
تعداد نشریات | 21 |
تعداد شمارهها | 314 |
تعداد مقالات | 3,321 |
تعداد مشاهده مقاله | 3,546,635 |
تعداد دریافت فایل اصل مقاله | 2,591,253 |
A Hybrid Fuzzy SWARA-VIKOR Model for Sustainable Wastewater Treatment Technology Selection in the Steel Industry | ||
مجله پژوهش های خشکسالی و تغییراقلیم | ||
دوره 2، شماره 4 - شماره پیاپی 8، اسفند 1403، صفحه 55-84 اصل مقاله (1.05 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22077/jdcr.2024.8055.1075 | ||
نویسندگان | ||
اکرم بمانی* 1؛ محمدحسین صیادی2؛ طاهره اردکانی1؛ محسن طیبی1 | ||
1گروه علوم و مهندسی محیط زیست، دانشکده کشاورزی و منابع طبیعی، دانشگاه اردکان، اردکان، ایران. | ||
2گروه کشاورزی، دانشکده منابع طبیعی ومحیط زیست، دانشگاه شهیدباهنرکرمان، کرمان، ایران. | ||
چکیده | ||
This study proposed an integrated decision-making framework that systematically incorporated specific industrial characteristics with fundamental sustainability considerations. The framework introduced a structured, analytical approach based on a dual methodology, combining SWARA (Step-wise Weight Assessment Ratio Analysis) and VIKOR (Višekriterijumsko kompromisno rangiranje) within a fuzzy logic framework. This integrated approach leveraged the strengths of each technique, offering a robust, multi-dimensional model to support precise and reliable decision-making in complex, sustainability-oriented contexts. The fuzzy SWARA method was used to determine the criteria and sub-criteria weights, followed by fuzzy VIKOR to rank decision alternatives. Five wastewater treatment technologies for the steel industry were identified and prioritized based on sustainability principles. These included CASPF (Conventional Activated Sludge with Mold Flow), MBR (Membrane Bio-Reactor), SBR (Sequencing Batch Reactors), AS (Activated Sludge), and UASB (Up-flow Anaerobic Sludge Blanket). The study demonstrated that this integrated approach yields more reliable and informed decisions in complex evaluations. Findings revealed that experts largely favour SBR technology as the most sustainable option. | ||
کلیدواژهها | ||
Sustainability Prioritization؛ Water Scarcity؛ Resource Management؛ Climate Resilience؛ Water Conservation | ||
مراجع | ||
Ali, I., Gupta, V. K., & Saleh, T. A. (2022). Emerging treatment technologies for industrial wastewater: A critical review. Journal of Environmental Management, 302, 114004. https://doi. org /10.1016 / j. jenvman . 2022. 114004 Agarwal, S., Kant, R., & Shankar, R. (2020). Evaluating solutions to overcome humanitarian supply chain management barriers: A hybrid fuzzy SWARA – Fuzzy WASPAS approach. International Journal of Disaster Risk Reduction, 51, 101838. https:// doi.org/10.1016/j.ijdrr.2020.101838 Attri, R., Sharma, L., & Singh, K. (2022). A combined fuzzy approach for wastewater treatment technology selection considering sustainability aspects. Journal of Environmental Management, 300(1), 123-135. https://doi.org/10.1016/j.jenvman.2022.112233 Aziz, S. Q., Omar, I. A., Bashir, M. J. K., & Mojiri, A. (2020). Stage by stage design for primary, conventional activated sludge, SBR and MBBR units for residential wastewater treatment and reusing. Advances in Environmental Research, 9, 233–249. Balkema, A. J., Preisig, H. A., Otterpohl, R., & Lambert, F. J. D. (2002). Indicators for the sustainability assessment of wastewater treatment systems. Urban Water, 4, 153–161. https://doi.org/10.1016/S1462-0758(02)00014-6 Bottero, M., Comino, E., & Riggio, V. (2011). Application of the analytic hierarchy process and the analytic network process for the assessment of different wastewater treatment systems. Environmental Modelling & Software, 26, 1211–1224. https://doi. org/10.1016/j.envsoft.2011.04.002 Cheng, C. H., & Lin, Y. (2002). Evaluating the best main battle tank using fuzzy decision theory with linguistic criteria evaluation. European Journal of Operational Research, 142, 174–186. https://doi.org/10.1016/S0377-2217(01)00280-6 Chou, S. Y., & Chang, Y. H. (2008). A decision support system for supplier selection based on a strategy-aligned fuzzy SMART approach. Expert Systems with Applications, 34, 2241–2253. https://doi. org/10.1016/j.eswa.2007.03.001 Chowdhury, P., & Viraraghavan, T. (2021). An assessment of eco-friendly treatment technologies for industrial wastewater. Water Environment Research, 93(5), 619–632. https:// doi.org// 10.57519/crret.2021.10089 Cruz-Salomón, A., Meza-Gordillo, R., Rosales-Quintero, A., Ventura-Canseco, C., Lagunas-Rivera, S., & Carrasco-Cervantes, J. (2017). Biogas production from a native beverage vinasse using a modified UASB bioreactor. Fuel, 198, 170–174. https://doi. org/10.1016/j.fuel.2016.11.046 Fetanat, A., Mofid, H., Mehrannia, M., & Shafipour, G. (2019). Informing energy justicebased decision-making framework for wasteto-energy technologies selection in sustainable waste management: A case of Iran. Journal of Cleaner Production, 228, 1377–1390. https:// doi.org/10.1016/j.jclepro.2019.04.215 Fetanat, A., Tayebi, M., & Mofid, H. (2021a). Water-energy-food security nexus based selection of energy recovery from wastewater treatment technologies: An extended decision-making framework under intuitionistic fuzzy environment. Sustainable Energy Technologies and Assessments, 43, 1 0 0 9 3 7 . https://doi . org /10 .1016/j.seta.2020.100937 Fetanat, A., Tayebi, M., & Shafipour, G. (2021b). Management of waste electrical and electronic equipment based on circular economy strategies: Navigating a sustainability transition toward waste management sector. Clean Technologies and Environmental Policy, 23, 343–369. https://doi.org/10.1007/s10098-020-02006-7 Figueira, J., Greco, S., & Ehrgott, M. (2005). Multiple criteria decision analysis: State of the art surveys. Operations Research & Management Science, Springer-Verlag New York, 2005. https://doi.org/10.1007/b100605 Garrido-Baserba, M., Hospido, A., Reif, R., Molinos-Senante, M., Comas, J., & Poch, M. (2014). Including the environmental criteria when selecting a wastewater treatment plant. Environmental Modelling & Software, 56, 74–82. https://doi.org/10.1016/j. envsoft.2013.11.008 Ghenai, C., Albawab, M., & Bettayeb, M. (2020). Sustainability indicators for renewable energy systems using a multi-criteria decisionmaking model and extended SWARA/ARAS hybrid method. Renewable Energy, 146, 580 – 597 . https: //doi. org /10. 1016/j . renene.2019.06.157 Jafarinejad, S. (2017). Recent developments in the application of sequencing batch reactor (SBR) technology for the petroleum industry wastewater treatment. Chemistry International, 3, 342–350. https://doi. org/10.5281/zenodo.1473343 Kalbar, P. P., Karmakar, S., & Asolekar, S. R. (2012b). Selection of an appropriate wastewater treatment technology: A scenario-based multiple-attribute decisionmaking approach. Journal of Environmental Management, 113, 158–169. https://doi. org/10.1016/j.jenvman.2012.08.025 Keršulienė, V., Zavadskas, E. K., & Turskis, Z. (2010). Selection of rational dispute resolution method by applying new step-wise weight assessment ratio analysis (SWARA). Journal of Business Economics and Management, 11, 243–258. DOI:10.3846/jbem.2010.12 Lin, C., & Wu, W. (2008). A causal analytical method for group decision-making under fuzzy environment. Expert Systems with Applications, 34, 205–213. https://doi. org/10.1016/j.eswa.2006.08.012 Murray, A., Ray, I., & Nelson, K. L. (2009). An innovative sustainability assessment for urban wastewater infrastructure and its application in Chengdu, China. Journal of Environmental Management, 90, 3553–3560. https://doi.org/10.1016/j.jenvman.2009.06.009 Nowrouzi, M., Abyar, H., & Rostami, A. (2021). Cost coupled removal efficiency analyses of activated sludge technologies to achieve the cost-effective wastewater treatment system in the meat processing units. Journal of Environmental Management, 283, Article 111991. https://doi.org/10.1016/j. jenvman.2021.111991 Opricovic, S., & Tzeng, G. H. (2007). Extended VIKOR method in comparison with outranking methods. European Journal of Operational Research, 178, 514–529. https:// doi.org/10.1016/j.ejor.2006.01.020 Prajapati, H., Kant, R., & Shankar, R. (2019). Prioritizing the solutions of reverse logistics implementation to mitigate its barriers: A hybrid modified SWARA and WASPAS approach. Journal of Cleaner Production, 240, Article 118219. https://doi.org/10.1016/j. jclepro.2019.118219 Pranoto, K., Pahilda, W. R., Abfertiawan, M. S., Elistyandari, A., & Sutikno, A. (2019). Activated sludge technology to treat wastewater from offices and residential areas PT Kaltim Prima Coal. Indonesian Mining Professional Journal, 1, 61–66. https://doi. org/10.36986/impj.v1i1.14 Ren, J., & Ren, X. (2018). Sustainability ranking of energy storage technologies under uncertainties. Journal of Cleaner Production, 170, 1387–1398. https://doi. org/10.1016/j.jclepro.2017.09.229 Sayadi, M. K., Heydari, M., & Shahanaghi, K. (2009). Extension of the VIKOR method for decision-making problems with interval numbers. Applied Mathematical Modelling, 33, 2257–2262. https://doi. org/10.1016/j.apm.2008.06.002 Singhirunnusorn, W., & Stenstrom, M. K. (2009). Appropriate wastewater treatment systems for developing countries: Criteria and indicator assessment in Thailand. Water Science and Technology, 59, 1873–1884. https://doi.org/10.2166/wst.2009.215 Sinha, S. K., Sinha, K., Pandey, S. K., & Tiwari, A. (2014). A study on the wastewater treatment technology for the steel industry: Recycle and reuse. American Journal of Engineering Research, 3, 309–315. Yücenur, G. N., & Şenol, K. (2021). Sequential SWARA and fuzzy VIKOR methods in elimination of waste and creation of lean construction processes. Journal of Building Engineering, 44(2), 103196. https://doi. org/10.1016/j.jobe.2021.103196 Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8, 338–353. https://doi. org/10.1016/S0019-9958(65)90241-X | ||
آمار تعداد مشاهده مقاله: 174 تعداد دریافت فایل اصل مقاله: 86 |