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Abstract 

The sediment transport and the relation to water quality parameters and hydrological characteristics 

in the Sufi Chay River in Iran were investigated in this study using long-term monitoring data. 

Traditional statistical methods, dimensionless parameter analysis, and advanced soft computing 

techniques are combined within the scope of the presented comprehensive analysis. Total sediment 

load is the dependent variable, while the independent variables include flow rate, total dissolved 

solids (TDS), electrical conductivity (EC), pH, total anions, total cations, anion hardness, and cation 

hardness. Strong correlations were observed between total sediment load and flow rate (r = 0.82), 

total dissolved solids (r = 0.68), and electrical conductivity (r = 0.65). The dimensionless equation 

developed related sediment concentration to Reynolds number, Froude number, and normalized water 

quality parameters. The performance was quite good as revealed by the R2 value of 0.82. Comparison 

of performances using three soft computing methods, namely Artificial Neural Networks, Adaptive 

Neuro-Fuzzy Inference System, and Support Vector Regression, are performed. The highest R2 value 

of 0.91 and RMSE of 53.2 tons/ day were obtained with ANFIS model. Sensitivity analyses indicated 

that flow rate and TDS were the most sensitive parameters to predict total sediment load. Generally, 

a seasonal variability in sediment transport, showing that the maximum discharges happened in the 

spring season with the mean of 187.3 tons/day, while the minimum discharges happened in the 

summer season with the mean of 42.8 tons/day. Besides, a nonlinear relationship between flow rate 

and both sediment concentration and discharge in this catchment reflects a complex erosion and 

transport process. The investigation also resulted in some important ion-parameter relationships, 

which are indicative of the geochemical factors operating on the water quality and sediment activity.  

Keywords: Dimensionless analysis, River management, Soft computing, Total sediment load, Water 

quality.  

 

1. Introduction 

Estimation of sediment rates in rivers is 

very important for practical water resource 

management, which in turn affects other fields 

such as hydro-power generation and irrigation. 

Traditional measurement methods of sediment 

rates can be expensive and time-consuming; 

hence, various alternative approaches have 

been tried using water quality variables 

(Bayram et al., 2014; Beeson et al., 2014; 

Fagundes et al., 2019; Gholizadeh et al., 2016; 

Park and Engel, 2016). Recent development in 

the fields suggests that the indices of water 

quality with variables such as chemical oxygen 

demand, biochemical oxygen demand, and 

suspended solids can be used to estimate 

sediment rates efficiently (Bartley et al., 2012; 

Othman et al., 2020). Sediment concentrations 

and water quality variables represent two 

important fields of study that help in 

understanding aquatic ecosystems. Sediment 

concentration may be influenced by many 

factors; the importance of the content of metals 

and organic matter could well underlie 

influences on water quality in sediment 

concentration (Chabokpour, 2024a, 2024b; 
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Chabokpour and Raji, 2024). Different works 

have tried to estimate the sediment rates with 

the variables related to water quality.  

Such as Saranga (2021), who developed an 

optical sensing mechanism for the estimation 

of the sediment rate based on the relationship 

between TSS (Total Suspended Solids) and 

turbidity (Saranga et al., 2021). It presented a 

good method for short-time predictions. Soft 

computing encompasses a family of 

computational methods including Artificial 

Neural Networks (ANNs), Fuzzy Logic 

Systems, and Support Vector Machines 

(SVMs) that can effectively model complex 

nonlinear relationships while handling 

uncertainty and imprecision in data.  

Unlike traditional computing methods that 

require precise inputs and mathematical 

models, soft computing techniques can learn 

from examples, recognize patterns in complex 

datasets, and handle imprecise or noisy data - 

characteristics that make them particularly 

valuable for environmental and hydrological 

modeling where exact mathematical 

descriptions of processes may be difficult to 

formulate. Other research has tried to use ANN 

methods to predict water quality indices that 

can enable sediment rate estimations indirectly 

(Gazzaz et al., 2012).  

Moreover, the integration of various water 

quality variables such as dissolved oxygen and 

pH has been found to enhance the performance 

of water quality estimates, which is a pre-

condition of sediment rate estimation 

(Saraswati et al., 2019). Some of the advanced 

modeling methods include the application of 

cloud models and kriging applications that 

enhance spatial and temporal prediction of 

water quality variables, hence providing a 

robust framework for sediment rate estimation 

(Guojiao et al., 2023).  

Coupling morphological parameters with 

water quality models was also encountered to 

influence sediment transport and deposition. It 

underpins the consideration of river 

morphology as a necessity in carrying out the 

estimation of sediment rates (Hosseini et al., 

2017; Lindenschmidt et al., 2005). Indeed, 

metals such as Cu, Pb, and Zinc have been 

recorded in sediments most often at higher 

concentrations compared to those in the water 

column.  

These metals are capable of influencing 

water quality and may be featured in relation 

to certain sediment properties such as grain 

size and organic content (Horowitz, 1984). In 

natural urban ecosystems, metal contamination 

within sediment can be associated with varied 

water quality with extreme variations 

documented throughout wet-weather events 

(Lundy et al., 2017). Organic sediments, 

primarily sourced from peatlands, can impair 

water quality through the elevation of 

dissolved organic carbon and suspended 

sediment concentrations that will likely affect 

the community structure of macroinvertebrates 

and ecosystem metabolism.  

Consequentially, impacts from organic 

sediments are an area that requires further 

research (Aspray et al., 2017). Agricultural 

activities have been reported to increase 

sediment-bound metals like Cu and Zn in 

agricultural watersheds, which then impact the 

water quality. The bioavailability of these 

metals corresponds with concentrations in 

sediments, hence leading to a strong 

relationship between sediment and water 

quality variables (Smith et al., 2007).  

Different sediment metals and organic 

matter can act differently on the benthic 

macroinvertebrate communities, which are 

sensitive water quality indicators. Sediment 

chemistry integrated with water quality has 

often been demonstrated to be some of the 

main factors determining the structure of the 

macroinvertebrate communities (Munyai et al., 

2024).  

Estimation of sediment load in rivers with 

the use of water quality indices is a growing 

interest area due to the efficiency and precision 

of modern methods of monitoring. Traditional 

sediment rating curves relate the river 

discharge with the suspended sediment 

concentration but have limitations in capturing 

complex dynamics (Warrick, 2015). Recent 

developments in remote sensing and machine 

learning have indeed produced some new, 

precious tools in the domain of sediment load 

estimation.  

For instance, Sentinel-2 images, aided by 

machine learning algorithms such as Support 

Vector Machines and Random Forests, can 

estimate suspended sediment concentrations 

rather well. These techniques are even very 

accurate at flood flow and able to overcome 
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shortcomings that traditional monitoring faces 

(Mohsen et al., 2022). The relations between 

concentration and discharge have also been 

used to investigate sediment dynamics. More 

recent methods have been elaborated 

considering non-linearities and temporality 

within these C-Q (Concentration-Discharge) 

relationships, such as Weighted Regressions 

on Time, Discharge, and Season, which 

provide insight into the long-term shifts in 

dynamics of sediment trapping and export 

(Lou et al., 2022).  

ANNs have also been compared with 

sediment rating curves in estimating sediment 

concentrations and fluxes. ANNs also have the 

capability to catch event structures and 

hysteresis in the sediment concentration-water 

discharge relationship, enabling a richer 

understanding of sediment dynamics 

(CIĞIZOĞLU, 2002).  

Applications have been presented for the 

use of Landsat imagery to estimate sediment 

load in large river systems, such as the Upper 

Mississippi River. By correlating hydraulic 

geometry, water discharge, and suspended 

sediment concentration, Landsat data presents 

a good alternative where traditional methods 

are absent, particularly in ungauged or poorly 

monitored catchments (A. Flores et al., 2020; 

Tyler et al., 2006).  

Sediments often carry pollutants, including 

metals and nutrients, which have potential 

degrading effects on water quality. The Pearl 

River Delta has pointed out sediment transport 

as one of the major elements causing the 

degradation of water quality, while certain 

pollutants move along with sediments. 

Conversely, sand mining, for instance, may 

affect the quality of water by increasing 

suspended particles in that particular river and 

downstream of it (Ashraf et al., 2011).  

Many modelling approaches have been 

used to try and work out how sediment 

transport affects the quality of water. In the 

HEC-RAS model, the sediment transport was 

modelled in order to predict alterations in the 

quality of water; this was the case for the Naic 

River, which had increased sediment volumes 

linked to a high biochemical oxygen demand 

and low DO levels (Monjardin et al., 2021).  

Integrated approaches using field-based 

methods, GIS, and numerical modeling have 

been employed to evaluate sediment budgets 

and their effects on water quality. These 

techniques provide further information about 

sediment sources, pathways, and how they 

relate to water quality indicators (Chalov et al., 

2017). Intermittent rivers are such that the 

sediment transport can be related to nutrient 

dynamics, impacting water quality. The Soil 

and Water Assessment Tool has been used to 

model these relationships, indicating the 

difficulties in accurately simulating sediment 

and nutrient transports (Chabokpour, 2024b; 

Chabokpour and Azamathulla, 2022; 

Chahinian et al., 2011). 

While much progress is being made in this 

field, there is still a gap in regard to integrating 

water quality parameters, hydrological factors, 

and soft computing techniques in view of 

comprehensive total sediment load prediction. 

The study seeks to fill this gap in the 

development of a multi-dimensional modeling 

approach that incorporates various facets, 

specifically tailored to the unique 

characteristics of Sufi Chay River, Iran.  

The present study investigates the complex 

relations of water quality parameters, 

hydrological factors, and total sediment load in 

the Sufi Chay River. In the light of this, the 

main objectives of the present research are 

developing and comparing different predictive 

models for estimating total sediment load 

considering traditional regression, 

dimensionless analysis, and soft computing 

techniques; determining the most influential 

parameters affecting sediment transport; and 

assessing the seasonal variations and long-term 

trends of total sediment load and water quality 

parameters. 

 

2. Materials and Methods 

2.1. Study area and data collection 

In the present study, Sufi Chay River, which 

is the most important river in East Azerbaijan 

Province, Iran, was used as a case study. Sufi 

Chay River originates from Sahand mountain, 

passing through Alavian Dam and ending at 

Lake Urmia; therefore, the water of this river 

bears great importance within the water 

resources of the region. The data were gathered 

in this study from a monitoring station located 

upstream of the Alavian Dam.  

Two main groups of data were applied in 

the current study: total sediment load-flow rate 

and water quality characteristics versus flow 
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rates. The various water quality parameters 

included TDS, EC, pH, total anions, total 

cations, anion hardness, and cation hardness.  

Data spanned from 1969 to 2018 and 

formed a broad, long-term record of the river's 

hydrological and sedimentological characteristics. 

 

 
Fig. 1. Location of Sufi Chay River in Iran and 

Lake Urmia Basin 

 

Extensive pre-processing of data had to be 

done before any modeling could be developed. 

Identification of outliers and their treatment, 

handling of missing values with use of suitable 

imputation techniques, and normalization of 

variables for comparability were most of the 

tasks done in this process. The goal was to 

examine the form taken by the relationships 

between the variables and to identify any 

pattern or trend that might underlie the data. 

 

2.2. Model development 

Modeling of total sediment load-water 

quality parameters relationship was done by 

different approaches: traditional regression 

techniques, dimensionless analysis, and soft 

computing methods. 

 

2.2.1. Multiple Linear Regression (MLR) 

An MLR model was developed to establish 

a linear relationship between total sediment 

load and the predictor variables. The general 

form of the MLR model is according to Eq. 1. 
Qs = b0 + b1X1 +  b2X2 + . . . + b𝑛X𝑛  (1) 

where: Qs = Total sediment load (tons/day) 

b0 = Intercept, bi = Regression coefficients, Xi 

= Predictor variables (e.g., flow rate, TDS, EC, 

pH). 

 

2.2.2. Artificial Neural Network (ANN) 

A feedforward multilayer perceptron ANN 

was developed using the backpropagation 

algorithm. The network architecture consisted 

of an input layer, two hidden layers, and an 

output layer. The general form of the ANN can 

be expressed as Eq. 2. 
y = f(Σ(w𝑖 × x𝑖)  +  b)  (2) 

where: y = Output (total sediment load), f = 

Activation function, w𝑖 = Connection weights, 

xi = Input variables, b = Bias term. 

 

2.2.3. Adaptive Neuro-Fuzzy 

Inference System (ANFIS) 

An ANFIS model was constructed to 

combine the learning capabilities of neural 

networks with fuzzy logic reasoning. The 

ANFIS structure uses a hybrid learning 

algorithm and can be represented as Eq. 3. 
y = Σ(w𝑖 ×  f𝑖(x))  (3) 

where: y = Output (total sediment load), wi 

= Rule firing strength, and fi(x) = Individual 

rule outputs. 

 

2.2.4. Support Vector Regression (SVR) 

An SVR model with a radial basis function 

(RBF) kernel was implemented. The SVR 

model can be expressed as Eq. 4.  
f(x) = Σ(α𝑖 −  α𝑖

∗)  ×  K(x𝑖, x)  +  b (4) 

where: f(x) = Regression function, αi, αi* = 

Lagrange multipliers, K(x𝑖, x)  = Kernel 

function, and b = Bias term. 

 

2.2.5. Model evaluation 

The performance of each model was 

evaluated using several statistical metrics as 

Eqs. 5-8. 

R2 =  1 −
(Σ(𝑦𝑖 −  ŷ 𝑖)2)

(Σ(y 𝑖  −  ȳ)2)
 (5) 

RMSE = √
Σ(y 𝑖  −  ŷ 𝑖)2

𝑛
   (6) 

MAE =
Σ|y 𝑖 −  ŷ 𝑖|

𝑛
 (7) 

NSE =  
1 − (Σ(y 𝑖  −  ŷ 𝑖)2)

(Σ(y 𝑖  −  ȳ)2)
   (8) 
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where: yi = Observed values, ŷi = Predicted 

values, ȳ = Mean of observed values, and n = 

Number of observations. 

 

2.3.  Sensitivity analysis 

A sensitivity analysis was done with the aim 

of quantifying the influence of each input 

parameter in relation to total sediment load 

prediction. This was done by carrying out a 

series of local and global sensitivity analyses, 

by calculating the sensitivity coefficients and 

by applying the Sobol method under global 

sensitivity analysis.  

The Mann-Kendall trend test and Sen's 

slope estimator have been applied for 

analyzing long-term trends for total sediment 

loads and water quality parameters. Moreover, 

STL (seasonal trend decomposition) 

decomposition was done to decompose the 

time series into trend, seasonal, and residual 

components. 

 

3. Results and Discussion 

Sediment rating curves were developed to 

further explore the relation between flow rate 

and total total sediment load. In Eq. 9, the 

power function model, one of the most widely 

adopted sediment rating curve models, was 

applied as: 

Qs = 𝑎 × Q𝑏 (9) 

where: Qs = Total sediment load (tons/day), 

Q = Flow rate (m3/s), and a and b = Empirical 

coefficients. 

A logarithmic transformation and least 

squares regression were fitted to this model. 

Details of the sediment rating curve analysis 

carried out corresponding to different time 

periods are presented in Table 1. 

 
Table 1. Sediment rating curve parameters for 

different periods 

Period a b R2 
RMSE 

(tons/day) 

1969-1980 27.63 1.42 0.71 83.5 

1981-1990 32.18 1.38 0.68 89.2 

1991-2000 38.45 1.35 0.65 92.8 

2001-2010 45.72 1.31 0.63 97.4 

2011-2018 52.96 1.28 0.61 102.3 

 

These sediment rating curves are showing 

an increasing trend in the value of 'a' with a 

corresponding decrease in the values of 'b' 

through time. This trend would mean that at a 

given flow rate, the total sediment load has 

generally increased within these years under 

study. The decreasing R2 and increased RMSE 

also show that the relationship between flow 

rate and total sediment load became more 

variable in recent years, probably due to the 

changing watershed conditions or land use 

practices. 

A detailed multiple linear regression 

analysis was made to provide more insight into 

the relationships of the water quality 

parameters and total sediment load. The 

developed model was as Eq. 10. 
Qs = β0 + β1Q + β2TDS + β3EC 

+β4pH + β5Atot + β6Ctot + β7HA 

+β8HC 

(10) 

where: Qs = Total sediment load (tons/day), 

Q = Flow rate (m3/s), TDS = Total Dissolved 

Solids (ppm), EC = Electrical Conductivity 

(ds/m), pH = pH value, Atot = Total anions 

(meq/L), Ctot = Total cations (meq/L), HA = 

Anion hardness (ppm), HC = Cation hardness 

(ppm), and  β0 … β8 = Regression coefficients. 

Table 2 presents the results of the multiple 

linear regression analysis. 

 
Table 2. Multiple linear regression results for 

total sediment load prediction 
Parameter Coefficient Standard Error p-value 

𝛃𝟎 -423.68 89.24 <0.001 

𝛃𝟏 68.42 7.31 <0.001 

𝛃𝟐 0.312 0.048 <0.001 

𝛃𝟑 0.245 0.039 <0.001 

𝛃𝟒 -12.36 5.87 0.036 

𝛃𝟓 18.75 6.24 0.003 

𝛃𝟔 16.92 5.98 0.005 

𝛃𝟕 0.087 0.041 0.035 

𝛃𝟖 0.079 0.038 0.039 

 

The multiple linear regression model is of 

good strength, with an R2 value of 0.83. All 

variables included in the model were 

statistically significant (p < 0.05). According 

to the positive relationship, flow rate has the 

highest value with total sediment load, 

followed by TDS and EC. The inverse 

parameter sign of pH may indicate that with 

higher levels of total sediment load, pH levels 

are low, which could be evidence of more 

active weathering processes or human impacts 

within the watershed area. 

There is a fairly regular seasonality in the 

total sediment load; average discharges are 

highest in the spring and lowest in summer. 

With reference to a number of factors, an 

attempt might be made at understanding 

seasonal variation. High discharges in spring 

could perhaps be related to large quantities of 
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snow melting and heavy rains that increase 

flow rates and thus affect erosion rates 

accordingly.  

The low discharges in summer may be 

related to lower rainfall and lower flow rates. 

The moderate autumn and winter discharges 

may suggest a near balance between rainfall 

events and a reduced vegetative cover. This 

seasonal pattern illustrates the need to consider 

temporal variability in sediment transport 

processes in order to successfully apply 

watershed management (Fig. 2). 

 

 
Fig. 2. Total sediment load vs. Season 

 

The data set was divided into four seasons-

spring: March to May, summer: June to 

August, autumn: September to November, and 

winter: December to February-to explore any 

possible seasonal variations in the 

relationships between total sediment load and 

water quality parameters. The correlation 

analyses were performed for each season and 

summarized in Table 3.   

The potential influence of unauthorized 

water withdrawals during summer months was 

considered in our analysis. However, the study 

reach's location immediately upstream of 

Alavian Dam is subject to strict monitoring and 

control of water abstractions by regional water 

authorities, as maintaining consistent inflow to 

the dam is crucial for its operation. 

Furthermore, the consistency of seasonal 

patterns observed across our 49-year dataset 

(1969-2018) strongly indicates that the lower 

summer correlations are primarily attributable 

to natural hydrological factors, such as reduced 

precipitation and lower base flows, rather than 

anthropogenic disturbances like unauthorized 

water withdrawals. 

In general, the highest correlations obtained 

in the seasonal analysis of total sediment load 

with the considered water quality parameters 

fell within the spring season. Such a relation 

could be related to an increase in runoff and 

erosion under snowmelt and rainfall events in 

spring. The weakest were found during the 

summer season, most likely due to more stable 

flow conditions and reduced sediment inputs. 

The flow rate and total sediment load are 

strongly positively correlated. 

 
Table 3. Seasonal correlation coefficients 

between total sediment load and water quality 

parameters 
Parameter Spring Summer Autumn Winter 

Flow rate 0.88 0.79 0.85 0.76 

TDS 0.72 0.61 0.70 0.64 

EC 0.69 0.58 0.67 0.61 

pH -0.28 -0.19 -0.25 -0.21 

Total 

anions 
0.65 0.54 0.63 0.58 

Total 
cations 

0.63 0.52 0.61 0.56 

 

The relationship is in power-law form, with 

the total sediment load increasing more rapidly 

than the flow rate. This can be interpreted to 

demonstrate nonlinear behavior during high-

magnitude flow events where the capacity for 

sediment transport is significantly increased 

and may result in disproportionately higher 

total sediment loads.  

Such steepening of the curve may be due to 

the higher degree of bed and bank erosion, 

besides the mobilization of previously 
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deposited sediments, at higher discharges as 

shown in Fig. 3a.  

A positive correlation is recorded between 

the TDS and total sediment load. The relation 

is roughly linear, which means that the total 

sediment load increases with an increase in 

TDS. This may be explained by the fact that 

highest TDS concentrations tend to fall in a 

period of high erosion and sediment transport 

processes; they could further be contributing to 

the flocculation of fine sediments, which might 

enhance their transport. However, it should be 

considered that indirectly, this may be a 

relationship depending on flow rate, since both 

TDS and total sediment load increase during 

high flow events (Fig. 3b).  

The total sediment load versus EC 

relationship follows the same pattern as that 

obtained with TDS. This is expected because 

most studies have utilized EC as an indicator 

of TDS. In any case, from this trend, it would 

appear that the total sediment load increases 

with an increase in the concentration of 

dissolved ions. This could be attributed to the 

influence of the dissolved ions on the sediment 

flocculation and transport processes. Also, 

higher EC might indicate greater weathering 

and erosion within the watershed, which 

would, in turn, contribute to a higher total 

sediment load, as depicted in Fig. 3c.  

There is a weak negative relation between 

pH and total sediment load. With the increase 

in pH from slightly acidic to alkaline, there is 

a gradual and slight decrease in total sediment 

load. This may be interpreted by the influence 

of pH on surface charges of sediment particles 

and on the process of flocculation.  

Particles at low pH might remain suspended 

with a greater tendency that could result in 

higher total sediment load. However, the 

relatively weak nature of this relationship 

suggests that other factors such as flow rate 

and TDS have more dominating influences on 

sediment transport in the Sufi Chay River (Fig 

3d). 

 

 
Fig. 3. a: Total sediment load vs. Flow Rate, b: Total sediment load vs. Total Dissolved Solids (TDS), c: 

Total sediment load vs. Electrical Conductivity (EC), d: Total sediment load vs. pH 
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Fig. 4. a: Sediment Concentration vs. Flow Rate, b: EC vs. TDS 

 

There is a positive relation between flow 

rate and sediment concentration, which is 

nonlinear. While sediment concentration rises 

when flow rates increase, this rise is 

increasingly steep. This might be explained by 

a higher erosive power and transporting 

capacity of higher flows. Nonlinearity suggests 

that beyond certain thresholds in flow, other 

erosion processes may get triggered, such as 

bank erosion or mobilization of coarser bed 

material.  

Because the sediment concentration and 

therefore the total sediment load rises with the 

flow rate, whereas the rate of increase of total 

sediment load is usually higher due to the 

multiplication effect of the flow rate, as seen in 

Fig. 4a. There is a strong positive linear 

relationship between the EC and TDS. This is 

well expected in water quality analysis, since 

often the EC is used as a proxy for TDS.  

In this case, the linearity of the relationship 

does indicate a consistent ionic composition in 

the river water across a wide range of 

concentrations. The slope of this relationship 

will provide some insight into major ion 

species present in the water. Any significant 

deviations from such a straight-line variation 

may reflect a change in ionic composition or 

an increase of non-ionic dissolved substances 

(Fig. 4b).  

To investigate the relation between the flow 

rate and total sediment load, a flow duration 

curve was drawn, differentiating the following 

five flow regimes: high flows from 0 to 10%, 

moist conditions of flow from 10 to 40%, mid-

range flow from 40 to 60%, dry conditions of 

flow from 60% to 90%, and low flows from 90 

to 100%. The average total sediment load for 

each regime was calculated and is shown in 

Table 4. 

Table 4. Average total sediment load for different 

flow regimes 

Flow Regime 
Exceedance 

Probability 

Average Total 

sediment load 
(tons/day) 

High flows 0-10% 623.7 

Moist conditions 10-40% 185.2 

Mid-range flows 40-60% 72.4 

Dry conditions 60-90% 28.9 

Low flows 90-100% 5.6 

 

Results showed that the highest sediment 

transport occurs during high-magnitude flow 

events. The mean total sediment load of the top 

10% of flows was found to be 623.7 tons/day. 

This again underlines the importance of 

extreme events concerning processes including 

the transport of sediments in Sufi Chay River. 

To gain more insight with greater detail into 

the temporal trends in total sediment load and 

principal water quality parameters, a seasonal-

trend decomposition using LOESS (STL) was 

performed. The time series were decomposed 

into trend, seasonal, and residual components. 

Trend components for total sediment load, 

TDS, and EC are summarized in Table 5. 

 
Table 5. Trend component summary from STL 

decomposition 

Parameter Start Value End Value 
Total 

Change 

Total 

sediment load 

(tons/day) 

78.4 112.6 34.2 

TDS (ppm) 142.3 168.7 26.4 

EC 218.5 259.2 40.7 

 

Trend analysis confirms the upward trends 

observed in the Mann-Kendall test. The total 

sediment load showed the most robust relative 

increase of 43.6% over the study period. TDS 

and EC showed a similar relative increase of 

18.6%. Annual sediment yield was estimated 
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to find the total sediment output of the Sufi 

Chay River basin.  

Accordingly, the average annual sediment 

yield and variation in the study period were 

computed. Results are summarized in Table 6. 

 
Table 6. Annual sediment yield statistics 

Statistic Value 

Mean annual sediment yield 

(tons/year) 
42,650 

Standard deviation 

(tons/year) 
18,720 

Minimum annual yield 

(tons/year) 
15,830 

Maximum annual yield 

(tons/year) 
89,470 

Coefficient of variation 0.439 

 

This indicates that the average annual 

sediment yield is very high, having a value of 

42,650 tons/year, hence a considerable amount 

of sediment is transported in the Sufi Chay 

River. High value of variation coefficient of 

0.439 reflects substantial variability of 

sediment yield at an inter-annual scale and 

could be related to climatic fluctuation besides 

changes in land use at the watershed area. 

Frequency analysis of sediment transport 

events was carried out with the objective of 

obtaining the recurrence intervals of the high 

total sediment load episodes. Annual 

maximum total sediment load series were 

fitted to a Log-Pearson Type III distribution. 

Different return period results are shown in 

Table 7. 

 

Table 7. Frequency analysis of annual 

maximum total sediment load 

Return Period (years) 
Total sediment load 

(tons/day) 

2 1,250 

5 2,380 

10 3,420 

25 5,160 

50 6,780 

100 8,720 

 

Frequency analysis results show that this 

total sediment load of 3,420 tons/day may be 

expected to take place once in 10 years on 

average. This information is useful in the 

design of sediment management structures and 

flood control measures in the Sufi Chay River 

basin. 

These dimensionless parameters were 

identified to establish a relationship between 

total sediment load and water quality 

parameters by undertaking a comprehensive 

approach based on physical and chemical 

properties of water and sediment transport 

processes. The following dimensionless 

parameters were considered: 

1. Reynolds number (Re): Representing 

the ratio of inertial forces to viscous forces 

2. Froude number (Fr): Representing the 

ratio of inertial forces to gravitational forces 

3. Sediment concentration (C): Ratio of 

total sediment load to water discharge 

4. Normalized Total Dissolved Solids 

(TDS*): Ratio of TDS to a reference TDS 

value 

5. Normalized Electrical Conductivity 

(EC*): Ratio of EC to a reference EC value 

6. Normalized pH (pH*): Ratio of pH to 

neutral pH (7.0) 

The dimensionless parameters were 

formulated as Eqs.11. 

Re =
(ρ ×  V ×  R)

μ ,   

Fr =  V √g ×  R, 

  C =  Qs (ρs ×  Q),  TDS∗  

=  TDS TDSref , 

  EC∗  =  EC / ECref ,  pH∗  =  pH / 7.0 

(11) 

where: ρ = Water density (kg/m3), V = Flow 

velocity (m/s), R = Hydraulic radius (m), μ = 

Dynamic viscosity of water (kg/m·s), g = 

Gravitational acceleration (m/s2), Qs = Total 

sediment load (kg/s), ρs = Sediment particle 

density (kg/m3), Q = Water discharge (m3/s), 

TDSref = Reference TDS value (set to 500 

ppm), and ECref = Reference EC value (set to 

800 μS/cm) 

The raw data were transformed into the 

dimensionless parameters by using Eqs. 11. 

Then, the dimensionless obtained parameters 

were normalized, using the z-score 

normalization in order for all variables to be in 

a comparable scale. A correlation analysis was 

performed to establish relationships among the 

dimensionless parameters. Results are shown 

in Table 8. 

Besides, correlation analysis has shown 

strong relations of sediment concentration with 

hydraulic parameters of Re and Fr. The 

moderate ones are between C and water quality 

parameters of TDS* and EC*, while pH* 

reveals a weak negative relation with all 

parameters. 
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Table 8. Correlation matrix of dimensionless 

parameters 
P

ar
am

et
er

 

C Re Fr TDS* EC* pH* 

C 1.00 0.72 0.65 0.58 0.56 -0.18 

Re 0.72 1.00 0.88 0.42 0.39 -0.12 

Fr 0.65 0.88 1.00 0.35 0.33 -0.09 

TDS* 0.58 0.42 0.35 1.00 0.97 -0.25 

EC* 0.56 0.39 0.33 0.97 1.00 -0.23 

pH* -0.18 -0.12 -0.09 -0.25 -0.23 1.00 

 

Accordingly, from the correlation analysis, 

a multiple regression model was obtained for 

predicting the dimensionless sediment 

concentration, C, using the rest of the 

dimensionless parameters. The model is 

expressed in Eq. 12. 
log(C)  =  b0 + b1 log(Re) 

+b2 log(Fr) + b3 log(TDS) 

+ b4log(EC) +  b5log(pH) 

(12) 

where b0, b1, b2, b3, b4, and b5 are 

regression coefficients. The regression 

analysis results are presented in Table 9. 

 
Table 9. Multiple regression analysis results 

Coefficient Value Standard Error 

b0 -5.237 0.428 

b1 0.865 0.092 

b2 0.412 0.085 

b3 0.326 0.073 

b4 0.298 0.071 

b5 -0.154 0.062 

 

The performance of the multiple regression 

model in the prediction of dimensionless 

sediment concentration is good since R2 for 

the model is equal to 0.823. All the predictor 

variables are statistically significant at p < 

0.05, though the most influencing factor on 

sediment concentration is the Reynolds 

number. The final dimensionless equation for 

the sediment concentration prediction in Sufi 

Chay River is given by Eq. 13, based on the 

regression and validation of the results. 

C  =  10(−5.237)  ×  Re0.865 ×  Fr0.412 

×  TDS∗0.326  × EC∗0.298 ×  pH∗(−0.154)
 

(13) 

This equation therefore provides the 

dimensionless relation of sediment 

concentration with some hydraulic and water 

quality parameters for the Sufi Chay River. 

The use of dimensionless parameters, as 

employed in the development of this model, 

allows its potential application to similar river 

systems, although site-specific calibration may 

be required. The advantages of the developed 

dimensionless relationship are that it 

incorporates into one simple equation the 

complex interaction between hydraulic 

conditions and water quality itself in the 

process of sediment transport.  

Use of dimensionless parameters provides a 

comparison, perhaps some applicability, 

across scale and different river systems. The 

model integrates hydraulic and water quality 

parameters and can hence apply a more holistic 

approach to the prediction of total sediment 

loads.  

The sensitivity analysis of dimensionless 

Eq. 13 has been done in order to determine the 

importance of each parameter and its effect on 

the predicted sediment concentration. Such an 

analysis gives an idea about model behavior 

and helps to identify major influential factors 

in sediment transport processes in the Sufi 

Chay River. 

A local sensitivity analysis was first 

performed by variation of each input parameter 

individually while the others were kept 

constant at their mean values. Sensitivity 

coefficient (S) for each parameter was 

calculated using Eq. 14. 

S  =  
(ΔC/C) 

(ΔX/X)
  

(14) 

where: S = Sensitivity coefficient, ΔC = 

Change in sediment concentration, C = Base 

sediment concentration, ΔX = Change in input 

parameter, and X = Base value of input 

parameter. 

Each of the parameters was varied by ±10% 

from its mean value, and the corresponding 

change in sediment concentration was 

calculated. The results of the local sensitivity 

analysis are presented in Table 10. 

 
Table 10. Local sensitivity analysis results 

Parameter Sensitivity Coefficient (S) 

Re 0.865 

Fr 0.412 

TDS* 0.326 

EC* 0.298 

pH* -0.154 

 

Contrary-wise, local sensitivity analysis 

illustrates that the most sensitive coefficient is 

Reynolds number, Re, which has the strongest 

impact on sediment concentration predictions. 

The Froude number (Fr) and the normalized 
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TDS (TDS*) are above 0.1, while pH* has a 

relatively minor negative impact. 

A global sensitivity analysis was performed 

by the Sobol method in order to take into 

consideration such interactions of the 

parameters, along with non-linear effects. It 

decomposes the output variance into 

contributions from each input parameter and 

their interactions. First-order Si and total-order 

STi Sobol indices were calculated for each 

parameter. Results are given in Table 11. 

 
Table 11. Global sensitivity analysis results 

(Sobol indices) 

Parameter 
First-order 

Index (Si) 

Total-order 

Index (STi) 

Re 0.482 0.561 

Fr 0.187 0.235 

TDS* 0.112 0.156 

EC* 0.089 0.124 

pH* 0.021 0.037 

 

Global sensitivity analysis furthered the 

local sensitivity analysis by showing that Re 

has both the highest first-order and total-order 

indices. In general, it was realized that there is 

a difference between the first order and total-

order indices, which is indicative of the 

presence of parameter interactions, specifically 

Re and Fr. 

The Monte Carlo simulation was performed 

in order to estimate the overall uncertainty in 

predictions for sediment concentration. Input 

parameters were assumed to be normally 

distributed, with mean and standard deviation 

calculated from available data. The results of 

10,000 runs are represented in Table 12. 

 
Table 12. Monte Carlo simulation results 

Statistic Value 

Mean predicted C 0.00342 

Median predicted C 0.00315 

Standard deviation 0.00187 

5th percentile 0.00098 

95th percentile 0.00689 

Coefficient of variation 0.547 

 

 Results from the Monte Carlo simulation 

indicate that model predictions have a 

coefficient of variation of 0.547, which 

represents moderate uncertainty in the 

sediment concentration estimates. The 

asymmetry of the mean and median values is 

indicative of a slight positive skew in the 

distribution of the predicted concentrations.  

Some of the important results that can be 

inferred from the sensitivity analysis of the 

dimensionless sediment concentration model 

for the Sufi Chay River are as follows: 

Reynolds number, which introduces flow 

characteristics into the model, predicts the 

sediment concentration. Hence, flow 

characteristics are much more important in 

sediment transport processes. The Froude 

number and normalized TDS* also include 

significant importance; hence, hydraulic 

conditions and water quality parameters are 

two important factors in sediment transport. 

The model bears some nonlinearities and 

parameter interaction shown by the 

discrepancies between the first-order and total-

order Sobol indices. The pH* parameter has 

the least influence on sediment concentration 

predictions, showing that pH fluctuations may 

have a very limited direct impact on sediment 

transport in the Sufi Chay River. The Monte 

Carlo simulation indicates a moderate 

uncertainty of model predictions that has to be 

taken into account while using the model for 

management decisions. 

To enhance total sediment load estimation 

based on water quality parameters in the Sufi 

Chay River, three soft computing methods 

were used. Further, the derived approaches 

have been compared with the previously 

developed models, including the 

dimensionless analysis approach, to outline the 

most effective predictive model. The following 

soft computing techniques are employed in this 

research: ANN, ANFIS, and SVR. 

The feedforward multilayer perceptron 

ANN was developed using a backpropagation 

learning algorithm. This network architecture 

includes an input layer with nodes 

corresponding to the TDS, EC, pH, and flow 

rate; two hidden layers having 10 and 5 

neurons, respectively; and an output layer with 

one neuron representing the total sediment 

load. The hyperbolic tangent function was then 

used as an activation function for the hidden 

layers, while the linear activation function was 

used in the output layer.  

The network was trained with 70% of the 

data, validated with 15%, and tested on the 

remaining 15%. An ANFIS model was 

developed in order to combine the learning 

capabilities of neural networks with the 

reasoning power of fuzzy logic. The model 

used a Sugeno-type fuzzy inference system 

with Gaussian membership functions. The 
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same input parameters as in the ANN model 

are used. The ANFIS model is trained by a 

hybrid learning algorithm that combines the 

least-squares estimation and the 

backpropagation gradient descent methods.  

An SVR model is implemented with a radial 

basis function kernel in order to estimate total 

sediment load. These developed soft 

computing methods and models previously 

developed were also presented for their 

performance based on the coefficient of 

determination, root mean square error, mean 

absolute error, and Nash-Sutcliffe efficiency. 

A summary of these performances is included 

in Table 13. 

 
Table 13. Performance comparison of total 

sediment load estimation models 
Model R2 RMSE (tons/day) 

Multiple Linear 

Regression 
0.76 87.2 

Dimensionless 

Equation 
0.82 75.1 

ANN 0.89 58.7 

ANFIS 0.91 53.2 

SVR 0.88 61.4 

 

Comparing the performances of the 

different models, it can be observed in general 

that the performances of the soft computing 

methods are better than those of traditional 

regression and dimensionless analysis. In the 

context of the developed soft computing 

techniques, the best performance is given by 

the ANFIS model, with the highest R2 (0.91) 

and NSE (0.90), and the lowest RMSE (53.21 

tons/day) and MAE (38.76 tons/day). 

A comparison in terms of computation 

efficiency among the models was also 

performed by calculating the time required for 

training and prediction by the model. Results 

are summarized in the following table, Table 

14. 

 
Table 14. Computational efficiency comparison 

Model 
Training Time 

(s) 

Prediction Time 

(ms/sample) 

Multiple Linear 

Regression 
0.05 0.02 

Dimensionless 

Equation 
0.12 0.03 

ANN 15.23 0.11 

ANFIS 28.76 0.18 

SVR 8.45 0.09 

 

While soft computing methods, especially 

ANFIS, provide better predictive performance, 

it also involves a lot more computational effort 

in training and prediction with respect to 

simpler models, such as multiple linear 

regression or the dimensionless equation. In 

light of the above, therefore, the best 

performing model for estimating total 

sediment load with the water quality 

parameters in the Sufi Chay River was 

established to be ANFIS. This technique 

strikes a balance between high predictive 

accuracy and an ability to capture complex 

nonlinear relationships that exist between input 

variables and total sediment load.  

However, other factors that may affect the 

choice of ANFIS in real-time applications and 

in large-scale implementations are increased 

computational requirements. While the 

dimensionless equation approach did not 

provide the best predictive accuracy, it does 

bring along some advantages with regard to 

general applicability and the interpretability of 

the result in physical terms. The relations shed 

light on the basic physical mechanism 

governing the sediment transport and thus may 

be applied more appropriately to other river 

systems of similar characteristics. In practice, 

the model of choice would depend on the 

demands imposed by the application for 

predictive accuracy and computational 

efficiency and the interpretability.  

If real-time predictions are indispensable in 

situations with scant computational resources, 

simpler models like the dimensionless 

equation or multiple linear regression would be 

preferred. The preferred model in applications 

where high accuracy is needed and adequate 

computational resources are available would 

be ANFIS. 

 

4. Conclusion 

In this study, the sediment transport 

processes along with their relations to water 

quality parameters were investigated 

comprehensively in the Sufi Chay River in 

Iran. This research has applied an extensive set 

of analytical methods comprising statistical 

analyses, dimensionless parameter modeling, 

and soft computing methods for explaining the 

complex interactions ruling sediment 

dynamics in this river system. These have 

shown very good correlations of total sediment 

load with some key parameters, such as flow 

rate, TDS, and Electrical Conductivity.  
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A power-law relation is there between flow 

rate and total sediment load, indicative of the 

fact that the sediment transport capacity goes 

disproportionately up with high flows. This 

underlines the crucial role of the extreme 

hydrological event in shaping the sediment 

regime of the river and highlights that 

management needs to be more targeted during 

these periods. This dimensionless sediment 

concentration prediction equation has provided 

insight into the relative importance of the 

various parameters affecting the process.  

In ranking their relative importance, 

Reynolds number was seen to be the most 

important single parameter, followed by 

Froude number and then normalized TDS. It is 

now possible to apply this dimensionless 

approach to similar river systems, keeping in 

mind that site-specific calibration may well be 

required. However, the soft computing 

methods, and particularly the Adaptive Neuro-

Fuzzy Inference System (ANFIS), have 

exhibited outstanding performance regarding 

total sediment load prediction using water 

quality parameters. It was observed that out of 

all different models, the maximum R2 and NSE 

were obtained as 0.91 and 0.90, respectively, 

with the ANFIS model.  

Further, various comments have also been 

made by a number of researchers regarding the 

advanced computationally intensive 

techniques compared with the simpler models. 

Seasonal total sediment load has also been 

recorded: the highest average value in spring is 

187.3 tons/day, while in summer it is as low as 

42.8 tons/day.  

It was explained by snowmelt processes and 

seasonal regimes of precipitation, underlining 

thereby the necessity to account for temporal 

variability in sediment management strategies. 

Analysis of the parameters for water quality 

exhibited interesting relations such as inverse 

relation between flow rate and TDS indicates 

dilution effect in high flow events, and strong 

linear relationship between anion/cation 

hardness and total anions/cations to represent 

geochemical influences not only on water 

quality but perhaps on sediment behavior.  

Flow rate has always been one of the most 

sensitive factors in the model analyses 

developed, with the exception of TDS and EC. 

Therefore, appropriate measurement and 

prediction of these important parameters 

would be of great benefit to monitoring and 

management.  

Although the soft computing methods have 

demonstrated the highest predictive accuracy, 

advantages of the dimensionless equation 

approach are related to physical interpretability 

and possibly generalizability. Practical 

applications will have to be model-based, 

connected to specific project needs, and further 

balancing predictive accuracy, computational 

efficiency, and interpretability. 
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