. Plant Cell Physiology. 36, 1157-1162. https://doi.org/10.1093/oxfordjournals.pcp.a078862 Yamaguchi, T., Blumwald, E., 2005. Developing salt-tolerant crop plants: challenges and opportunities. Trends in Plant Science. 12, 615-620. https://doi.org/10.1016/j.tplants.2005.10.002 Zarandi-Miandoab, L., Chaparzadeh, N., Fekri Shali, H., 2019. Interactive effects of salinity and magnesium on water and ionic relations of Zygophillum fabago L. Journal of Plant Research (Iranian Journal of Biology). 32, 72-85. [In Persian with English abstract]. https://dor.isc.ac/dor/20.1001.1.23832592.1398.32.1.18.1 Zarei, M., Azizi M., Rahemi, M., Tehranifar, A., 2016. Assessment of salinity tolerance of three fig cultivars based on growth and physiological factors and ions distribution. Iranian Journal of Horticultural Science and Technology. 17, 247-260. [In Persian with English abstract]. https://dor.isc.ac/dor/20.1001.1.16807154.1395.17.2.10.8 | ||
آمار تعداد مشاهده مقاله: 106 تعداد دریافت فایل اصل مقاله: 92 |