
تعداد نشریات | 21 |
تعداد شمارهها | 314 |
تعداد مقالات | 3,321 |
تعداد مشاهده مقاله | 3,546,616 |
تعداد دریافت فایل اصل مقاله | 2,591,250 |
Evaluating Hybrid Models and Google Earth Engine for Predicting Climate Change Impacts on Runoff in the Kasilian Catchment, Northern Iran | ||
مجله پژوهش های خشکسالی و تغییراقلیم | ||
دوره 2، شماره 4 - شماره پیاپی 8، اسفند 1403، صفحه 141-160 اصل مقاله (1.02 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22077/jdcr.2025.8683.1102 | ||
نویسندگان | ||
فرهاد حاجیان* 1؛ الهام یوسفی2؛ حسین منشی زاده نایین3 | ||
1گروه مهندسی عمران، دانشگاه آزاد اسلامی واحد نیشابور، نیشابور، ایران. | ||
2گروه محیط زیست، دانشکده منابع طبیعی و محیط زیست، دانشگاه بیرجند، بیرجند، ایران. | ||
3گروه مهندسی کامپیوتر، دانشگاه آزاد اسلامی واحد نیشابور، نیشابور، ایران. | ||
چکیده | ||
This study investigates the impact of climate change on annual rainfall and runoff of Kasilian catchment through two distinct approaches. Firstly, it utilizes hybrid models by integrating the Hydrologic Engineering Center's Hydrologic Modeling System (HEC-HMS) with Artificial Neural Networks (ANN), Support Vector Machines (SVM), Adaptive Neuro-Fuzzy Inference System (ANFIS), and Gene Expression Programming (GEP) separately, as well as employing the Long Ashton Research Station Weather Generator (LARS-WG). Secondly, it employs Google Earth Engine (GEE) to analyze changes in annual rainfall and runoff for the observed period, compensating for incomplete data from hydrometric and climatological stations. The results demonstrate that under the SSP585 scenario, from various climate models in LARS WG and when employing hybrid models, the median annual rainfall is projected to increase in the future compared to the base period, while the median annual runoff is expected to decrease due to rising temperatures and increased evapotranspiration. Consistent with these projections, GEE data from 1981 to 2023 also indicates an increase in annual rainfall and a decrease in annual runoff. Additionally, there is a reduction in annual erosion and sedimentation rates, attributed to the reduced capacity of runoff to transport sediment. These findings highlight the potential for more extreme rainfall events, increased annual precipitation, and a subsequent decrease in annual runoff and sediment yield in the Kasilian catchment, providing valuable insights for future water resource management and climate adaptation strategies in the region. | ||
کلیدواژهها | ||
Remote sensing؛ hybrid models؛ Google Earth Engine (GEE)؛ Erosion؛ sediment yield | ||
مراجع | ||
Abbaspour K.C., Faramarzi M., Ghasemi S.S., & Yang H. (2009). Assessing the impact of climate change on water resources in Iran, Water Resources, 45, W10434. Doi:10.1029/2008WR007615. Babaeian I., Najafinik Z., Zabolabasi F., Habibinokhandan M., Adab H., & Malbosi S. (2007). Climate change investigation of Iran for 2010-2039 using downscaled output of ECHO-G climate model, Geography and Development Iranian Journal, 16, 135-152. [in Persian]. https://doi.org/10.22111/gdij.2009.1179. Benavidez, R., Jackson, B., Maxwell, D., & Norton, K. (2018). A review of the (Revised) Universal Soil Loss Equation ((R)USLE): with a view to increasing its global applicability and improving soil loss estimates. Hydrology and Earth System Sciences, 22(11), 6059-6086. doi:10.5194/hess-22-6059-2018. Fahimi, F., Yaseen, Z. M., & El-shafie, A. (2017). Application of soft computing based hybrid models in hydrological variables modeling: a comprehensive review. Theoretical and applied climatology, 128, 875-903. doi: https://doi.org/10.1007/s00704-016-1735-8 Glorot, X., & Bengio, Y. (2010). Understanding the difficulty of training deep feed forward neural networks. In Proceedings of the thirteenth international conference on artificial intelligence and statistics, JMLR Workshop and Conference Proceedings. Hitokoto, M., & Sakuraba, M. (2020). Hybrid deep neural network and distributed rainfall-runoff model for real-time river-stage prediction, Journal of Japan Society of Civil Engineers (JSCE), 8(1), 46–58. https://doi.org/10.2208/journalofjsce.8.1_46 Islam, Z. (2022). Soil loss assessment by RUSLE in the cloud-based platform (GEE) in Nigeria. Modeling Earth Systems and Environment, 8, 4579-4591. doi:10.1007/s40808-022-01467-7. Kisi, O., Shiri, J., & Tombul, M. (2013). Modeling rainfall-runoff process using soft computing techniques, Computers & Geosciences, 51, 108–117. doi: https://doi. org/10.1016/j.cageo.2012.07.001 Pashazadeh, A., & Javan, M. (2019). Comparison of the gene expression programming, artificial neural network (ANN), and equivalent Muskingum inflow models in the flood routing of multiple branched rivers, Theoretical and Applied Climatology, doi: https://doi.org/10.1007/s00704-019-03032-2. Sakhraoui, F., & Hasbaia, M. (2023). Evaluation of the sensitivity of the RUSLE erosion model to rainfall erosivity: A case study of the Ksob watershed in central Algeria. Water Supply, 23(8), 3262-3284. https://doi. org/10.2166/ws.2023.207. Shifteh Some’e B., Ezani A., & Tabari H. (2012). Spatiotemporal trends and change point of precipitation in Iran, Atmospheric Research, 113, 1-12. https://doi.org/10.1016/j. atmosres.2012.04.016. Tabatabaei, S. M., Nazeri Tahroudi, M., & Hamraz, B. S. (2021). Comparison of the performances of GEP, ANFIS, and SVM artificial intelligence models in rainfall simulation. IDŐJÁRÁS / Quarterly Journal of the Hungarian Meteorological Service, 125(2), 195-209. doi:10.28974/idojaras.2021.2.21. Yousefi, E., Kaffash, M., & shariati, M. (2024). Spatial analysis of flood risk in Tabas watershed using satellite images and geographic information system (GIS). Journal of Drought and Climate change Research, 2(2), 105-118. doi:10.22077/jdcr.2024.7489.1066 | ||
آمار تعداد مشاهده مقاله: 213 تعداد دریافت فایل اصل مقاله: 97 |