
تعداد نشریات | 21 |
تعداد شمارهها | 314 |
تعداد مقالات | 3,321 |
تعداد مشاهده مقاله | 3,546,625 |
تعداد دریافت فایل اصل مقاله | 2,591,251 |
اثرات منطقه، تنشهای خشکی، مس و اثرات متقابل آنها بر برخی صفات بیوشیمیایی و عملکرد دانه گیاه شاهتره (.Fumaria parviflora Lam) | ||
تنشهای محیطی در علوم زراعی | ||
مقالات آماده انتشار، پذیرفته شده، انتشار آنلاین از تاریخ 15 اسفند 1403 اصل مقاله (1.71 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22077/escs.2024.7167.2263 | ||
نویسندگان | ||
منصوره تشکری زاده1؛ پوراندخت گلکار* 2؛ محمدرضا وهابی2 | ||
1استادیار مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان کرمان، سازمان تحقیقات آموزش و ترویج کشاورزی، کرمان | ||
2دانشیار گروه مرتع و آبخیزداری، دانشکده منابع طبیعی، دانشگاه صنعتی اصفهان | ||
چکیده | ||
مس یک عنصر ضروری برای فرایندهای متابولیکی گیاه است و فقط در مقادیر کم، موردنیاز گیاه بوده و در مقادیر بالا سمی است. تنش خشکی نیز رشد طبیعی و روابط آبی در گیاه را مختل کرده و کارایی مصرف آب در گیاه را کاهش میدهد و سبب بروز انواع پاسخهای فیزیولوژیکی در گیاه میشود. در این مطالعه اثرات مستقل و ترکیبی غلظتهای مختلف عنصر مس (شاهد، 50، 150، 300 و 400 میلیگرم بر کیلوگرم) و سطوح مختلف تنش خشکی (شاهد، 50% و 75% بر اساس تخلیه درصد رطوبت خاک) بهصورت آزمایش فاکتوریل در قالب طرح کامل تصادفی با 3 تکرار انجام شد. در این مطالعه صفات عملکرد دانه، میزان مالون دی آلدهید، میزان کربوهیدراتهای محلول، پرولین، محتوای آنتوسیانین، محتوای کل فنل و فلاونوئید و فعالیت آنتی اکسیدانی گیاه شاهتره (Fumaria Parviflora Lam.) اندازهگیری شد. بذر گیاه از چهار ناحیه با غلظتهای مختلف مس واقع در دو منطقه معدنی مس عسکری راور و مس رابر در استان کرمان برداشت شد. بروز تنش خشکی بر گیاهان تیمار شده با غلظت 50 میلیگرم در کیلوگرم مس باعث کاهش عملکرد دانه، محتوای آنتوسیانین و پرولین و در غلظت 150 میلیگرم در کیلوگرم باعث افزایش محتوای پرولین، کربوهیدراتهای محلول و آنتوسیانین و در غلظتهای 300 و 400 میلی گرم در کیلوگرم باعث افزایش محتوای پرولین، آنتوسیانین، فنل و فلاونوئید، فعالیت آنتی اکسیدانی و میزان مالون دی آلدهید و کاهش میزان کربوهیدراتهای محلول شد. حضور توأم تنش خشکی متوسط و غلظتهای 50 و 150 میلیگرم در کیلوگرم مس برای گیاه شاهتره با استفاده از مکانیسمهای دفاعی قابلتحمل بودند. از بین نواحی موردمطالعه، نواحی 3 و 4 نسبت به غلظتهای بالای مس تحمل بیشتری داشتند و عملکرد دانه بهتری را نسبت به سایر نواحی نشان دادند. پیشنهاد میشود، برای کشت گیاه دارویی شاهتره در مناطق تحت تنش، بذر این گیاه از نواحی با غلظت بالای مس (3 و 4) جمع آوری شود. | ||
کلیدواژهها | ||
آلودگی خاک؛ آنتوسیانین؛ پرولین؛ فلاونوئید؛ گیاهان دارویی | ||
مراجع | ||
Akhzari, D., Pessarakli, M., Mahdavi, S., Ariapour, A., 2022. Impact of drought, salinity, and heavy metal stress on growth, nutrient uptake, and physiological traits of vetiver grass (Chrysopogon zizanioides L.). Communications in Soil Science and Plant Analysis. 53, 1841-1847. https://doi.org/10.1080/00103624.2022.2063327 Alaoui-Sossé, B., Genet, P., Vinit-Dunand, F., Toussaint, M.L., Epron, D., Badot, P.M., 2004. Effect of copper on growth in cucumber plants (Cucumis sativus) and its relationships with carbohydrate accumulation and changes in ion contents. Plant Science. 166, 1213-1218. https://doi.org/10.1016/j.plantsci.2003.12.032 Alfadul, S.M., Al-Fredan, M.A., 2013. Effects of Cd, Cu, Pb, and Zn combinations on phragmites australis metabolism. Metal accumulation and distribution. Arabian Journal for Science and Engineering. 38, 11-19. https://doi.org/10.1007/s13369-012-0393-0 Ali, M.B., Vajpayee, P., Tripathi, R.D., Rai, U.N., Singh, S.N., Singh, S.P., 2003. Phytoremediation of lead, nickel, and copper by Salix acmophylla Boiss. Role of antioxidant enzymes and antioxidant substances. Bulletin of Environmental Contamination and Toxicology. 70, 0462-0469. https://doi.org/10.1007/s00128-003-0009-1 Alloway, B.J., 2010. Heavy Metals in Soil (Third edition). John Wiley and Sons. New Yurk. USA. Antosiewicz, D., Wierzbicka, M., 1999: Location of lead in Allium cepa L. cell by electron microscope. Journal of Microscopy. 195, 139–146. https://doi.org/10.1046/j.1365-2818.1999.00492.x Baek, S.A., Han, T., Ahn, S.K., Kang, H., Cho, M. R., Lee, S. C., Im, K.H., 2012. Effects of heavy metals on plant growths and pigment contents in Arabidopsis thaliana. Plant Pathology. 28, 446-452. https://doi.org/10.5423/PPJ.NT.01.2012.0006 Bates, L.S., Waldren, R.A., Teare, I.D., 1973. Rapid determination of free proline for water-stress studies. Plant and Soil. 39, 205-207. https://doi.org/10.1007/BF00018060 Bistgani, Z.E., Hashemi, M., DaCosta, M., Craker, L., Maggi, F., Morshedloo, M.R., 2019. Effect of salinity stress on the physiological characteristics, phenolic compounds and antioxidant activity of Thymus vulgaris L. and Thymus daenensis Celak. Industrial Crops and Products. 135, 311-320. https://doi.org/10.1016/j.indcrop.2019.04.055 Bost, M., Houdart, S., Oberli, M., Kalonji, E., Huneau, J.F., Margaritis, I., 2016. Dietary copper and human health: Current evidence and unresolved issues. Journal of Trace Elements in Medicine and Biology. 35, 107-115. https://doi.org/10.1016/j.jtemb.2016.02.006 Brand-Williams, W., Cuvelier, M.E. Berset, C.L.W.T., 1995. Use of a free radical method to evaluate antioxidant activity. LWT-Food Science and Technology. 28, 25-30. https://doi.org/10.1016/S0023-6438(95)80008-5 Cetinkaya, H., Seckin dinler, B., Tasci, E., 2014. Investigation of comparative regulation on antioxidant enzyme system under copper treatment and drought stress in maize (Zea mays L.). Notulae Botanicae Horti Agrobotanici Cluj-Napoca. 42, 363-371. https://doi.org/10.15835/nbha.42.2.9632 Chang, C.C., Yang, M.H., Wen, H.M., Chern, J.C., 2002. Estimation of total flavonoid content in propolis by two complementary colorimetric methods. Food and Drug Analysis. 10, 178-182. https://doi.org/10.38212/2224-6614.2748 Chen, J., Shafi, M., Li, S., Wang, Y., Wu, J., Ye, Z., Peng, D., Yan, W., Liu, D., 2015. Copper induced oxidative stresses, antioxidant responses and phytoremediation potential of Moso bamboo (Phyllostachys pubescens). Scientific Reports. 5, 13554. https://doi.org/10.1038/srep13554 Chen, Z., Ma, Y., Yang, R., GU, Z., Wang, P., 2019. Effects of exogenous Ca+2 on phenolic accumulation and physiological changes in germinated wheat (Triticum aestivum L.) under UV-B radiation. Food Chemistry. 288, 368-376. https://doi.org/10.1016/j.foodchem.2019.02.131 Chrysargyris, A., Papakyriakou, E., Petropoulos, S.A., Tzortzakis, N., 2019. The combined and single effect of salinity and copper stress on growth and quality of Mentha spicata plants. Hazardous Materials. 368, 584-593. https://doi.org/10.1016/j.jhazmat.2019.01.058 Chung, I.M., Rajakumar, G., Subramanian, U., Venkidasamy, B., Thiruvengadam, M., 2019. Impact of copper oxide nanoparticles on enhancement of bioactive compounds using cell suspension cultures of Gymnema sylvestre (Retz.) R. Br. Applied Sciences. 9, 2165. https://doi.org/10.3390/app9102165 Dowidar, S.M., Khalaf, B.M., Abo-Hamad, S.A., Mohsen, A.A., 2013. Bioremediation of copper stressed Trigonella foenum graecum. Journal of Stress Physiology and Biochemistry. 9, 5-24. DuBois, M., Gilles, K.A., Hamilton, J.K., Rebers, P.T., Smith, F., 1956. Colorimetric method for determination of sugars and related substances. Analytical Chemistry. 28, 350-356. https://doi.org/10.1021/ac60111a017 Fidalgo, F., Azenha, M., Silva, A.F., de Sousa, A., Santiago, A., Ferraz, P., Teixeira, J., 2013. Copper‐induced stress in Solanum nigrum L. and antioxidant defense system responses. Food and Energy Security. 2, 70-80. https://doi.org/10.1002/fes3.20 Giannakoula, A., Therios, I., Chatzissavvidis, C., 2021. Effect of lead and copper on photosynthetic apparatus in citrus (Citrus aurantium L.) plants. The role of antioxidants in oxidative damage as a response to heavy metal stress. Plants. 10(1), 155. https://doi.org/10.3390/plants10010155 Hasanuzzaman, M., Nahar, K., Rahman, A., Mahmud, J.A., Hossain, S., Alam, K., Oku, H., Fujita, M., 2017. Actions of biological trace elements in plant abiotic stress tolerance. Essential Plant Nutrients: Uptake, Use Efficiency, and Management. 213-274. https://doi.org/10.1007/978-3-319-58841-4_10 Hassan, T.U., Bano, A., Naz, I., 2017. Alleviation of heavy metals toxicity by the application of plant growth promoting rhizobacteria and effects on wheat grown in saline sodic field. International Journal of Phytoremediation. 19, 522-529. https://doi.org/10.1080/15226514.2016.1267696 Heath, R.L., Packer, L., 1968. Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Archives of Biochemistry and Biophysics. 125, 189-198. https://doi.org/10.1016/0003-9861(68)90654-1 Khatun, S., Ali, M.B., Hahn, E.J., Paek, K.Y., 2008. Copper toxicity in Withania somnifera: growth and antioxidant enzymes responses of in vitro grown plants. Environmental and Experimental Botany. 64, 279-285. https://doi.org/10.1016/j.envexpbot.2008.02.004 Khalid, Kh.A., 2006. Influence of water stress on growth, essential oil, and chemical composition of herbs (Ocimum sp.). International Agrophysics. 20, 289-296. Ku, M.H., Tan, C.W., Su, Y.S., Chiu, C.Y., Chen, C.T., Jan, F.J., 2012. The effect of water deficit and excess copper on proline metabolism in Nicotiana benthamiana. Biologia Plantarum. 56, 337-343. https://doi.org/10.1007/s10535-011-0098-3 Kumar, A., Prasad, M.N.V., Sytar, O., 2012. Lead toxicity, defense strategies and associated indicative biomarkers in Talinum triangulare grown hydroponically. Chemosphere. 89, 1056-1065. https://doi.org/10.1016/j.chemosphere.2012.05.070 Landi, M., Tattini, M., Gould, K.S., 2015. Multiple functional roles of anthocyanins in plant-environment interactions. Environmental and Experimental Botany. 119, 4-17. https://doi.org/10.1016/j.envexpbot.2015.05.012 Mittler, R., 2006. Abiotic stress, the field environment and stress combination. Journal of Trends in Plant Science. 11, 15-19. https://doi.org/10.1016/j.tplants.2005.11.002 Muhammad, A., Shafaqat, A., Muhammad, R., Muhammad, I., Farhat, A., Mujahid, F., Saima, A. B., 2015. The effect of excess copper on growth and physiology of important food crops: A review. Journal of Environment Science and Pollution Research. 22, 8148-8162. https://doi.org/10.1007/s11356-015-4496-5 Nasim, S. A., Dhir, B., 2010. Heavy metals alter the potency of medicinal plants. Reviews of Environmental Contamination and Toxicology 139-149. https://doi.org/10.1007/978-1-4419-1352-4_5 Orcutt, D.M., Nilsen, E.T., 2000. The Physiology of Plant under Stress. Joen WileyPublishing. Soil and Biotic factors. 481-517. https://doi.org/10.2135/cropsci2001.413915x Orhan, I. E., Ozturk, N., Sener, B., 2015. Antiprotozoal assessment and phenolic acid profiling of five Fumaria (fumitory) species. Asian Pacific Journal of Tropical Medicine. 8, 283-286. https://doi.org/10.1016/S1995-7645(14)60331-X Pande, P., Anwar, M., Chand, S., Yadav, V.K., Patra, D.D., 2007. Optimal level of iron and zinc in relation to its influence on herb yield and production of essential oil in menthol mint. Communications in Soil Science and Plant Analysis. 38, 561-578. https://doi.org/10.1080/00103620701215627 Petridis, A., Therios, I., Samouris, G., Koundouras, S., Giannakoula, A., 2012. Effect of water deficit on leaf phenolic composition, gas exchange, oxidative damage and antioxidant activity of four Greek olive Olea europaea (L.) cultivars. Plant Physiology and Biochemistry. 60, 1-11. https://doi.org/10.1016/j.plaphy.2012.07.014 Posmyk, M.M., Kontek, R., Janas, K.M., 2009. Antioxidant enzymes activity and phenolic compounds content in red cabbage seedlings exposed to copper stress. Ecotoxicology and Environmental Safety. 72, 596-602. https://doi.org/10.1016/j.ecoenv.2008.04.024 Salducci, M.D., Folzer, H., Issartel, J., Rabier, J., Masotti, V., Prudent, P., Affre, L., Hardion, L., Tatoni, T., Laffont-Schwob, I., 2019. How can a rare protected plant cope with the metal and metalloid soil pollution resulting from past industrial activities? Phytometabolites, antioxidant activities and root symbiosis involved in the metal tolerance of Astragalus tragacantha. Chemosphere. 217, 887-896. Sharma, A., Thakur, S., Kumar, V., Kanwar, M.K., Kesavan, A.K., Thukral, A.K., Bhardwaj, R., Alam, P., Ahmad, P., 2016. Pre-sowing seed treatment with 24-epibrassinolide ameliorates pesticide stress in Brassica juncea L. through the modulation of stress markers. Frontiers in Plant Science. 7, 1569. https://doi.org/10.3389/fpls.2016.01569 Sharma, A.; Shahzad, B.; Rehman, A.; Bhardwaj, R.; Landi, M., Zheng, B., 2019. Response of phenylpropanoid pathway and the role of polyphenols in plants under Abiotic Stress. Molecules. 24, 2452. https://doi.org/10.3390/molecules24132452 Singh, O.S., Pant, N.C., Laishram, L., Tewari, M., Dhoundiyal, R., Joshi, K., Pandey, C.S., 2018. Effect of CuO nanoparticles on polyphenols content and antioxidant activity in Ashwagandha (Withania somnifera L. Dunal). Pharmacognozy and Phytochemistry. 7, 3433-3439. Singleton, V.L., Orthofer, R., Lamuela-Raventós, R. S., 1999. Analysis of total phenols and other oxidation substrates and antioxidants by means of folin ciocalteau reagent. Methods in Enzymology. 299, 152-178. https://doi.org/10.1016/S0076-6879(99)99017-1 Stavreva Veselinovska, S., Zivanovic, J., Gokik, M., 2010. Changes of some biochemical and physiological parameters in Capsicum annuum L. as a consequence of increased concentrations of copper and zinc. Ecologia Balkanika. 2, 7-13. Szabados, L., Savoure, A., 2010. Proline: a multifunctional amino acid. Trends in Plant Science. 15, 89-97. https://doi.org/10.1016/j.tplants.2009.11.009 Takahashi, F., Shonozaki, K., 2019. Long-distance signaling in plant stress response. Current Opinion in Plant Biology. 47, 106-111. https://doi.org/10.1016/j.pbi.2018.10.006 Talukder, K.H., Ahmed, A.U., Islam, M. S., Asaduzzaman, M., Hossain, M.D., 2011. Incubation studies on exchangeable Zn for varying levels of added Zn under aerobic and anaerobic conditions in grey terrace soils, non-calcareosus floodplain soils and calcareosus floodplain soils. Science Foundation. 9, 9-14. Tashakorizadeh, M., Vahabi, M.R., Golkar, P., Mahdavian, K., 2022. The singular and combined effects of drought and copper stresses on the morphological traits, photosynthetic pigments, essential oils yield and copper concentration of Fumaria parviflora Lam. Industrial Crops and Products. 177, 114517. https://doi.org/10.1016/j.indcrop.2021.114517 Viera, I., Perez-Galvez, A., Roca, M., 2019. Green natural colorants. Molecules. 24(1), 154. https://doi.org/10.3390/molecules24010154 Wagner, G.J., 1979. Content and vacuole/extravacuole distribution of neutral sugars, free amino acids, and anthocyanin in protoplasts. Plant Physiology. 64, 88-93. https://doi.org/10.1104/pp.64.1.88 Wang, L., Shan, T., Xie, B., Ling, C., Shao, S., Jin, P., Zheng, Y., 2019. Glycine betaine reduces chilling injury in peach fruit by en-hancing phenolic and sugar metabolisms. Food Chemistry. 272, 530-538. https://doi.org/10.1016/j.foodchem.2018.08.085 Waraich, E. A., Rashid, A., Ashraf, M. Y., 2011. Role of mineral nutrition in alleviation of drought stress in plants. Australian Journal of Crop Science. 5, 764-777. Yadav, S., 2010. Heavy metals toxicity in plants: an overview on the role of glutathione and phytochelatins in heavy metal stress tolerance of plants. South African Journal of Botany. 76, 167-179. https://doi.org/10.1016/j.sajb.2009.10.007 Yang, L., Wen, K.S., Ruan, X., Zhao, Y.X., Wei, F., Wang, Q., 2018. Response of plant secondary metabolites to environmental factors. Molecules. 23, E762. https://doi.org/10.3390/molecules23040762 Zhao, H., Tang, J., Zheng, W.J., 2016. Growth and physiological characteristics of Kandelia obovata seedlings under Cu2+ stress. Marine Sciences. 40, 65-72. Zhou, J., Cheng, K., Zheng, J., Liu, Z., Shen, W., Fan, H., Jin, Z., 2019. Physiological and biochemical characteristics of Cinnamomum camphora in response to Cu- and Cd-contaminated soil. Journal of Water. Air and Soil Pollution. 230, 1-11. https://doi.org/10.1007/s11270-018-4048-y | ||
آمار تعداد مشاهده مقاله: 149 تعداد دریافت فایل اصل مقاله: 66 |