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ABSTRACT 
Uniaxial compressive strength (UCS) is one of the most practical parameters of rock mechanics. It is an important and basic 

geomechanical factor in the design of tunnels, dams, and underground drilling. The direct method for determining the UCS in 
the laboratory is expensive and time-consuming. Therefore, several empirical equations have been developed to estimate the 
UCS from the results of index and physical tests of rock. Nevertheless, numerous empirical models available in the literature 
often make it difficult for mining engineers to decide which empirical equation provides the most reliable estimate of UCS.  This 
work aims to estimate the UCS of rocks using a machine learning-based approach. More specifically, a deep neural networks 
(DNN) model is designed to predict the UCS from the physical and mechanical characteristics of rocks. 221 different rock block 
samples were collected from various areas of Iran. The physical and mechanical properties include Dry density (ρ), P-wave 
velocity (𝑉𝑝), Point load test (𝐼𝑠50), Brazilian tensile strength (BTS), and water absorption (𝐼𝑣). In order to reduce the dimension 

of the input features, before the DNN model, principal component analysis (PCA) is employed. A combination of the PCA and 
the proposed DNN model is found to be efficient and useful in predicting UCS. The mean square error of the proposed method 
with and without the feature reduction stage was 0.0068 ± 0.001 and 0.0067 ± 0.013, respectively. 
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I. INTRODUCTION 

  Uniaxial compressive strength (UCS) is a critical 
parameter of rocks and is useful for engineering 
applications such as tunnel and dam design, rock 
blasting, and underground drilling. This parameter is 
determined directly based on the standards of the ISRM 
and ASTM by testing on the intact rock sample. The direct 
method for determining the UCS in the laboratory is 
expensive and time-consuming. In addition, the 
determination of this parameter with high accuracy 
requires a suitable and high-quality core sample, while it 
is difficult to obtain an appropriate core from weak and 
crushed rocks (Fener et al., 2005). In order to avoid these 
problems, index tests are used to determine the UCS, 
indirectly. Many researchers have predicted the UCS of 
different types of rocks using experimental relationships 
developed by the simple and multiple regression analysis 
(e.g., Singh and Dubey, 2000; Tiryaki, 2008; Diamantis et 
al., 2009; Heidari et al., 2012; Kumar et al., 2013; 
Nefeslioglu, 2013; Ozcelik et al., 2013); Asteris et al., 
2024). The predicted UCS parameter is obtained based 

on three non-destructive tests. These tests include 
Schmidt hardness, density, and P-wave velocity (Li et 
al.2020).  

The artificial neural network is one of the most 
popular machine learning approaches (Hassoun et al., 
1995); Zhang et al., 2021). Due to its high nonlinear 
mapping capability, it is often used in different prediction 
problems (Salehin et al., 2020). More specifically, this 
approach can provide an accurate estimate of different 
rock properties (e.g., Abdi et al., 2018; Moussas and 
Diamantis, 2021; Matin et al., 2018; Yesiloglu-Gultekin 
and Gokceoglu, 2022). In Table 1, some prediction 
models are summarized. Armaghani et al. (2021) used 
artificial neural networks (ANN) to predict granite UCS 
using the effective porosity and the compressional wave 
velocity. Yilmaz and Yuksek (2009) trained an artificial 
neural network model with multivariate regression 
analysis to predict soluble rock. 

In another study, the UCS and elastic modulus of shear 
rock were predicted by developing a multi-layer ANN 
(Kahraman et al., 2009). Yagiz et al. (2012) showed that 
the performance of the neural network is better than that 
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of the multivariate regression in predicting the UCS and 
elastic modulus of limestone from the fracture 
persistence index. The study by Torabi-Kaveh et al. 
(2015) used the rock's physical properties such as 
porosity, density, durability, and velocity of ultrasonic as 
the model input to predict the compressive strength and 
elastic modulus of Asmari limestone. They found that the 
neural network outperforms the multivariate regression 
analysis in the prediction task. These studies confirmed 
that the development of neural networks brings a new 
opportunity in regression tasks in engineering geology. 

This study aims to estimate uniaxial compressive 
strength indirectly, using a deep neural network 
approach. Although some papers have been worked on 
estimating the uniaxial compressive strength using 
neural network models, most of the previous research 
focused on a specific type of rock and conducted their 
study with a limited number of samples. In the present 
study, we extend the prediction of UCS parameters for 
several types of rocks using a unified deep neural 
network framework. It is worth mentioning that, the use 
of various types of rocks in learning the deep network 
weights makes the model more generalizable and 
reliable. In order to consider any kind of dependency 
between the neurons in two sequential layers of the 
neural network, we use fully connected layers in the 

network. Additionally, to prevent overfitting in the 
trained model a dropout layer is also applied. 

The physical and mechanical parameters that are 
used as the model inputs are dry density (ρ), water 
absorption (Iv), ultrasonic P-wave velocity (Vp), point 
load test (𝐼𝑠50), and Brazilian tensile strength (BTS). In 
order to reduce the redundancy of the input data and 
make them more statistically significant, we used a 
feature reduction stage before the DNN model. This 
makes the proposed model work easier and faster. The 
most popular technique for dimensionality reduction is 
the principal component analysis (PCA for short). This 
method converts the correlated features into 
uncorrelated variables by projecting the input data on a 
lower dimensional space without losing significant 
information. In this study, the dimensionality of the input 
space is reduced using PCA without any degradation in 
the prediction performance. The innovative aspects of 
this research, include the choice of DNN and its 
integration with PCA. 

The remainder of this paper is organized as follows. 
The Sampling locations are introduced in Section 2. The 
Physical and Mechanical characteristics are presented in 
Section 3. The deep neural network is expressed in 
Section 4. The simulation results and discussions are 
presented in Section 5. Finally, the paper is concluded in 
Section 6. 

 
Table 1 Some predictive models estimate UCS 

Output Input Predictive Model References 

UCS γ, Is50, BTS, SH, Rn, Vp 
Simple and multiple regression analysis, ANN, 
ANFIS, and genetic expression programming 

Teymen & Mengüç, 2020  
 

UCS Vp, SH, BTS, ρd, SDI, and PLS ANN Barham et al., 2020 

UCS 
Resistivity, gamma ray, bulk 
density, n, and sonic time 

ANN and SVM Miah et al., 2020 

UCS n (%),Vp ANN  Armaghani et al., 2021 

UCS n (%), Is50, Rn, Vp 

ANN, hybrid ANN with imperialism competitive 
algorithm (ICA–ANN), hybrid ANN with artificial 
bee colony (ABC–ANN) and genetic programming 
(GP) 

Fang et al., 2021 

UCS BTS, Vp, SH 
Multilayer Perceptron Neural Network (MLPNN), 
M5 Model Tree (M5MT), Extreme Learning 
Machine (ELM) 

Gül et al., 2021 

UCS n (%), Is50, SH, Vp, Ser (%) Regression analysis, ANN Moussas & Diamantis, 2021 

UCS γs,γd, n (%), Is50, SH, Vp   Regression analysis, ANN Diamantis & Moussas, 2021 

UCS - ANN Jain et al., 2022 

UCS 
ρ, n, Vp, water absorption, and 
PLS 

SVM-FMA Shahri et al., 2022 

UCS SH, Vp, PLS, n GWO-ELM Jin et al., 2022 
UCS SH, ρ Regression analysis Moradi et al., 2022 

UCS Is50, RL, Vp Regression analysis, ANN, MPA Yu et al., 2023 

UCS n (%),  VP, SH ANN models Asteris et al., 2024 

ANN: artificial neural network; SVM: support vector machine; FMA: firefly metaheuristic algorithm; ANFIS: adaptive neuro-
fuzzy inference system; GEP: gene expression programming; RF: random forest DNN: deep neural networks; GP: genetic 
programming; ELM: extreme learning machines; GWO: grey wolf optimization. 
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II. SAMPLING LOCATIONS 

   The study areas are located in the Iranian plateau 
which includes four zones: Central Iran, Urumieh- 
Dokhtar, Sanandaj- Sirjan, and Zagros (Aghanabati, 
2004). In the following, rock samples of each formation 
belonging to each zone are explained. The Qom 
Formation in the Central Iran zone is very wide and thick 
in the Hamedan and Saveh areas. The thickness of this 
formation reaches 3600 m in the west of Saveh and the 
north of Hamedan provinces. The above-mentioned 
areas have thick marl deposits and the deepest part of 
the Qom Formation. The marl samples are located in the 
northeast of Hamadan province and south of Saveh city 
of Markazi province. This formation in this area with 
Oligocene age. In the northeast of Hamadan, a wide 
volume of the Qom formation is developed of light gray 
marl. In this area, marls are the dominant part of the 
Qom Formation (Aghanabati, 2004). Upper Red 
Formation generally comprises sandstone, marl, 
conglomerate, and evaporate rocks. The sandstone 
samples are located in the east of Qom province. This 
formation is commonly inclined and occasionally 
gradually located on the Qom formation. It made up the 
gradual subsidence of the bed, and molasse conditions, 
and significantly increased thickness. The upper layers 
of this formation gradually changed to sandy coarse-
grained and conglomerate, which probably belongs to 
the Pliocene (Aghanabati, 2004). The Tuff of Karaj 
Formation is located in Urumieh-Dokhtar zone with 
Eocene age in Tafresh of Markazi Province of Iran. 
According to the structural division of Iran, the Tafarsh 
area is located in the plutonic, sedimentary, and volcanic 
zone of Urmia Dokhtar. As following an important 
extensional phase made up in many parts of Iran the 
result was wide volcanism in the Eocene age. Volcanism 
in this area is generally explosive. It has formed 
pyroclastic units, including ignimbrite, lithic tuff, crystal 
tuff, and glass tuff in the area (Aghanabati, 2004). Alvand 
Plutonic complex is located in the Sanandaj-Sirjan zone, 
the most active tectonic zone in Hamadan province of 
western Iran. The main part of the complex is made up of 
granitoid rocks. Granitoid rocks, including 
monzogranite, granodiorite, and tonalities. This complex 
has an area of about 411 𝐾𝑚2and with metamorphic 
rocks around  711 𝐾𝑚2. The contact metamorphism in 
this area is due to the intrusion of the Alvand plutonic, 
and the regional metamorphism of the Sanandaj-Sirjan 
zone is caused by the activity of the Zagros orogenic belt. 
The Hornfelse metamorphic rocks formed adjacent to 
the Alvand batholith. Regional metamorphic rocks are 
generally developed in the eastern, northeastern, and 
southern parts of Alvand plutonic. These rocks include 
slate, phyllite, and schist (Aghanabati, 2004). The 
conglomerate of the Bakhtiary Formation is placed in the 
Zagros zone with Eocene age in the Khuzestan province 

of southwest Iran. This formation is characteristic of 
alluvial sediments resulting from the erosion of the 
highlands, which generally includes conglomerate and 
calcareous sandstone. The cross-section of this 
formation in the north of Suleiman Mosque city of 
Khuzestan province consists of 550 𝑚 of conglomerate 
with fragments of gravel, cobble, and sand of various 
ages, which are cemented with calcite and clay 
(Aghanabati, 2004). The sampling site map locations of 
this work are shown in Fig. 1 with red stars. 221 block 
samples of different rock types are collected with the 
size of 20 × 35 × 35 𝑐𝑚3 to 30 × 40 × 40 𝑐𝑚3. The 
collected samples are phyllite, slate, schist, Hornfels, tuff, 
granite, sandstone, marl, and conglomerate. 

III. RESEARCH METHODOLOGY 

In this study, rock samples were collected from 

different areas of Iran. These samples have none or are 

slightly weathered. The physical and mechanical 

properties of igneous (granite), sedimentary (sandstone, 

marl, and conglomerate), and metamorphic (phyllite, 

slate, schist, Hornfels, tuff) rocks were determined based 

on the International Society for Rock Mechanics (ISRM) 

and American Society for Testing and Materials (ASTM) 

methods, after a systematic grouping, the data related to 

each rock type. The validation of the presented 

relationships was verified using modern methods. Then, 

a multi-layer neural network was designed using Python 

software. Finally, the uniaxial compressive strength was 

estimated by using the designed artificial neural 

network. In the following, the details of these tests and 

analyses were presented.  

A. Physical characteristics 

   The evaluation of the physical characteristics of 

rock is serious in engineering geology, mining, and civil 

projects. These characteristics rely on the micro-cracks 

and mineral content of the intact rock- micro cracks, 

including cleavage plane and grain boundaries, which 

rock strength decreased with an increase in them. In 

addition, Mineral contents, including feldspar, calcite, 

quartz, muscovite, biotite, and clay minerals, have been 

influenced by the type, percentage, composition of 

minerals, and texture (Willard and McWilliams 1969; 

Shalabi et al. 2007; Karrari et al. 2023; Asteris et al., 

2024). In the current research, the physical properties of 

the rock samples, including the dry density (𝜌), and 

water absorption (𝐼𝑣%) were determined by using of 

International Society for Rock Mechanics method (ISRM 

2007). 221 tests of physical properties were performed 

on cylindrical specimens. The dry density of tested rocks 

ranges from 2.35 ±  0.27 𝑔𝑟/𝑐𝑚3 to 2.80 ±  0.009 𝑔𝑟/
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𝑐𝑚3, respectively. According to the Anon (1977) 

classification, the dry density values were medium to 

very high. The water absorption of tested rocks ranges 

from 0.40% to 6.19%, respectively. Based on the ASTM 

(1999) classification, the water absorption values were 

low to medium. The sandstone and hornfel samples had 

the lowest and highest values for dry unit weight, while 

the Phyllite and Marl samples had the lowest and highest 

values for water absorption, respectively. The physical 

properties and their statistical information along with 

the number of samples for each rock type are shown in 

Table 2. 

B. Mechanical characteristics 

  The mechanical characteristics of rock are related to 

physical properties (Bandini and Berry 2013). The 

relationship between both rock properties makes it 

probable to forecast the strength of the intact rock, that 

it can be applied in the initial design of the tunneling, 

mining, and civil project with less cost and time, and 

simple tests. The mechanical parameters include 

ultrasonic P-wave velocity (𝑉𝑃), point load test (𝐼𝑠50), 

Brazilian tensile strength (BTS), and uniaxial 

compressive strength (UCS). The physical and 

mechanical characteristics of rocks are used to predict 

the UCS. The mechanical characteristics of the samples 

are presented in Table 3. As follows, the mechanical 

characteristics are explained.
 

 
Fig. 1. Sampling site map (Stocklin and Nabavi, 1973 Modified). The red stars indicate the sampling site group: 1. Marl 

samples of Qom Formation; 2. sandstone of Upper Red Formation; 3. Tuff of Karaj Formation; 4. Alvand Plutonic complex; 5. 

conglomerate of Bakhtiari Formation. 



 

 
  

    82 
Vol 2, No. 2 / Summer 2024 

 
M. Amiri, M. Amiri, S.S Karrari, S. Moradi  

1) P-wave Velocity 
   The ultrasonic wave velocity was quantified in the 

laboratory based on ASTM D2845 (1983). This method 

is frequently used to determine the dynamic properties 

of rocks. As this method is simple and nondestructive to 

apply, it is being more used in geological engineering. 

The P-wave velocity depends on different factors such as 

mineral content, porosity, density, micro-cracks, and 

weathering (Goodman, 1989; Karrari et al., 2023; Asteris 

et al., 2024). The P-wave velocity values range from 

2272.76 to 4576.87 𝑚/𝑠. According to the IAEG (1979) 

classification, the P-wave velocity values were very low 

to high. The Schist and Hornfels samples had the lowest 

and highest wave velocities, respectively. 

 

2) Point Load Index 
   The point load test is usually applied to the comfort 

of testing, and the possibility of field usability. This test 

is often used as an indirect method to measure the 

compressive strength of rocks (Kahraman and Gunaydin 

2009). Axial point load tests were carried out to 

determine the point load index (𝐼𝑠50). The test was 

performed on the core samples with 54.7 𝑚𝑚 diameter 

and a length/diameter ratio of ~ 1: 2. The point load 

index for a core diameter equal to 50 𝑚𝑚 (𝐼𝑠50) is 

calculated as follows: 
 

𝐼𝑠50 =  𝐹 
𝑃

𝐷𝑒
2                                                                                (1) 

𝐹 = (
𝐷𝑒

50
)0.45                                                                                (2)  

𝐷𝑒
2  =  

4𝐴

𝜋
                                                                                     (3) 

𝐴 =  𝑊 × 𝐷                                                                              (4) 
 

Where 𝑃, 𝐷𝑒 , 𝐹, 𝑊, and 𝐷 denote the peak load, 
equivalent core diameter, and size correction factor, the 
smallest specimen width perpendicular to the loading 
direction, and the distance between the platens at 
failure, respectively (Jamshidi et al. 2020). The point load 
test was conducted according to the standard ISRM 
(2007). The point load test values range from 1.39 to 
6.85 𝑀𝑃𝑎. According to the Deer (1968) classification, 
the point load values range from very low to high. 
According to the Bieniawski (1973) classification, the 
point load values range from low to high. The Slate and 
Hornfels samples had the lowest and highest point load 
index, respectively. 

 

3) Brazilian Tensile Strength 

   The Brazilian tensile strength is an indirect testing 
method for gaining the tensile strength of rock (Li and 
Wong 2013). ISRM (1978), ASTM-D-3967 (2001b), and 
ISRM (2007) recommended methods for determining 
Brazilian tensile strength. According to the ISRM (2007), 
this test was conducted on specimens with 

length/diameter ratios between 0.5 and 0.75. The BTS 
parameter is computed using the following equation:  

 

BTS =  2P/πDt                                                                          (5) 
 

Where P, D, and t are the peak load, diameter, and 
thickness of the disc, respectively (Jamshidi et al., 2020). 
In this research, according to ISRM (2007), the point load 
test values range from 2.75 to 11.21 MPa. According to 
the results, the Phyllite and Tuff samples had the lowest 
and highest BTS values, respectively.          

      
4) Uniaxial compressive strength 

      The UCS test is generally used in rock mechanics. 
ASTM-D-2938 (1995), ISRM (1979), and ISRM (2007) 
define the suggested method for quantification of UCS. 
Application of point load, Brazilian Tensile Strength, P-
wave Velocity, and physical characteristics may be used 
for indirect method determination of UCS (Cargill and 
Shakoor 1990; Karrari et al. 2023; Asteris et al., 2024). 
The results of the physical, mechanical, and dynamical 
properties of samples are presented in Tables 1 and 2, 
respectively. Hornfels and sandstone samples had the 
highest and lowest density (ρ), respectively. Marl 
samples had the highest water absorption (Iv). Hornfels 
and phyllite had the lowest water absorption. The P-
wave Velocity of Hornfels had the highest value. Brazilian 
Tensile Strength of Phyllite and Tuff had the lowest and 
highest value. Hornfels and Slate had the highest and 
lowest Point Load Strength, respectively. 

The uniaxial compressive strength tests were 
conducted on 54.7 mm core samples with a length-to-
diameter ratio 2.5. The loading was applied with a rate of 
0.5-1 MPa/s. The UCS test was conducted according to 
the standard ISRM (2007). The UCS test values range 
from 22.37 to 107.92 MPa. According to the ISRM (2007) 
classification, The UCS values range from medium to 
high. The Slate and Tuff samples had the lowest and 
highest UCS, respectively. All the input parameters of the 
model and the target UCS values are plotted in Fig. 2. Test 
results are shown in Table 3. 

IV. DEEP NEURAL NETWORK 

The simplest neural network model is the single-layer 

network that involves I linear combinations of the input 

features. This neural network can be formulated as 

follows: 
 

𝑧𝑖 =  ∑ 𝑤𝑖𝑗𝑓𝑗
𝐷
𝑗=1 + 𝑏𝑖  ,    𝑖 = 1, … , 𝐼                                     (6) 

 

Where 𝑓𝑗 is the 𝑗th input feature, 𝑏𝑖 , and 𝑧𝑖  are the 𝑖th 

bias and the 𝑖th output of the NN model, respectively. 

𝑤𝑖𝑗is the weight from the 𝑗th input to the 𝑖th output. The 

outputs of each layer are passed through an appropriate 

activation function. 
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  𝑎𝑖 = ℎ(𝑧𝑖) ,    𝑖 = 1, … , 𝐼                                                       (7) 
 

Where 𝑎𝑖  is the output of the 𝑖th neuron on a layer and 

𝐼 is the total number of neurons. The bias parameters can 

be viewed as a set of weights and their corresponding 

input features are equal to one. Therefore, the equations 

6 and 7 are written as follows. 
 

  𝑎𝑖 = ℎ(∑ 𝑤𝑖𝑗𝑓𝑗
𝐷
𝑗=0 )                                                                 (8) 

 

where 𝑓0 = 1 and 𝑤𝑖0 = 𝑏𝑖  . We can rewrite 8 in a 

matrix form as: 
 

𝑎 = ℎ(𝑧)                                                                                     (9) 
 

And 
 

   𝑧 = 𝑊𝑓                                                                                  (10) 
 

where 𝑎 = [𝑎1, … , 𝑎𝐼]𝑇 , 𝑧 = [𝑧1, … , 𝑧𝐼]𝑇 , 𝑓 =
[1, 𝑓1, … , 𝑓𝐷]𝑇 , and the weight matrix is defined as 
follows: 
 

𝑊 =  [

𝑤10 ⋯ 𝑤1𝐷

⋮ ⋱ ⋮
𝑤𝐼0 … 𝑤𝐼𝐷

]                                                        (11) 

 

Note that 9 and 10 can be extended to NN with any 
number of hidden layers. The output of the 𝑛th layer can 
be expressed as: 

 

𝑎(𝑛) = ℎ(𝑛)(𝑧(𝑛))                                                                   (12) 
 

Where 
 

𝑧(𝑛) = 𝑊(𝑛)𝑎(𝑛−1)                                                                (13) 
 

In which the initial parameter 𝑎(0) is equal to 𝑓.

 

Table 2 Physical properties and number of samples. 

Rock 

type 

 

   Sample 

N 

Statistical  

properties 

Phyllite 

 

 

 7 

Slate  

 

 

 7 

Schist 

 

 

7 

Hornfels 

 

 

 14 

 

Tuff 

 
       
        44 

Granite 

 
 
         7  

Sandstone 

 

 

58 

Marl 

 

 

   69 

Conglomerate 

 

 

8 

𝜌  

(𝑔𝑟

/𝑐𝑚3) 

 

 

Max 2.73 2.72 2.56 2.81 2.64 2.76 2.75 2.58 2.60 

Min 2.72 2.70 2.54 2.79 2.24 2.58 1.73 2 2.53 

Avg 
2.73 

± 0.005 

2.71 ± 

0.005 

2.55 

± 

0.005 

2.80 ± 

0.009 

2.48 ± 

0.08 

2.66 ± 

0.061 

2.35 ± 

0.27 

2.36 ± 

0.14 
2.56 ± 0.02 

𝐼𝑣 (%) Max 0.4 1.30 3.50 4.1 4.6 0.92 10 8.35 1.49 

Min 0.4 1.36 3.60 4 0.13 0.15 0.53 4 0.93 

Avg 0.40 1.33 3.55 
0.405 ± 

0.005 

2.18 ± 

1.41 

0.51 

± 0.22 

3.86 ± 

3.95 

6.19 ± 

2.05 
1.18 ± 0.21 

 

Table 3 Values of dynamical and mechanical properties of samples. 

Rock 

type 

  
Sample 

N 

Statistical  
properties 

Phyllite 

 

 

       7 

Slate  

 

 

       7 

Schist 

 

 

       7 

Hornfels 

 

 

 14 

Tuff 

 
       
          44 

Granite 

 
 
         7  

Sandstone 

 

 

58 

Marl 

 

 

   69 

Conglomerate 

 

 

8 

𝐵𝑇𝑆  

(𝑀𝑃𝑎) 

 

Max 5.46 7.43 5.09 21.9 28.44 11.22 13.23 8.88 6.57 

Min 1.03 1.33 3.38 5.58 4.4 3.82 0.84 1.93 5.03 

Avg 
2.75 ± 

1.83 

2.84 ± 

2.08 

3.97 ± 

0.69 

10.93 ± 

5.23 

11.21 ± 

5.97 

7.57 ± 

2.81 
6.03 ± 3.49 

3.37 ± 

1.24 
5.60 ± 0.5 

𝑉𝑝 

 (𝑚

/𝑠) 

Max 5741.48 6248.41 3142.86 5487.33 5344 5500 4880 3350 4730 

Min 2195.2 1713.51 1516.21 3316.73 2833 2570 867 1880 4044 

Avg 
3629.76 

± 

1444.84 

3518.337 

± 

1634.82 

2272.76 

± 403.33 

4576.87 

± 673.76 

3900.97 

± 706.09 

4168.57 

± 1168.9 

3016.47 ± 

1315.2 

2942.12 

± 398.92 

4347.37 ± 

282.62 

𝐼𝑠50  

(𝑀𝑃𝑎) 

Max 3.66 2.51 1.83 9.8 10.38 7.32 7.63 6.22 5.75 

Min 0.64 0.76 1.01 2.8 1.9 2.52 0.47 1.09 3.96 

Avg 1.7 ± 1.08 
1.39± 

0.67 

1.43± 

0.32 

6.85 ± 

2.24 

4.74 ± 

2.19 

4.7 ± 

1.64 
4.07 ± 2.39 

3.06± 

1.01 
4.82 ± 0.58 

𝑈𝐶𝑆  

(𝑀𝑃𝑎) 

Max 47.38 43.87 35.52 172.59 205.4 123 143.03 83.11 68.13 

Min 5.65 6.02 17.83 44.02 39 61.58 5.81 19.34 37.48 

Avg 
26.37 ± 

16.75 

22.37 ± 

14.23 

24.46 ± 

6.18 

100.78 ± 

38.23 

107.92 ± 

42.62 

99.56 ± 

23.78 

70.81 ± 

38.56 

50.80 ± 

11.71 
50.24 ± 9.41 
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Fig. 2. The value of physical and mechanical properties of data samples in this study. 

A. Activation function 

   An activation function (AF) in a NN is defined as how 

the weighted sum of the inputs is transformed into the 

output of a node or nodes in a hidden layer. There are 

many different types of activation functions, including 

the Rectified Linear Activation (ReLU), the Logistic 

(Sigmoid), the Hyperbolic Tangent (Tanh), and the linear 

function. The type of activation function is chosen based 

on the neural network architecture. In this study, the 

Tanh function and linear function are applied for the 

hidden layers and the output layer, respectively. The 

Hyperbolic tangent (tanh) function is 
 

ℎ(𝑥) = 𝑡𝑎𝑛ℎ(𝑥) =
𝑒𝑥−𝑒−𝑥

𝑒𝑥+𝑒−𝑥                                                 (14) 
 

Where the range of the output is (−1, 1) and the linear 

function is 
 

ℎ(𝑥) = 𝑥                                                                                 (15) 
 

 Where the range of the output is (−∞, ∞). 

B. Pre-processing data 

The primary goal of pre-processing is to manipulate 

and prepare data for the following processing stages. 

Pre-processing of the dataset is an important step since 

it enhances the quality of the data. In this study, each 

feature extracted from the dataset is scaled and 

translated individually such that it falls in the range 

between zero and one. Consequently, the features are 

normalized as follows. 
 

 𝑥𝑛 =
𝑥−𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛
                                                                     (16) 

 

Where 𝑥𝑚𝑖𝑛 and 𝑥𝑚𝑎𝑥  are the minimum and the 
maximum values for each training feature, respectively, 
and 𝑥𝑛 is the normalized feature. 
 

C. Proposed deep neural network model 

   The proposed DNN structure is shown in Fig. 3. This 

network has an input layer, four hidden layers, and an 

output layer. In order to prevent overfitting in the 

trained model, a dropout layer is used in the network. 

This layer sets the outputs of some randomly selected 

neurons to zero. As shown in Fig. 3, before the input layer 

of the DNN, a feature reduction stage is applied to reduce 

the number of input features to the neural network 

model. Note that fewer input features can result in a 

more straightforward prediction model with the same 

performance and lower computational complexity. One 

of the popular unsupervised techniques for 

dimensionality reduction is the principle component 

analysis (PCA). This method converts the correlated 

features into uncorrelated variables by projecting the 

input data on a lower dimensional space while 

preserving the maximum amount of information (Yang 

et al., 2004; Abdi and Williams, 2010; Mackiewicz and 

Ratajczak, 1993). PCA can be implemented by computing 

the eigenvectors corresponding to the largest 

eigenvalues of the covariance matrix of the feature 

vectors. In PCA, the principal components correspond to 

the directions with the largest variances of the dataset. 

In order to choose the appropriate number of principal 

components, the cumulative explained variance ratio 

criterion is applied, which is defined as follows. 
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𝑉𝑛 =
∑ 𝜆𝑗

𝑛
𝑗=1

∑ 𝜆𝑖
𝐶𝑡
𝑖=1

                                                                             (17) 

 

Where 𝑉𝑛 is the percentage of the cumulative variance 

of the 𝑛 selected components. 𝜆𝑗  and 𝐶𝑡  are the 𝑗th sorted 

eigenvalue of the data and the total number of 

components, respectively. 

V. SIMULATION RESULTS 

   In this part, the performance of the proposed DNN 

with PCA feature reduction is evaluated using the Leave-

One-Out (LOO) cross-validation. The LOO method uses 

all but one data as the training data and leaves one 

sample for the test. This evaluation process was 

repeated for each of the 221 samples, ensuring that 

every sample was utilized as test data exactly once. The 

evaluation is repeated for each data sample as the test 

data. All simulations are performed in Python 3 software 

on an Intel(R) Core (TM) i5-6200U CPU at 2.30 GHz and 

8GB RAM. The best model was determined based on its 

performance metrics, including accuracy, root mean 

square error (RMSE), and correlation coefficient (CC), all 

evaluated during the LOO validation process. These 

metrics offered a comprehensive assessment of the 

model's predictive capability. The model with the lowest 

RMSE and the highest CC values across all iterations was 

selected as the best. 

Fig. 4 shows the loss curves for the train and 

validation data in the DNN model. It can be seen that 

from epoch 20, the network losses converge to their final 

values. In this figure and the following results, the model 

performance is evaluated using the mean square error 

(MSE) criterion.  

In order to understand the required number of 

components in the PCA algorithm, the cumulative 

variance ratio curve is shown in Fig. 5. According to the 

results in Fig. 5, more than 80% of the feature variance 

is kept in only two components. Accordingly, we only use 

two principal components, and consequently, the input 

dimension of the DNN model is selected to be two. 

Fig. 6 shows the MSE of the UCS prediction using the 

proposed DNN for a different number of components. 

The results show that reducing the number of 

components from five to two does not lead to significant 

degradation in prediction performance. 

The MSE of the DNN method with and without the 
feature reduction stage were 0.0068 ±  0.001 and 
0.0067 ±  0.013, respectively. Similar to the results in 
the Fig. 6, this shows that the dimension of the input 
vector can be reduced from five to two without any 
significant degradation in the network performance. It is 
worth noting that, in previous studies for the prediction 
of the UCS from different rock properties, the highly 
correlated features are manually mitted by computing 
the correlation matrix (Manouchehrian et al., 2012; 
Moussas and Diamantis, 2021; Tang and Na, 2021), but 
this is not required in this study since the PCA algorithm 
automatically decorrelate the features in the reduced 
dimensional space. 

 

 
Fig. 4. The loss curves of the network for the training and 

validation data 

 

 
Fig. 3. The structure of the proposed DNN for prediction of the uniaxial compressive strength 
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Fig. 5. The cumulative variance ratio for different numbers 

of components. 

 
Fig. 6. The MSE UCS prediction versus the applied number of 

components in the feature reduction step using the PCA 
algorithm 

 

Fig. 7. illustrates the scatter plot of the predicted UCS 
versus the measured values for all types of rocks. The 
vertical distance between each point in Fig. 7 and the 
reference black line is the regression error. The scatter 
plot depicts that the hornfels rocks (the blue stars) have 
the largest prediction error. In order to quantify the 
prediction error of different types of rocks, Fig. 8, the 
MSE and the standard deviation of UCS prediction error 
are evaluated for each type of rock. It can be seen that 
marl and hornfels have the minimum and maximum 
values of MSE, respectively. 

The UCS of intact rocks is essential for various 
engineering applications (such as constructions, 
geotechnical projects, and historic buildings that lack 
sufficient core samples). The main important rock 
engineering parameters are cumbersome, difficult, and 
costly, requiring a large budget and a long time to 
estimate in different rocks. Therefore, the prediction of 
this parameter using simpler, cheaper indirect methods 
is of interest. In this research, different types of rocks 
were predicted using one unified deep neural network 
framework. However, the previous research focused on 
a specific type of rock and conducted their study with a 
limited number of samples. For future research, suggest 
applying different methods such as least squares 
support vector machine (RF, SVM, GEP, etc) and many 
rock types.  

VI. CONCLUSION 

In this study, was estimated the uniaxial compressive 
strength of rocks by using machine learning. 221 block 
samples of different rock types were collected from five 
Formation and complexes of Iran as follows: Marl 
samples of Qom Formation; Sandstone of Upper Red 
Formation; Tuff of Karaj Formation; conglomerate of 
Bakhtiary Formation, and Alvand Plutonic complex. This 
study presented a deep neural network to predict the 
uniaxial compressive strength in different rocks of Iran. 
The proposed network was designed to indirectly 
predict the UCS using the physical and mechanical 
properties of rocks . This avoided the time-consuming 
and expensive tests for measuring the UCS. The principle 
component analysis was used to reduce the dimension of 
the input data and increase the generalization power of 
the model. Simulation results show that PCA can reduce 
the input features without any degradation in the 
performance of the DNN model. The results indicated 
that the combination of the PCA and the suggested DNN 
model is effective and useful in predicting UCS. The MSE 
of the proposed method with and without the feature 
reduction step were 0.0068 ±  0.001 and 0.0067 ±
 0.013, respectively.

 
Fig. 7. Scatter plot of the predicted versus measured UCS values using DNN 
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Fig. 8. The MSE for prediction of each type of rock 
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