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ABSTRACT 
Surface waves are a cornerstone of geophysical studies for deriving shear wave velocity profiles. Inverting dispersion curves, 

however, poses a significant challenge for traditional local search methods due to the problem’s nonlinearity and the objective 
function’s multiple extrema. This study introduces a metaheuristic approach Ant Colony Optimization (ACO) implemented in 
MATLAB to tackle these complexities. The algorithm’s effectiveness was assessed using synthetic datasets, testing three distinct 
six-layer models with varying shear wave velocities, compressional wave velocities, and layer thicknesses, assuming a variable 
Poisson’s ratio and constant density. Compared to the neighborhood algorithm in Geopsy software, ACO exhibited superior 
reliability and computational efficiency. The method was further validated using an experimental dispersion curve from the 
Tabriz Plain, yielding results closely aligned with borehole data. Subsequently, a two-dimensional shear wave velocity model 
was constructed for the study area based on these inversion outcomes. This work underscores the promise of metaheuristic 
optimization techniques in enhancing the accuracy and robustness of surface wave dispersion curve inversion. 
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I. INTRODUCTION 

Shear wave velocity (VS) is a key parameter for 
evaluating site effects in alluvial sediments, where soft 
layers overlying stiff bedrock amplify seismic waves 
during earthquakes (Renalier et al., 2010; Cruz et al., 
2024). Accurate VS profiles are essential for seismic 
hazard analysis, as they govern site-specific dynamic 
responses and influence potential structural damage 
(Somerville & Graves, 2003). Although borehole 
measurements yield direct VS data, their high cost and 
limited spatial coverage restrict their practicality. 
Surface wave methods, which exploit dispersion curves, 
provide a non-invasive, cost-effective alternative for VS 
profiling in alluvial settings (Zarean et al., 2015; 
Pourmirzaee, 2016; Maghami et al., 2021; Angardi et al., 
2024). These techniques encompass three primary 
stages: field data acquisition, processing to generate 
experimental dispersion curves, and inversion to 
estimate subsurface parameters (Farrugia et al., 2016). 

In alluvial environments like the Tabriz Plain, 
inverting dispersion curves is challenging due to 
complex layering and sharp velocity contrasts. 
Traditional local search algorithms often fail to address 
the nonlinearity and local minima inherent in such 
inversions (Socco et al., 2010). Consequently, global 

optimization methods—such as genetic algorithms 
(Yamanaka & Ishida, 1996), simulated annealing (Beaty 
et al., 2002), and neighborhood algorithms (Wathelet et 
al., 2004)—have gained prominence. This study 
introduces Ant Colony Optimization (ACO), a 
metaheuristic algorithm, to enhance dispersion curve 
inversion in alluvial sediments. Its performance is 
evaluated using synthetic models and field data from the 
Tabriz Plain. 

II. METHODOLOGY 

A. Data Collection 

The field data were acquired using **Geometrics 
Geode Seismograph** equipped with 40 Hz vertical 
geophones** arranged in a linear array.  

The data were recorded with a sampling rate of 1 ms, 
using 24 active channels.  

A 5 kg sledgehammer with an aluminum strike plate 
was used as the seismic source.  

The receiver spacing was 2 meters, and the total 
length of the spread was 46 meters.  

The measurements were conducted on a dry, level 
surface to minimize external noise effects. 
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B. Ant Colony Optimization Algorithm 

Proposed by Dorigo et al. (1996), ACO emulates the 
foraging behavior of ants, employing artificial agents that 
collaborate through pheromone trails to solve 
optimization problems. In this study, ACO is adapted to 
invert surface wave dispersion curves by iteratively 
exploring the parameter space. Each artificial ant 
constructs a candidate VS profile guided by pheromone 
intensity and heuristic information, with transition 
probabilities governed by Eq.s (1)–(3) (Li et al., 2009). 
Pheromone evaporation, controlled by the parameter ρ, 
and deposition regulate the balance between exploration 
and convergence, enabling the algorithm to adapt to 
complex alluvial stratigraphy (Duan & Yu, 2007; Zareh et 
al., 2023). The ACO workflow tailored for this application 
is depicted in Fig. 3. A key advantage of metaheuristic 
algorithms like ACO is their flexibility. Unlike 
deterministic methods, ACO can dynamically adjust to 
changing conditions without restarting the optimization 
process. For instance, if an obstacle disrupts the ants’ 
path (Fig. 1a), they explore alternative routes using 
pheromone-based feedback, rapidly identifying an 
optimal solution. Upon removal of the obstacle (Fig. 1b), 
the ants efficiently revert to the original path, leveraging 
accumulated pheromone information. In this 
implementation, m artificial ants operate in parallel, each 
initiating from a randomly selected point i (Fig. 2). The 
probability of an ant k at point i selecting a subsequent 
point j is initially uniform due to equal pheromone levels 
across all paths. As iterations progress, pheromone 
evaporation and deposition adjust path selection 
probabilities based on solution quality and heuristic 
guidance (Li et al., 2009), as expressed in Eq. (1). 

 

𝑃𝑖𝑗
𝑘 (𝑡) =

𝜏𝑖𝑗
𝛼 ∗𝜂𝑖𝑗

𝛽 (𝑡)

∑ 𝜏𝑖𝑙
𝛼∗𝜂

𝑖𝑙
𝛽(𝑡)𝑙

, 𝑙, 𝑗 ∈ 𝑜𝑡ℎ𝑒𝑟𝑠𝑘                                       (1) 

 

In the above formula, the coefficient α represents the 
influence of pheromone, while β represents the influence 
of metaheuristic information. These two coefficients 
establish a balance between metaheuristic information 
and the amount of pheromone. If we assume α=0, Eq. (1) 
gets transformed into Eq. (2), and the probability of 
selection will depend solely on metaheuristic 
information. As β increases, the probability of selection 
increases, as well. 

  

𝑃𝑖𝑗
𝑘 (𝑡) =

𝜂𝑖𝑗
𝛽(𝑡)

∑ 𝜂
𝑖𝑙
𝛽(𝑡)𝑙

                                                                       (2) 
 

If we assume β=0, Eq. (1) transforms into Eq. (3), and 
the probability of selection will depend solely on the 
pheromone. As α increases, the probability of selection 
also increases. The dependence of the selection 
probability on the amount of pheromone leads to rapid 
convergence and degradation of the algorithm's 
solutions. 

 

𝑃𝑖𝑗
𝑘 (𝑡) =

𝜏𝑖𝑗
𝛼 (𝑡)

∑ 𝜏𝑖𝑙
𝛼(𝑡)𝑙

                                                                      (3) 

 
(a) 

 
(b) 

 

Fig. 1. (a) Placing an obstacle in the path of ants from the 
colony to the food source. (b) Removing the obstacle and the 

flexibility of ant behavior (Dorigo et al., 1996). 
 

 
Fig. 2. Path selection by the ant at point i (Li et al., 2009) 

 
To ensure the Ant Colony Optimization (ACO) 

algorithm identifies the shortest path between the nest 
and food source, a sufficiently large number of searching 
ants is essential. This increases the likelihood that all 
possible routes are explored, facilitating the selection of 
the optimal path. An insufficient number of ants may lead 
to two critical issues. First, if an ant independently 
discovers the food source, the pheromone trail it 
deposits may evaporate before other ants can follow, 
rendering the route ineffective. Second, with a limited 
number of ants, only a subset of paths is evaluated; if the 
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initial ants select a suboptimal route, the lack of 
additional exploration may prevent correction, failing to 
identify the optimal path. Consequently, the number of 
searching ants must exceed a minimum threshold to 
guarantee convergence to the optimal solution. Upon 
completing their paths, each ant’s route is evaluated 
using a fitness function. Subsequently, the fitness of each 
path is assessed, and the most promising routes are 
selected as candidate solutions for pheromone 
deposition. Pheromone updating typically involves two 
steps. In the first step, pheromones on all edges or nodes 
evaporate, with the evaporation rate governed by the 
parameter ρ. A low evaporation rate preserves the 
influence of successful paths from previous iterations, 
potentially slowing convergence, whereas a high 
evaporation rate accelerates convergence by rapidly 
diminishing outdated trails. In the second step, 
pheromone secretion is applied, typically restricted to 
the best-performing ant(s) or a subset of top solutions, 
as reported in most implementations (Nemati & Basiri, 
2011). 

 

𝜏𝑖𝑗(𝑡 + 1) = (1 − 𝜌) ∗ 𝜏𝑖𝑗(𝑡) + ∑ 𝛥𝜏𝑖𝑗                      (4) 

𝛥𝜏𝑖𝑗 = {
𝑄    
0  

 𝑓𝑜𝑟 𝑒𝑑𝑔𝑒𝑠 𝑜𝑓 𝑏𝑒𝑠𝑡 𝑎𝑛𝑡
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

}                     (5) 

 

Pheromones are secreted in excess; it will highlight 
the path of the selected ant. It should be noted that 
initially, the initial amount of pheromone is considered 
as a percentage between the values (0,1), meaning that it 
should be in the range (0.001 < pheromone of each 
element < 1). If the initial pheromone is set to be 0, 
ultimately, after updating the pheromone, most ants’ 
paths will have a value of 0, and the path corresponding 
to the best ant will have a value of 1. Consequently, all 
ants in subsequent iterations will almost exclusively 
choose the path of the best randomly chosen ant and 
converge on a path that may not be optimal. Paths that 
have a pheromone value of 0 will be eliminated from the 
search process, thus limiting the search space to a few 
initial random solutions, which are not thoroughly 
explored. Therefore, it is better to select the initial 
pheromone value to be something in the range (0,1), 
specifically around 0.5. Pheromone updating provides 
indirect positive and negative feedback within the 
colony. Fig. 3 shows the flowchart of the ant colony 
algorithm. 

III. APPLICATION OF THE ANT COLONY OPTIMIZATION 

ALGORITHM FOR SURFACE WAVE ANALYSIS 

This section details the application of the inversion 
algorithm to synthetic data derived from a direct model, 
alongside the validation of results against these 
synthetic datasets. Synthetic response curves for a 
hypothetical soil model are generated using a direct 
program and compared with the initial model following 
inversion. The direct problem in this study is based on 

the transfer matrix method (Haskell, 1953), which was 
updated by Herrmann and Ammon (2004) and 
implemented as Fortran software (Pouraziz et al., 2024). 
This software was executed within the MATLAB 
environment to produce synthetic response curves. For 
each iteration, the synthetic response curve is computed 
using random parameters from the Ant Colony 
Optimization (ACO) algorithm, with the misfit value 
assessed according to Eq. (6). In cases where data 
uncertainty is present, the misfit function is defined as 
described by Rui et al. (2022) and Wathelet et al. (2004). 
 

𝑚𝑖𝑠𝑓𝑖𝑡 = √∑
(𝑥𝑑𝑖−𝑥𝑐𝑖)2

𝜎𝑖
2𝑛𝑓

𝑛𝐹
𝑖=0                                                          (6) 

A. Inversion of Synthetic Data 
 

In this section, a hypothetical six-layer model is used 
to test and evaluate the efficiency and stability of the 
aforementioned algorithm. Three different scenarios for 
a six-layer model can be considered: Model A (increasing 
wave speed with depth), Model B (a soft layer trapped 
between two hard layers, LVL), and Model C (a hard layer 
enclosed between two soft layers, HVL). Table 1 shows 
the velocity characteristics of all three hypothetical six-
layer models. The frequency range for all three cases was 
set between 0.5-30 Hz, with a sampling interval 50. In 
this study, the simultaneous inversion of longitudinal 
wave speed, shear wave speed, and thickness were 
performed under the assumption of a Poisson's ratio (0.2 
< Poisson's ratio < 0.5). The initial search space was also 
set to ±50% of the assumed model values. Fig.s 3 to 5 
illustrate the inversion of the fundamental mode of 
Rayleigh waves for Models A, B, and C. In all models, after 
50 iterations, the convergence of the misfit function 
reached its minimum possible value, and increasing the 
number of iterations did not enhance convergence 
further. In all Fig.s, the actual model is compared with 
the model obtained from the inversion of the 
fundamental mode of Rayleigh waves. The standard 
deviation and relative error indicate a better match 
between the actual and estimated models in shallower 
layers than deeper ones. The highest error was observed 
in the inversion of the thickness parameters for the 
fourth and fifth layers. Overall, the calculated error 
values for speed parameters are less than those for 
thickness parameters. The results for Model B (LVL) 
demonstrate the high accuracy of the method in 
modeling low-speed layer parameters. Boundary failure 
methods are generally unable to determine low-speed 
layers; in such cases, using surface wave inversion will 
udoubtedly be effective. The same conclusion applies to 
Model C (HVL). In summary, based on the conducted 
evaluations, the algorithm’s efficiency for solving the 
surface wave inversion problem is confirmed. 
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B. Initial Model Generation and Evaluation Criteria 
in Ant Colony Optimization (ACO) 

In the ACO-based inversion approach, the initial model 
is generated randomly within predefined parameter 
bounds. These bounds are determined based on prior 
geological knowledge, borehole data, and empirical 
relationships. The primary parameters include shear 
wave velocity (VS), compressional wave velocity (Vp), 
and layer thickness. Each artificial ant constructs a 
candidate solution (VS profile) by sampling from these 
parameter ranges. The initial pheromone distribution is 
set uniformly, ensuring an equal probability of selecting 
different paths at the start of the optimization process. 

The evaluation of the model’s performance is 
conducted using a fitness function that quantifies the 
misfit between the experimental and synthetic 
dispersion curves. The objective function, often defined 
as the root mean square error (RMSE) or least-squares 
misfit, minimizes the difference between observed and 
modeled phase velocities. Convergence is achieved when 
the reduction in misfit reaches a predefined threshold, or 
when additional iterations fail to yield significant 
improvements. 

C. Potential Limitations and Challenges of ACO for 
Dispersion Curve Inversion 

While ACO has proven effective for nonlinear 
optimization, it has some inherent challenges: 

 Computational Cost: ACO requires multiple 
iterations with many ants to ensure global 
exploration, leading to high computational 
demands. 

 Parameter Sensitivity: The choice of 
parameters such as pheromone evaporation 
rate (ρ) and heuristic weighting coefficients (α, 
β) can significantly impact convergence speed 
and solution accuracy. 

 Local Minima Avoidance: Although ACO 
mitigates local minima issues better than 
traditional gradient-based methods, improper 
tuning of algorithmic parameters may still lead 
to suboptimal solutions. 

 Initial Model Dependence: While ACO does 
not require a predefined deterministic model, 
the quality of initial parameter bounds can 
influence inversion outcomes, potentially 
biasing the search space. 

 Scalability: The algorithm's performance may 
degrade when applied to highly heterogeneous 
or deep geological structures due to the 
increased complexity of the parameter space. 

Despite these limitations, ACO remains a robust tool 
for dispersion curve inversion, offering flexibility in 
exploring complex subsurface structures while 
maintaining a balance between exploration and 
exploitation. 

D. Comparison of Ant Colony Optimization 
Algorithm with Neighborhood Algorithm Used in Geopsy 
Software 

Model A was utilized to compare the Ant Colony 
Optimization (ACO) algorithm with the neighborhood 
algorithm implemented in Geopsy software. Both 
algorithms were tested with identical search spaces 
(±50% of assumed model values) and a fixed number of 
50 iterations. To quantify their performance, we 
evaluated accuracy, convergence rate, and 
computational efficiency. Fig. 6 presents the inversion 
results using the neighborhood algorithm, showing a 
reasonable fit between the actual and modeled 
dispersion curves but a poorer match for the shear wave 
speed (VS) profile. In contrast, ACO achieved a closer 
alignment with the true VS profile. Quantitatively, ACO 
yielded a misfit of 3 × 10⁻⁴ with a mean relative error of 
3.5% for speed parameters, while the neighborhood 
algorithm produced a misfit of 8 × 10⁻³ and a mean 
relative error of 15%. Furthermore, ACO converged to its 
minimum misfit within 50 iterations, requiring an 
average runtime of 12.5 minutes on a standard 
workstation (Intel Core i7, 16 GB RAM), compared to 
15.2 minutes for the neighborhood algorithm under the 
same conditions. This demonstrates ACO’s superior 
accuracy and computational efficiency. However, ACO’s 
performance depends on carefully tuning parameters 
such as the pheromone evaporation rate (ρ = 0.1 in this 
study) and the number of ants (50), which we optimized 
through preliminary trials to balance exploration and 
convergence. 

This comparison reveals the capabilities of both 
algorithms in terms of inverting Rayleigh wave 
dispersion curves obtained from complex models. 
However, the accuracy and efficiency of the algorithm 
presented in this study appear to be superior. 

E. Inversion of Experimental Data 

In this section, experimental dispersion curves, 
acquired from a station in the central plain of the city, 
replace synthetic data for algorithm evaluation. Initial 
parameterization values are outlined in Table 2. Based 
on the dispersion curve morphology, a four-layer 
model—comprising three alluvial layers overlying 
bedrock—was selected for inversion. Due to limited 
subsurface geological data, a broad range of thicknesses 
was considered for each layer. Similarly, wide ranges of 
shear wave velocity (VS) and longitudinal wave velocity 
(Vp) were incorporated. Both Vp and VS parameters were 
included in the inversion process, while layer density 
was held constant. Following the inversion of the 
Rayleigh wave dispersion curve, a robust quantitative 
and qualitative interpretation of the soil layering was 
achieved. To validate the results, the inverted model was 
compared with data from nearby boreholes. Fig. 7 

presents the inversion outcomes for the experimental 
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data. Consistent with its efficacy in modeling synthetic 
dispersion curves, the Ant Colony Optimization (ACO) 
algorithm exhibited strong performance in inverting 
experimental curves. Fig. 7(a) displays a photograph of a 
drilled borehole near the sampling site. Fig. 7(b) 
illustrates the shear wave velocity profile, with blue lines 
representing the inverted VS profile and its standard 
deviation, bounded by green dashed lines indicating the 
upper and lower search limits. Fig. 7(c) compares the 
experimental dispersion curve (blue points, including 
standard deviation bounds) with the modeled curve (red 
line), revealing an excellent match. Fig. 7(d) depicts the 
misfit function’s evolution across iterations, reaching a 
value of 4 × 10⁻⁴ after 50 iterations, further confirming 
the high agreement between experimental and modeled 
curves. Comparison with borehole data reveals strong 
correspondence in layering and an increasing trend in VS 
with depth. 

IV. TWO-DIMENSIONAL SHEAR WAVE SPEED MODEL OF 

TABRIZ PLAIN 

In this stage, based on geophysical studies 
(microtremor arrays), shear wave speeds were initially 
obtained in a one-dimensional format in Tabriz and, 
subsequently, presented as two-dimensional geological 
profiles (by integrating the geophysical results, existing 
boreholes, and geological maps of Tabriz). Regarding 
calibrating data with collected data, it is important to 
note the following: 
- The drilling logs from the regional water company had 

very low accuracy due to appropriate depth, and no 
geophysical data were available within these boreholes 
as most were outside the area. 
- The geoelectric studies conducted were also outside 

the urban area and were not usable. 
- The drilling logs from the municipality had reasonable 

accuracy but were very shallow, hence being 
incompatible with the goals of the present study. 

-A few logs from the Housing and Urban Development 
Organization and downhole seismic data performed in 
them were also unreliable due to shallow depth and the 
very low accuracy of shear wave measurements (only 
longitudinal waves had adequate accuracy). 
- The only credible reference was the 1:25,000 geological 

map of Tabriz 1 and 2, which was going to be used for 
this study; however, unfortunately, as of the time of 
writing this report, the maps have not been approved 
and are not publishable. 
In conclusion, it should be noted that the aim of this 
study is solely to estimate shear wave speeds in soil, not 
to characterize soil layering based on regional lithology. 
In Fig. 8, the extracted profiles are located on the 
1:100,000 geological map of Tabriz, followed by the 
shown two-dimensional modeled profiles. 

A. Statistical Evaluation of Model Accuracy 

To assess the accuracy of the estimated shear wave 
velocity (VS) profiles, we compare the inversion results 
against independent borehole and geophysical 
measurements using the following statistical metrics: 

 Root Mean Square Error (RMSE): 
This metric quantifies the average deviation between 

the inverted and observed velocity values, with lower 
RMSE values indicating better model fit. 

 

𝑅𝑀𝑆𝐸  =  √
1

𝑛
  ∑(𝑉𝑆inverted

  −  𝑉𝑆observed
)

2
𝑛

𝑖=1

                        (7) 

 

 Mean Absolute Percentage Error (MAPE): 
MAPE provides a percentage-based error measure, 

making it helpful in assessing relative accuracy across 
different depths. 

 

𝑀𝐴𝑃𝐸  =
1

𝑛
∑ |

𝑉𝑆inverted
  −  𝑉𝑆observed

𝑉𝑆observed

| ∗100

𝑛

𝑖=1

                       (8) 

 

 Pearson Correlation Coefficient (R²): 
This metric evaluates the strength of the relationship 

between the estimated and observed values, with values 
closer to 1 indicating a stronger correlation. 

 

𝑅  = 1 −
∑ (𝑉𝑆inverted

− 𝑉𝑆observed
)𝑛

𝑖=1

∑ (𝑉𝑆observed
− ̅ )𝑛

𝑖=1

                                   (9)  

 

In these Eq.s, 𝑉𝑆inverted
 represents the predicted values 

(or simulated values𝑉𝑆observed
represents the observed 

values and n is the number of observations. 

V. CASE STUDIES AND PRACTICAL IMPLEMENTATIONS 

Several previous studies have demonstrated the 
effectiveness of metaheuristic optimization techniques, 
including Ant Colony Optimization (ACO), in geophysical 
applications. Below are key case studies that illustrate 
the practical significance of our approach: 

 Shear Wave Velocity Profiling in Urban 
Areas 
Cercato (2009) and Foti et al. (2009) applied 
inversion techniques to map subsurface shear 
wave velocity in densely populated urban 
settings. Their work demonstrated that 
metaheuristic algorithms significantly improve 
the resolution of velocity models, aiding seismic 
hazard assessment. 

 Basin Structure Characterization Using 
Surface Waves 
Maghami et al. (2021) used microtremor 
inversion combined with metaheuristic 
algorithms to extract shear wave velocity 
structures of deep alluvial basins in Iran. Their 
findings confirmed that such methods provide 
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robust, high-resolution, subsurface models that 
align well with borehole data. 

 Seismic Site Response Studies 
Angardi et al. (2024) integrated artificial 
intelligence-driven inversion techniques with 
experimental data to estimate Rayleigh wave 
ellipticity curves, enhancing the accuracy of Vs 
profiling. The results were validated against 
geotechnical site investigations. 

These case studies highlight the growing acceptance 
and success of metaheuristic approaches in geophysical 
studies. Our work builds upon these advancements by 
further refining ACO for dispersion curve inversion, 
demonstrating its ability to provide accurate and 
computationally efficient solutions in complex geological 
environments. Fig. 9 shows the research process in this 
article. 

VI. CONCLUSIONS 

The main objective of the present study is to present a 
new algorithm aimed at improving the inversion of 
surface wave dispersion curves to obtain the shear wave 
velocity structure of the ground. Collective intelligence 
algorithms such as ant colony optimization function well 
in solving nonlinear problems with multiple extrema. 
Their low sensitivity to local minima or maxima 
enhances their appeal. Like other global search methods, 
these approaches do not require an initial model and 
explore the entire parameter space defined beforehand 
for solving the problem. Therefore, there is no risk of 
getting trapped in local minima or maxima. In these 
algorithms, many layers and a wide range of velocity and 
thickness values are selected. The general trend, where 
velocity increases or decreases with depth, can be 
determined based on the shape of the dispersion curve 
and using the empirical rule λ/2. Running the algorithms 
multiple times to obtain the final model is effectively 
improves results, allowing for the definition of the 
average model and standard deviation for each model 
parameter. To test the efficiency of the introduced 
algorithms, the inversion of dispersion curves obtained 
from three cases of a six-layer model was used. Since the 
longitudinal wave velocity has a very minor (and non-
negligible) effect compared to the shear wave velocity in 
surface wave dispersion curves, simultaneous inversion 
of both parameters (0.1 < Poisson's ratio < 0.5) was 
performed to enhance results. Unlike fracture seismic 
methods, using surface wave inversion performs well in 
differentiating low-velocity layers. The error in 
calculating the shear wave velocity for all layers is low; 
however, the relative error for thickness parameters, 
especially in intermediate layers, is significant. Overall, 
using ant colony optimization algorithms indicates 
successful inversion of artificial surface wave dispersion 
curves. Additionally, the present study employed ant 
colony optimization alongside a neighborhood 
algorithm. A comparison between the proposed 
algorithm and the neighborhood algorithm used in the 

software (Geopsy) shows greater convergence and 
accuracy of the ant colony optimization algorithm. Two-
dimensional modeling generally indicates that shear 
wave velocity in Tabriz increases rapidly with depth, 
while the velocity values are moderate in surface layers, 
except for the weathered layer. Furthermore, studying 
shear wave velocity profiles reveals that in the northern 
and southern parts, shear wave velocity is higher, 
indicating an uplift of the bedrock. 
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Table 1. The reference model of six layers (A, B, And C) to evaluate the efficiency and stability of the ant colony algorithm 
 

Layer 
Thickness 

(m) 
50% 

Search Space 
Vp 

(m/s) 
50% 

Search Space 
Vs (m/s) 

50% 
Search Space 

Density 
(kg/m3) 

Model A 

1 20 10-30 600 300-900 200 100-300 1800 
2 10 5-15 900 450-1350 300 150-450 1900 
3 30 15-45 1200 600-1800 400 200-600 1900 
4 40 20-60 1500 750-2250 500 250-750 2000 
5 50 25-75 2100 1050-3150 700 350-1050 2000 
6 Half-space ------ 3000 1500-4500 1000 500-1500 2100 

Model B 

1 10 5-15 600 300-900 200 100-300 1800 
2 20 10-30 450 225-675 150 75-225 1900 
3 30 15-45 900 450-1350 300 150-450 1900 
4 40 20-60 1200 600-1800 400 200-600 2000 
5 50 25-75 1800 900-2700 600 300-900 2000 
6 Half-space ------ 3000 1500-4500 1000 500-1500 2100 

Model C 

1 10 5-15 450 225-675 150 75-225 1800 
2 20 10-30 750 375-1125 250 125-375 1900 
3 30 15-45 600 300-900 200 100-300 1900 
4 40 20-60 1200 600-1800 400 200-600 2000 
5 50 25-75 1800 900-2700 600 300-900 2000 
6 Half-space ------ 3000 1500-4500 1000 500-1500 2100 
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(a)                                                                                                      (b) 

Fig. 3. Inverted spray curve of model A using the Ant Colony Optimization algorithm. (a) Base modal data of Rayleigh wave (blue 
dots) and the modeled spray curve (red line), (b) Lower and upper limits of the search range (50%) (green dashed line), actual 

model (red dashed line), and shear wave velocity profile along with standard deviation values (solid blue line). 
 

                
(a)                                                                                                        (b) 

Fig. 4. Inverted spray curve of model B using the Ant Colony Optimization algorithm. (a) Base modal data of Rayleigh wave (blue 
dots) and the modeled spray curve (red line), (b) Lower and upper limits of the search range (50%) (green dashed line), actual 

model (red dashed line), and shear wave velocity profile along with standard deviation values (solid blue line). 

 

 
(a)                                                                                                     (b) 

Fig. 5. (a) Inverted spray curve of model C using the Rayleigh wave (blue points) and the modeled spray curve (red line), (b) 
Lower and upper limits of the search range (50%) (green dashed line), actual model (red dashed line), and shear wave velocity 

profile along with standard deviation values (blue solid line). 
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(a)          (b) 
Fig. 6. Inverted spray curve of model A using the neighborhood algorithm. (a) Base mode data of Rayleigh wave (black 

points) and the modeled spray curve along with the misfit function values (colored lines), (b) Actual model (black dashed line), 
shear wave velocity profile along with the misfit function values (colored lines) 

 

  

                                 (b)                                              (a)  
 

 
                                                 (d) (c) 

Fig. 7. Experimental data inversion, (a) Borehole log, (b) Shear wave velocity profile (blue line) and search space (green dotted 
line), (c) experimental spray curve (blue dots) and modeled spray curve (red line), (d) changes of misfit function against 

repetition 
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Table 2. How to parameterize the experimental spray curve to evaluate the Aco Algorithm 
 Layer Thickness (m) 

Search Space 
VP (m/s) 

Search Space 
VS (m/s) 

Search Space 
Density 
(kg/m3) 

Field Data 
 

1 10-50 400-1200 100-400 1800 
2 10-50 800-2000 300-1000 2000 
3 20-60 1000-3000 500-1200 2000 
4 Half-space 2000-4000 800-2000 2100 

 

 
Fig. 8. Location of the measurement points of microtremor arrays and the modeled Vs profiles on the geological map of Tabriz at 

a scale of 1:100,000 (shear wave velocity units in the profiles are in m/s). 
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Fig. 9. Workflow of  methodology  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


