
تعداد نشریات | 22 |
تعداد شمارهها | 317 |
تعداد مقالات | 3,337 |
تعداد مشاهده مقاله | 3,610,452 |
تعداد دریافت فایل اصل مقاله | 2,630,634 |
Development of Intensity-Duration-Frequency curves at basin scale using the ERA5 reanalysis product | ||
مجله پژوهش های خشکسالی و تغییراقلیم | ||
دوره 2، شماره 4 - شماره پیاپی 8، اسفند 1403، صفحه 121-140 اصل مقاله (1.72 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22077/jdcr.2025.8636.1098 | ||
نویسندگان | ||
آمنه میان آبادی1؛ جواد امیدوار2؛ محسن پوررضا بیلندی* 3 | ||
1گروه اکولوژی، پژوهشگاه علوم و تکنولوژی پیشرفته و علوم محیطی، دانشگاه تحصیلات تکمیلی صنعتی و فناوری پیشرفته، کرمان، ایران. | ||
2گروه علوم و مهندسی آب، دانشکده کشاورزی، دانشگاه فردوسی مشهد، مشهد، ایران. | ||
3گروه مهندسی آب، دانشگاه بیرجند، بیرجند، ایران. | ||
چکیده | ||
IDF (Intensity-Duration-Frequency) curves play a crucial role in hydrological modeling, infrastructure design, and flood risk management. Traditional methods, relying on ground-based observations, face challenges such as limited spatial coverage, short temporal records, and the stationary assumption, particularly under climate change. This study addresses these issues by utilizing ERA5 reanalysis data to develop basin-scale IDF curves for the Karkheh River Basin (KRB) in Iran. Annual Maximum Precipitation (AMP) series for 6-, 12-, 18-, and 24-hour durations were extracted from ERA5 data and corrected for bias using observations from seven synoptic stations. Bias correction significantly improved ERA5 estimates, particularly in high-altitude regions prone to systematic errors. An elevation-bias relationship was established to extend corrections basin-wide. The corrected AMP data were modeled with the Generalized Extreme Value (GEV) distribution under stationary and non-stationary conditions to construct spatially distributed IDF curves. Based on 82 grid points, these curves provide detailed rainfall intensity estimates, overcoming limitations of station-based methods. The findings underscore ERA5 data's potential, combined with bias correction, to enhance hydrological analyses in data-scarce regions by better capturing spatial variability and extreme precipitation. This work supports improved flood management and infrastructure planning. However, future research must address uncertainties in bias correction and parameter estimation while extending data records. High-resolution reanalysis datasets are pivotal for adapting to evolving climatic conditions, extreme weather, and prolonged droughts. | ||
کلیدواژهها | ||
global gridded precipitation؛ climate change؛ Annual Maximum Precipitation؛ Bias correction | ||
مراجع | ||
Ashraf Vaghefi, S., Mousavi, S. J., Abbaspour, K. C., Srinivasan, R., & Yang, H. (2014). Analyses of the impact of climate change on water resources components, drought and wheat yield in semiarid regions: Karkheh River Basin in Iran. Hydrological Processes, 28(4), 2018–2032. https://doi.org/10.1002/hyp.9747 Barbero, R., Fowler, H. J., Lenderink, G., & Blenkinsop, S. (2017). Is the intensification of precipitation extremes with global warming better detected at hourly than daily resolutions? Geophysical Research Letters, 44(2), 974–983. https://doi.org/10.1002/2016GL071917 Courty, L. G., Wilby, R. L., Hillier, J. K., & Slater, L. J. (2019). Intensity-durationfrequency curves at the global scale. Environmental Research Letters, 14(8), 084045. https://doi.org/10.1088/1748-9326/ab370a Davtalab, R., Mirchi, A., Khatami, S., Gyawali, R., Massah, A., Farajzadeh, M., & Madani, K. (2017). Improving continuous hydrologic modeling of data-poor river basins using hydrologic engineering center’s hydrologic modeling system: case study of karkheh river Basin. Journal of Hydrologic Engineering, 22(8). https://doi.org/10.1061/(ASCE) HE.1943-5584.0001525 Frank, C. W., Wahl, S., Keller, J. D., Pospichal, B., Hense, A., & Crewell, S. (2018). Bias correction of a novel European reanalysis data set for solar energy applications. Solar Energy, 164, 12–24. https://doi.org/10.1016/j. solener.2018.02.012 Gilleland, E., & Katz, R. W. (2016). ExtRemes 2.0: an extreme value analysis package in R. Journal of Statistical Software, 72(8), 1–39. https://doi.org/10.18637/jss.v072.i08 Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum, I., Schepers, D., Simmons, A., Soci, C., Dee, D., & Thépaut, J.- N. (2023). ERA5 hourly data on single levels from 1940 to present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS). https://doi.org/10.24381/cds.adbb2d47 Hilbe, J. M., & Robinson, A. P. (2013). Methods of statistical model estimation. CRC Press. IPCC. (2021). Technical summary. Contribution of working group I to the sixth assessment report of the Intergovernmental panel on climate change. In climate change 2021: The Physical Science Basis. Jiao, D., Xu, N., Yang, F., & Xu, K. (2021). Evaluation of spatial-temporal variation performance of ERA5 precipitation data in China. Scientific Reports, 11(1), 17956. https:// doi.org/10.1038/s41598-021-97432-y Koutsoyiannis, D., Kozonis, D., & Manetas, A. (1998). A mathematical framework for studying rainfall intensity-duration-frequency relationships. Journal of Hydrology, 206(1–2), 118–135. https://doi.org/10.1016/S0022-1694(98)00097-3 Luke, A., Vrugt, J. A., AghaKouchak, A., Matthew, R., & Sanders, B. F. (2017). Predicting nonstationary flood frequencies: Evidence supports an updated stationarity thesis in the <scp>U</scp> nited <scp>S</scp> tates. Water Resources Research, 53(7), 5469–5494. https://doi.org/10.1002/2016WR019676 Marra, F., Morin, E., Peleg, N., Mei, Y., & Anagnostou, E. N. (2017). Intensity–duration–frequency curves from remote sensing rainfall estimates: comparing satellite and weather radar over the eastern Mediterranean. Hydrology and Earth System Sciences, 21(5), 2389–2404. https://doi.org/10.5194/hess-21-2389-2017 Marra, F., Nikolopoulos, E. I., Anagnostou, E. N., Bárdossy, A., & Morin, E. (2019). Precipitation frequency analysis from remotely sensed datasets: A focused review. Journal of Hydrology, 574, 699–705. https://doi.org/10.1016/j.jhydrol.2019.04.081 Ombadi, M., Nguyen, P., Sorooshian, S., & Hsu, K. (2018). Developing intensity‐duration‐frequency (IDF) curves from satellite‐based precipitation: Methodology and Evaluation. Water Resources Research, 54(10), 7752–7766. https://doi.org/10.1029/2018WR022929 Probst, E., & Mauser, W. (2022). Evaluation of ERA5 and WFDE5 forcing data for hydrological modelling and the impact of bias correction with regional climatologies: A case study in the Danube River Basin. Journal of Hydrology: Regional Studies, 40, 101023. https://doi.org/10.1016/j.ejrh.2022.101023 Shrestha, A., Babel, M., Weesakul, S., & Vojinovic, Z. (2017). Developing intensity–duration–frequency (IDF) curves under climate change uncertainty: The Case of Bangkok, Thailand. Water, 9(2), 1–22. https:// doi.org/10.3390/w9020145 Tarek, M., Brissette, F. P., & Arsenault, R. (2020). Evaluation of the ERA5 reanalysis as a potential reference dataset for hydrological modelling over North America. Hydrology and Earth System Sciences, 24(5), 2527–2544. https://doi.org/10.5194/hess-24-2527-2020 Wambura, F. J. (2024). Using reanalysis precipitation data for developing intensityduration-frequency curves in a poorly gauged city. Journal of Hydrology: Regional Studies, 56, 102005. https://doi.org/10.1016/j. ejrh.2024.102005 | ||
آمار تعداد مشاهده مقاله: 171 تعداد دریافت فایل اصل مقاله: 100 |