
تعداد نشریات | 21 |
تعداد شمارهها | 314 |
تعداد مقالات | 3,321 |
تعداد مشاهده مقاله | 3,546,631 |
تعداد دریافت فایل اصل مقاله | 2,591,253 |
Efficiency of Machine Learning Techniques for Predicting Vapor Pressure Deficit in Arid and Semi-Arid Regions (Case Study: South Khorasan Province) | ||
مجله پژوهش های خشکسالی و تغییراقلیم | ||
دوره 2، شماره 4 - شماره پیاپی 8، اسفند 1403، صفحه 85-102 اصل مقاله (1.3 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22077/jdcr.2024.8327.1082 | ||
نویسندگان | ||
الهام قوچانیان حق وردی* 1؛ حسین خزیمه نژاد1؛ علیرضا مقری فریز2؛ امید خراشادی زاده3 | ||
1گروه علوم و مهندسی آب، دانشکده کشاورزی، دانشگاه بیرجند، بیرجند، ایران. | ||
2گروه تحقیقات آب و خاک، مرکز آموزش و تحقیقات کشاورزی و منابع طبیعی استان خراسان جنوبی،بیرجند، ایران. | ||
3شرکت آب منطقه ای خراسان جنوبی، شرکت مدیریت منابع آب، بیرجند، ایران. | ||
چکیده | ||
Climate change, as one of the global challenges of the present century, has profound impacts on water resources and agriculture. The increase in temperature and decrease in rainfall in arid and semi-arid regions have made optimal water resource management a top priority.In countries facing climate change and drought, accurate estimation of evapotranspiration plays a vital role in water resource management and ensuring food security.One of the key factors affecting evapotranspiration is the vapor pressure deficit (VPD), which significantly impacts the accuracy of related calculations. This study focuses on predicting the vapor pressure deficit using advanced machine learning techniques. The methods employed include linear regression (LR), generalized additive model (GAM), random subspace (RSS), random forest (RF), and M5 Purned model(M5P). In this study, monthly average data, including temperature, humidity, precipitation, and vapor pressure deficit, were extracted from the JRA-55 database for the period from 1958 to 2023. The analysis of vapor pressure deficit data in the study areas of Birjand, Sarayan, Qaen, and Tabas showed that the annual average vapor pressure deficit increased by 6 Pascals, 10 Pascals, 4 Pascals, and 5 Pascals, respectively.In the next step, the extracted data for temperature, precipitation, and humidity were used as input variables, and vapor pressure deficit was used as the target variable in machine learning algorithms. Model performance was evaluated using root mean square error (RMSE), mean absolute error (MAE), Pearson correlation (CC), and Kling-Gupta efficiency (KGE) as evaluation indices.The results showed that the GAM model outperformed other models in all study areas. The evaluation values for each region were as follows: Birjand [ RMSE=0.308, MAE=0.247, KGE=0.914, CC=0.920], SAarayan [RMSE=0.401, MAE=0.303, KGE=0.937, CC=0.951], Qaen [RMSE=0.072, MAE=0.055, KGE=0.987, CC=0.997] and Tabas[RMSE=0.230, MAE=0.184, KGE=0.920, CC=0.942] The predictions made by the model indicated that, over the next 10 years, the annual average vapor pressure deficit in the studied regions will significantly increase: Birjand: 9 Pascals, Sarayan: 10 Pascals, Qaen: 7 Pascals and Tabas: 5 PascalsThis increase signifies serious challenges for water resources and an increase in water consumption in the region’s hot and dry climatic conditions. Finally, this study recommends the GAM model as an effective tool for future research, especially for use in the development of smart irrigation systems, which play a crucial role in sustainable water resource management. | ||
کلیدواژهها | ||
Vapor pressure deficit؛ GAM؛ Machine learning؛ Drought | ||
مراجع | ||
Ahmar, S., Gill, R.A., Jung, K.H., Faheem, A., Qasim, M.U., Mubeen, M. & Zhou, W. (2020). Conventional and molecular techniques from simple breeding to speed breeding in crop plants: recent advances and future outlook. International Journal of Molecular Sciences. 21(7), 2590. https://doi.org/10.3390/ijms21072590. Azarm, k., mohebolhojeh, A. & Mirzaie, M. (2022). Climatological Study of Wintertime Blocking Events in the Northern Hemisphere. 20th Iranian Geophysical Conference, Iran. Blaifi, S.A., Moulahoum, S., Benkercha, R., Taghezouit, B.& Saim, A. (2018). M5P model tree-based fast fuzzy maximum power point tracker. Solar Energy 163, 405–424. https:// doi.org/10.1016/j.solener.2018.01.071 Bolton, D. (1980). The computation of equivalent potential temperature. Monthly Weather Review. 108, 1046–1053. https://doi. org/10.1175/1520-0493(1980)108 Dai, G., 2006. Recent climatology, variability, and trends in global surface humidity. Journal of Climate. 19(15), 3589–3606. Devi, M.J., Reddy, V.R. (2018). Effect of temperature under different evaporative demand conditions on maize leaf expansion. Environmental and Experimental Botany. 155, 509–517. https://doi.org/10.1016/j. envexpbot.2018.07.024 Emami, M., Ahmadi, A., Daccache, A., Nazif, S., Mousavi, S.F. & Karami, H. (2022). Countylevel irrigation water demand estimation using machine learning: case study of California. Water, 14 (12), 1937. https://doi.org/10.3390/w14121937. Fletcher, L., Sinclair, T.R. & Allen Jr., L.H. (2007). Transpiration responses to vapor pressure deficit in well watered ‘slow-wilting’and commercial soybean. Environmental and Experimental Botany, 61(2), 145–151. https://doi.org/10.1016/j.envexpbot.2007.05.004 Huntington, T., Cui, X., Mishra, U. & Scown, C.D. (2020). Machine learning to predict biomass sorghum yields under future climate scenarios. Biofuels Bioprod. Bioref. 14 (3), 566–577. https://doi.org/10.1002/bbb.2087 Iribarne, J.V., and W.L. Godson. 1981. Atmospheric Thermodynamics. D. Reidel, p. 65. Islam, A.R.M., Talukdar, S., Akhter, S., Eibek, K.U., Rahman, M., Pal, S. & Mosavi, A. (2022). Assessing the impact of the farakka barrage on hydrological alteration in the Padma River with future insight. Sustainability 14 (9), 5233. https://doi.org/10.3390/su14095233 Khosravi, K., Daggupati, P., Alami, M.T., Awadh, S.M., Ghareb, M.I. & Panahi, M. (2019). Meteorological data mining and hybrid data-intelligence models for reference evaporation simulation: a case study in Iraq. Computers and Electronics in Agriculture 167. https://doi.org/10.1016/j.compag.2019.105041 Kimball, J.S., Running, S.W. & Nemani, R. (1997). An improved method for estimating surface humidity from daily minimum temperature. Agricultural and Forest Meteorology. 85 (1–2), 87–98. http://doi. org/10.1016/S0168-1923(96)02366-0 Kobayashi, S., Ota, Y., Harda, Y., Ebita, A., Moriya, M., Onoda, H., Onogi, K., Kamahori, H., Kobayashi, C., Endo, H., Miyaoka, K. & Gentine, P. (2015). The JRA-55 reanalysis: general specifications and basic characteristics. Journal of the Meteorological Society of Japan Ser II.5-48. https://doi.org/10.2151/jmsj.2015-001 Liu, W. & Sun, F. (2017). Projecting and attributing future changes of evaporative demand over China in CMIP5 climate models. Journal of Hydrometeorology. 18 (4), 977–991. https://doi.org/10.1175/JHM-D-16-0204.1 Mollasharifi, A., Mohebalhojeh, A. R. & Ahmadi-Givi, F. (2019). A study of the impacts of the NAO on the relation between the North Atlantic and Mediterranean storm tracks using the NCEP/NCAR and JRA-55 reanalysis data. Journal of the Earth and Space Physics. 45(2),423-440. https://doi.org/ 10.22059/JESPHYS.2019.267521.1007050 Pierce, W., Westerling, A.L. & Oyler, J. (2013). Future humidity trends over the western United States in the CMIP5 global climate models and variable infiltration capacity hydrological modeling system. Hydrology and Earth System Sciences Discussions, 9(12), 13651-13691. https://doi.org/10.5194/hessd-17-18332013 Qiu, R.J., Katul, G.G. (2020). Maximizing leaf carbon gain in varying saline conditions: an optimization model with dynamic mesophyll conductance. The Plant Journal. 101 (3), 543–554. https://doi.org/10.1111/tpj.14553 Sangin´es de C´arcer, P., Vitasse, Y., Pe˜nuelas, J., Jassey, V.E.J., Buttler, A. & Signarbieux, C. (2018). Vapor–pressure deficit and extremeclimatic variables limit tree growth. Global Change Biology. 24 (3), 1108–1122. https://doi.org/10.1111/gcb.13973. Shamshirband, S., Hashemi, S., Salimi, H., Samadianfard, S., Asadi, E., Shadkani, S. & Chau, K.W.(2020). Predicting standardized stream flow index for hydrological drought using machine learning models. Engineering Applications of Computational Fluid Mechanics. 14 (1), 339–350. https://doi.org/10.1080/19942060.2020.1715844 Simmons, J., Willett, K.M., Jones, P.D., Thorne, P.W. & Dee, D.P. (2010). Lowfrequency variations in surface atmospheric humidity, temperature, and precipitation: Inferences fromreanalyses and monthly gridded observational data sets. Journal of Geophysical Research Atmospheres. 115(1), https://doi.org/10.1029/2009JD012442 Smidte, S.J., Haacker, E.M.K., Kendall, A.D., Deines, J.M., Pei, L., Cotterman, K.A., Li, H., Liu, X., Basso, B. & Hyndman, D.W. (2016). Complex water management in modern agriculture: Trends in the water–energy–food nexus over the High Plains aquifer. Science of the Total Environment. 566–567, 988–1001. https://doi.org/10.1016/j.scitotenv.2016.05.127 Wada, Y., Bierkens, M.F.P. (2014). Sustainability of global water use: past reconstruction and future projections. Environmental Research Letters, 9(10), 104003. https://doi. org/10.1088/1748-9326/9/10/104003. Willett, K.M., Dunn, R.J.H., Thorne, P.W., Bell, S., de Podesta, M., Parker, D.E., Jones, P. D. & Williams Jr., C.N. (2014). HadISDH land surface multi-variable humidity and temperature record for climate monitoring. Climate of the Past, 10(6), 1983–2006. https:// doi.org/10.5194/cp-10-1983-2014.
| ||
آمار تعداد مشاهده مقاله: 124 تعداد دریافت فایل اصل مقاله: 107 |