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Abstract 

Climate change negatively impacts hydrologic patterns, affecting rainfall, temperature extremes, and 

sea level rise. Long-term averages of these variables may shift over time due to climate change effects. 

This study conducted trend analysis on rainfall, maximum and minimum temperature, and water level 

data from Manhattan, Central Park, and Battery Park stations to identify significant changes in means. 

The Partial Mann-Kendall test was employed for trend analysis. Frequency analysis utilized common 

probability distribution functions, including Generalized Extreme Value (GEV), normal, log-normal, 

and Log-Pearson distributions, with goodness-of-fit tests like Kolmogorov-Smirnov to identify the 

most suitable distributions. While flood frequency analysis typically examines rainfall and water 

levels separately, their combination can significantly influence floodplain delineation. This study 

aimed to enhance flood frequency analysis by considering joint probability distributions for rainfall 

and storm surge. The correlations between variables and joint probabilities of extreme water levels 

and temperatures were explored to assess the potential impacts of global warming on sea level 

flooding. Copula functions determined the joint probabilities of water levels with rainfall and 

temperature across various recurrence intervals. The trend analysis results indicated an increase in 

long-term averages due to climate change. The GEV distribution emerged as the most appropriate 

function for extreme climate variables. This joint probability distribution analysis underscored the 

necessity of incorporating both rainfall and water level data in flood frequency assessments. 

Keywords: Climate change, Climate variables, Copula, Joint probability, Partial Mann-Kendall. 

 

1. Introduction 

Rainfall and water levels in coastal areas are 

among the most crucial climate variables that 

can lead to severe flooding and damage. In 

recent years, significant flood events have 

occurred worldwide, including in central 

Europe in 2002 and 2005, and on the East 

Coast of the United States in 2011 and 2012, 

resulting in substantial damages (Kron, 2005; 

Karamouz et al., 2016). In the US, there have 

been noticeable and increasing trends in annual 

flood damage since 1934 (Pielke et al., 2002). 

It is evident that the both the intensity and 

frequency of the floods have risen over the past 

 

 
 

century (Pielke et al., 2002; Svensson et al., 

2005; Karamouz et al., 2017). The growth of 

population and infrastructure in flood-prone 

areas has resulted in increased damages and 

costs, prompting a need to better understand 

the primary factors driving such changes. 

Recent studies have further emphasized the 

impact of climate change on hydrological 

extremes. For instance, Zhou et al. (2021) 

demonstrated that climate change significantly 

alters precipitation patterns, leading to 

increased flood risks in urban areas. Similarly, 

AghaKouchak et al. (2020) highlighted the 

concurrent occurrence of extreme weather 
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events, such as heavy rainfall and high 

temperatures, which exacerbate flooding risks. 

Climate change has been shown to have a 

negative impact on the hydrologic cycle, 

which could be linked to the heightened 

frequency and intensity of extreme hydrologic 

events (Milly et al., 2002; Robson, 2002; 

Razmi, 2012; Goharian et al., 2016). The 

analysis of hydrologic variables plays a critical 

role in watershed management and hydrology. 

Regional frequency analysis is applied in 

flood-prone areas to estimate design floods 

(Burn, 1990; Karamouz et al., 2014).  

Procedures for hydrological frequency 

analysis are crucial for predicting extreme 

hydrological events. Recent advancements in 

multivariate frequency analysis techniques, 

particularly the application of copula 

functions, have improved our ability to model 

the joint probabilities of extreme events. For 

example, Li et al. (2023) employed copula 

methods to analyze the joint distribution of 

rainfall and temperature, revealing critical 

insights into the dependencies between these 

variables and their implications for flood 

frequency analysis.  

Frequency analysis involves determining 

the likelihood of extreme events occurring 

(Gilroy and McCuen, 2012). The main 

objective of frequency analysis is to establish 

a relationship between the magnitude of these 

events and their frequency of occurrence, 

using probability distributions (Chebana et al., 

2013). The analysis of hydrological variables 

relies on several assumptions including data 

independency, homogeneity and stationarity. 

These assumptions must be verified before the 

modeling process in univariate analysis 

(Chebana et al., 2013). 

Considering the significance of managing 

flood risks in flood-prone areas, including 

coastal regions, it is necessary to calculate 

exceedance probabilities of rainfall and water 

levels. By utilizing a suitable flood frequency 

analysis, an optimal design can be attained 

(Saf, 2008). Recent studies have emphasized 

the importance of joint probability 

distributions in flood risk assessments. For 

instance, Gräler et al. (2013) conducted a 

comprehensive review of multivariate return 

periods in hydrology, emphasizing the 

necessity of incorporating copula-based 

approaches to better understand the 

interdependencies among hydrological 

variables. 

 Exceedance probabilities are typically 

determined through extreme value analysis of 

a dataset comprising historical observations 

(Mudersbach and Jensen, 2010). In the case of 

hydrologic extremes like extreme temperature, 

rainfall and water levels, the extreme value 

theory (EVT) provides a solid theoretical 

framework, extensively discussed in literature 

(Hawkes et al., 2008; Gumbel, 2012).  

The integration of copula functions in this 

context allows for a more nuanced 

understanding of the relationships between 

multiple hydrological variables, which is 

crucial for effective flood risk management. 

Recent advancements in copula methodologies 

have facilitated the modeling of complex 

dependencies among variables, enabling more 

accurate predictions of extreme events and 

their impacts on flood risk (Favre et al., 2021; 

Xu et al., 2014).  

Over the past decade, there has been a 

growing interest in conducting multivariate 

analysis on hydrological variables. Trend 

analysis of these variables is commonly 

conducted to evaluate the impact of human 

activities on the environment, taking into 

account natural fluctuations in temperature, 

rainfall, and other factors that may influence 

the variables being studied (Libiseller and 

Grimvall, 2002). Understanding these trends is 

crucial for identifying spatial and temporal 

changes in climatic data, as well as for gaining 

insights into the state of water resources for 

future development and sustainable 

management, and for creating plans to stabilize 

environmental conditions (Fathian et al., 

2016). 

In a study by Libiseller and Grimvall 

(2002), the effectiveness of the Partial Mann-

Kendall (PMK) test was assessed in examining 

water quality trends. The PMK test is a trend 

analysis method that determines the critical 

region based on the conditional distribution of 

one MK statistic for monotone trends, given a 

set of other MK statistics. Chebana et al. 

(2013) focused on multivariate hydrological 

frequency analysis and highlighted the 

importance of utilizing nonparametric tests for 

detecting monotonic trends in water quality 

data. Their findings indicated that using both 

univariate and multivariate tests can help in 
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capturing different trend signals and selecting 

appropriate models. 

Fathian et al. (2016) investigated trends in 

hydrological and climatic time series data from 

the Urmia Lake basin in Iran using four 

variations of the Mann-Kendall approach: 1) 

the original Mann-Kendall test; 2) the Mann-

Kendall test that considers the impact of lag-1 

autocorrelation; 3) the Mann-Kendall test that 

takes into account autocorrelations or sample 

size effects; and 4) the Mann-Kendall test that 

considering the Hurst coefficient.  

While flooding can occur in urban areas far 

from the coasts due to intense surface 

streamflow, coastal areas face a higher risk of 

flooding due to the combination of storm 

events and extreme water levels (Razmi, 2012; 

Karamouz et al., 2017). Researchers have 

suggested using joint probability distributions 

to account for the simultaneous occurrence of 

rainfall and storm events with extreme water 

levels in coastal areas (Song et al., 2004; Cong 

and Brady, 2012; Golian et al., 2012; Graeler 

et al., 2013; Roussas, 2013).  

In many of these studies, Copula joint 

probability distributions have been employed. 

For instance, Xu et al. (2014) utilized Copula 

for analyzing the joint occurrences of extreme 

precipitation and storm tide. By examining the 

joint return period of extreme precipitation and 

storm tide, they were able to propose a design 

standard for enhancing future flooding 

preparedness.  

This paper aims to establish a framework 

for conducting frequency analysis on 

hydrological variables, specifically 

temperature, rainfall, and water levels. The 

study utilizes historical extreme climate data 

from southern Manhattan, a coastal area of 

New York City, and employs common 

analysis methods such as the MK test to 

identify trends in the extreme data.  

The joint probability of water levels with 

rainfall and temperature is calculated for 

various recurrence intervals ranging from two 

to 1,000 years. These probabilities are then 

compared with the severity of individual 

events to assess the impact of different 

combinations of climate variables on the 

hydrologic system. 

The paper is structured as follows: The next 

section introduces and presents the study area 

and historical observed data. The methodology 

is then described by presenting the proposed 

flowchart. Following this, the results are 

provided and discussed. Finally, a summary 

and conclusion are given. 

 

2. Materials and Methods 

2.1. Study area 

New York, the largest state in the United 

States, includes the borough of Manhattan, 

which is the most densely populated area of 

New York City (NYC) with the area of 87.46 

km2 and a population of 1.619 million in 2012. 

Manhattan is surrounded by several waterways 

and faces the threat of flooding. Since the 17th 

century, more than 20 storm events have 

impacted NYC. Recent storm events on east 

coast of the United States that have affected 

Manhattan include hurricane Irene in 2011 and 

super storm Sandy in 2012.  

Irene was one of the most destructive and 

costliest cyclones o hit NYC, while Sandy was 

the largest storm ever recorded in the Atlantic 

Basin. Data from the Battery Park station in 

southern Manhattan (Fig. 1) shows that the 

recorded water level from Sandy reached up to 

5.24 m based on the Station Datum (STD). 

Trend detection and frequency analysis are 

conducted on data related to rainfall, 

temperature, and water levels in Manhattan. 

The data is collected from the Central Park and 

the Battery Park stations, as shown in Table 1. 

 

2.2. Methodology 

The flowchart illustrating the proposed 

methodology of this study is presented in 

figure 2. The methodology consists of three 

primary stages: data collection, trend analysis, 

and frequency analysis. A detailed description 

of these stages is provided in this section. 

 

2.3. Data collection and processing 

Rainfall, water level, and temperature data 

time series on a daily basis (representing 

cumulative precipitation within a 24-hour 

period), including maximum and minimum 

temperature values, are utilized in this study 

for statistical examination. The data is 

analyzed to generate a time series of extreme 

annual data, which is subsequently employed 

for additional analysis. 
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2.4. Trend analysis 

Climate change has been proven to have the 

potential to impact various aspects of the 

hydrological cycle, such as rainfall, 

temperature and water levels. Changes in these 

hydrological variables can affect flood timing, 

magnitude and frequency, particularly in 

coastal areas (Laz and Rahman, 2014). 

Therefore, it is necessary to investigate trends 

in hydrological variables when designing 

hydraulic structures for future operation.

 

 
Fig. 1. Location of the Battery Park and Central Park stations in the Manhattan 

 
Table 1. Data sets and characteristics of the stations 

Station Longitude Latitude Elevation (m) Record period Data 

Battery Park 74°00'48" 40°42'00" 15.24 1920-2020 Water level (m) 

Central Park 73°57′55″ 40°46′56″ 39.6 1920-2020 
Rainfall (mm), Maximum and 

Minimum Temperature (ºC) 

Several methods exist for testing trends in 

data. The non-parametric rank-based Mann-

Kendall (MK) test is commonly used in 

climate, hydrology, and water resources 

studies (Mann, 1945; Kendall, 1975; Burn et 

al., 2004). Non-parametric tests are suitable for 

non-normally, distributed, nonlinear and 

censored data commonly seen in hydrological 

and metrological time series (Laz and Rahman, 

2014). It is important to note that the MK test 

could be uni- or multi- variate. When weather 

conditions may influence the time series of the 

variable being considered, the most 

appropriate choice is the Partial MK (PMK) 

test.  

The PMK test is a statistical method used to 

identify trends in a primary variable, such as 

water level, while accounting for the influence 

of another variable, like rainfall or temperature.  

This is important because environmental 

factors can affect the variable of interest. For 

example, if we want to analyze the trend in 

water levels, we might also consider how 

rainfall patterns have changed over time. The 

PMK test adjusts for these influences by 

examining the relationship between the water 

level and the covariate (rainfall or temperature) 

(Wahlin and Grimvall, 2010).  

This adjustment helps us understand 

whether the observed trend in water levels is 

due to changes in rainfall or if it is a separate 

trend. The test calculates a statistic based on 

the ranks of the data, which allows us to 

determine if the trend is statistically significant 

(Libiseller and Grimvall, 2002). 

In our methodology, we first apply the 

PMK test to analyze the water level data in 

relation to rainfall.  
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This means we look at how changes in 

rainfall over time might influence water levels. 

Next, we conduct a similar analysis using 

temperature as the covariate. By doing this, we 

can see if temperature changes also affect 

water levels. This two-step approach allows us 

to isolate the effects of each variable on water 

levels, providing a clearer picture of the trends. 

 
1- Data collection and 

processecing

TemperatureRainfallWater level

2- Trend analysis:

Partial Mann-Kendal test

RainfallWater level TemperatureWater level

3- Frequency analysis

Bi-variateUni-variate

Selection of the 

most appropriate 

distribution 

Distribution functions

· Generalized Extreme 

Value

· Log-Pearson

· Log-Normal

Goodness of fit test:

Kolmogorov-

Smirnov

Investigation of Correlation 

between variables:

· Kendal

· Spearman

· Pearson

Joint probability of 

extreme events 

 Copula joint probability models:

· Gumble

· Frank

· Clayton

Annual extreme 

events

Selection of the most 

appropriate model 

Goodness of fit test:

Cramer-von

Extreme events’ return period

Copula model parameter estimation:

· Maximum likelihood

· Maximum pseudo-likelihood

 
Fig. 2. Methodology flowchart to estimate joint return period of extreme hydrologic variables  

 

The univariate Mann-Kendall test detects 

monotonic trends. This test involves pairwise 

comparisons of all observations within a time 

series dataset. This test is commonly used to 

assess changes in the central value (median) of 

water level over time. In the context of this 

test, the null hypothesis (H0) posits that there 

is no trend in the data. Conversely, the 

alternate hypothesis (H1) indicates the 

presence of a trend. The MK test statistic for a 

time series {xk, k = 1, 2, …, n} is calculated as: 

𝑠 =∑𝑠𝑔𝑛(𝑥𝑗 − 𝑥𝑖)

𝑛

𝑖<𝑗

 (1) 

𝑠𝑔𝑛(𝑥𝑗 − 𝑥𝑖) = {

+1   if  (𝑥𝑗 − 𝑥𝑖) > 0

0    𝑖𝑓 (𝑥𝑗 − 𝑥𝑖) = 0

−1    𝑖𝑓 (𝑥𝑗 − 𝑥𝑖) < 0

 (2) 

where n represents the number of 

observations in a data time series, 𝑥𝑖  and 𝑥𝑗 

refer to the ith and jth observations. If there are 

no ties among the observations, and no trend 

exists, the test statistic follows an 

asymptotically normal distribution. The 

expected value of the test statistic is zero, and 

its variance can be calculated using a specific 

formula: 
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𝐸(𝑠) = 0  

 𝑉𝑎𝑟 (𝑠) =
𝑛(𝑛 − 1)(2𝑛 + 5)

18
 

(3) 

The significance levels (p-values) obtained 

are typically determined under the assumption 

that the statistic s follows an approximately 

normal distribution, given the aforementioned 

conditions, and that the null hypothesis is true. 

This implies that all permutations of the 

observed data are equally likely. 

If the response variable is recorded across 

several classes (e.g., w), the seasonal MK test, 

also known as the Hirsch-Slack test, is 

computed. To accomplish this, the data are 

first divided into ω sub-series, with each series 

corresponding to a specific season. The test 

statistic for this seasonal analysis is calculated 

by summing over all classes as follows: 

𝑠 =∑∑𝑠𝑔𝑛(𝑥𝑙𝑗 − 𝑥𝑘𝑗)

𝑘<𝑙

𝑤

𝑗=1

  

 𝑗 = 1,… ,𝑤 

(4) 

where s is asymptotically normally 

distributed with a mean of zero and a variance 

of:  

𝑉𝐴𝑅(𝑠) =
1

18
{𝑛(𝑛 − 1)(2𝑛 + 5) 

−∑ 𝑡𝑗
𝑤

𝑗=1
(𝑡𝑗 − 1)(2𝑡𝑗 + 5)} 

(5) 

The test statistic is estimated as: 

𝑍𝑚 =

{
 
 

 
 

𝑠 − 1

√𝑉𝐴𝑅(𝑠)
  𝑖𝑓 𝑠 > 0

0   𝑖𝑓   𝑠 = 0
𝑠 + 1

√𝑉𝐴𝑅(𝑠)
   𝑖𝑓    𝑠 < 0

 (6) 

where w represents the number of classes, 

𝑡𝑗 denotes the number of data points in the jth 

class. Negative values of 𝑍𝑀  indicate a 

decreasing trend, while positive values 

indicate an increasing trend in the time series 

data. In our analysis, we test the null 

hypothesis, which states that there is no trend 

in the data. We reject this hypothesis if our 

calculated statistic, ZM, is significantly 

different from zero.  

A significance level of 0.05 means that 

there is only a 5% chance that we would see 

this result if the null hypothesis were true. If 

| 𝑍𝑀 |> 1.96, we conclude that there is a 

significant trend in the data. This statistical 

approach helps us determine whether the 

changes we observe in water levels are 

meaningful or simply due to random 

fluctuations (Burn et al., 2004). 

The covariance between two MK statistics 

is obtained as follows: 

𝐶𝑜𝑣(𝑠𝑗𝑠𝑔) = 

[𝑠𝑗𝑔 + 4∑ 𝑅𝑚𝑗𝑅𝑚𝑔 − 𝑛(𝑛𝑗 + 1)(𝑛𝑔 + 1)
𝑛
𝑚=1 ]

3
 

(7) 

where nj and ng reoresent the number of 

non-missing observations for calss j and g, 

respectively, and: 

𝑠𝑗𝑔 = ∑ 𝑠𝑖𝑔𝑛[(𝑥𝑛𝑗 − 𝑥𝑚𝑗)(𝑥𝑛𝑔 − 𝑥𝑚𝑔)]

𝑚<𝑛

 (8) 

Matrix R corresponds to the observations in 

the time series dataset, where the non-missing 

observations for each class are ranked among 

themselves. The rank of the mth
 

element within 

the i
th 

class is denoted by: 

𝑅𝑚𝑗 =
[𝑛𝑗 + 1 + ∑ 𝑠𝑖𝑔𝑛(𝑥𝑚𝑗 − 𝑥𝑘𝑗)

𝑛
𝑘=1 ]

2
 (9) 

To assing the midrank of 
𝑛𝑗+1

2
 to missing 

values, the term 𝑠𝑖𝑔𝑛(𝑥𝑚𝑗 − 𝑥𝑘𝑗) is set to zero 

if either 𝑥𝑚𝑗 or 𝑥𝑘𝑗 is missing. 

For the PMK test, observations for each 

variable (in this paper, one dependent variable, 

such as water level, and one independent 

variable, such as rainfall or temperature) are 

divided to several classes to account for 

seasonality, if necessary. For each sequence, 

the MK statistic is calculated and represented 

by the vector T. The matrix Γ corresponds to 

the variances and covariances between the 

variables. The test statistic can be summed 

over the classes for either the dependent 

variable alone or for both the dependent and 

the independent variables. The test statistic 

T = [𝑇𝛼, 𝑇𝛽]
𝑇  where α and β represent the 

response (dependent) and explanatory 

(independent) variables, respectively, is 

asymptotically multivariate normally 

distributed with a mean vector 𝜇 = [
𝜇𝛼
𝜇𝛽
] and a 

covariance matrix [
𝛤𝛼𝛼 𝛤𝛼𝛽
𝛤𝛽𝛼 𝛤𝛽𝛽

]
𝛿×𝛿

. Therefore, 

the conditional distribution of Sα given that Sβ= 

sβ is multivariate normal with: 

𝐸(𝑆𝛼|𝑆𝛽=𝑠𝛽) = 𝜇𝛼 + 𝛤𝛼𝛽𝛤𝛽𝛽
−1(𝑠𝛽 − 𝜇𝛽) (10) 

𝑉𝑎𝑟(𝑆𝛼|𝑆𝛽=𝑠𝛽) = 𝛤𝛼𝛼 − 𝛤𝛼𝛽𝛤𝛽𝛽
−1𝛤𝛽𝛼 (11) 

Under the null hypothesis of no trend in any 

of the variables, the mean vector is given by 
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𝜇 = [
𝜇𝛼
𝜇𝛽
] = [

0
0
], which simplifies Equation 10 

to: 

𝐸(𝑆𝛼|𝑆𝛽=𝑠𝛽) = 𝛤𝛼𝛽𝛤𝛽𝛽
−1(𝑠𝛽) (12) 

The PMK test statistic is expressed as 

follows (Libiseller, 2002): 

𝑍𝑃𝑀𝐾 =
𝑆𝛼 − 𝐸(𝑆𝛼|𝑆𝛽=𝑠𝛽)

√𝑉𝑎𝑟(𝑆𝛼|𝑆𝛽=𝑠𝛽)

 
(13) 

which is normally distributed with a mean 

of zero and a standard deviation of one 

(Wahlin and Grimvall, 2010). 

 

2.5.  Frequency analysis 

2.5.1. Univariate frequency analysis 

Standard design approaches in hydrology 

often rely on univariate frequency analysis 

(FA) methods (Graeler et al., 2013). FA 

involves four key steps: 1) conducting 

descriptive and exploratory analyses, 

including outlier detection; 2) verifying 

assumptions like stationarity, homogeneity, 

and independence; 3) modeling and 

estimation; and 4) performing risk analysis. In 

hydrological studies, the assumptions of data 

independence and stationarity are foundational 

for traditional frequency analysis methods.  

Independence implies that the occurrence of 

one event does not influence another, while 

stationarity suggests that the statistical 

properties of the data do not change over time. 

Many studies have historically relied on these 

assumptions to simplify the modeling of 

extreme events, particularly in univariate and 

bivariate analyses (Gilroy and McCuen, 2012; 

Karamouz et al., 2014).  In univariate FA 

methods, frequency analysis is conducted on a 

specific hydrologic variable, such as rainfall, 

without considering the probability occurrence 

of other variables.  

Various distribution functions have been 

proposed and utilized for rainfall, water level, 

and temperature. In this study, three 

distribution functions -log-normal, Log-

Pearson Type III, and generalized extreme 

value (GEV) are examined for the selected 

climate variables.  

 

2.5.2. Log-normal probability distribution 

function 

The Log-Normal distribution is a 

continuous probability distribution of a 

random variable whose logarithm is normally 

distributed. A random variable that follows a 

log-normal distribution can only take positive 

real values. The CDF of a random variable x 

that adheres to the Log-Normal distribution is 

expressed as follow: 

𝐹(𝑥, 𝜇𝑛, 𝜎𝑛) =
1

2
[1 + 𝑒𝑟𝑓(

𝑙𝑛 𝑥 − 𝜇𝑛

𝜎𝑛√2
)] (14) 

In this equation, 𝜇𝑛  and 𝜎𝑛  represent the 

mean and standard deviation of the natural 

logarithm of the variable, respectively, and 

these parameters define the distribution 

(William, 2003). 

 

2.5.3. Log-Pearson type iii probability 

distribution function  

The Log-Pearson Type III distribution is 

employed to calculate the frequency of 

maximum events when all events are log-

normally distributed. Events are log-normally 

distributed when they result from the product 

of a large number of independent random 

variables (Foster, 1924). One advantage of this 

technique is that allows for the extrapolation of 

values for events with return periods that 

extend well beyond the range of observed data. 

This method is the standard approach utilized 

by federal agencies in the United States 

(Bedient and Huber, 2002).  

The Log-Pearson Type III distribution is 

analogous to the normal distribution, 

characterized by three parameters: shape (α), 

scale (σ), and location (µ). If Γ denotes the 

gamma function, then the CDF for this 

distribution, given a random variable x, is 

expressed as follows: 

𝐹(𝑥, 𝛼, 𝜇, 𝜎) =
𝛤(𝑙𝑛(𝑥)−𝜇)/𝜎(𝛼)

𝛤(𝛼)
 (15) 

 

2.5.4. Generalized extreme value probability 

distribution function  

The GEV distribution is a probability 

distribution function developed within the 

framework of extreme value theory. This 

distribution encompasses three sub-

distributions: Gumbel, Fréchet, and Weibull, 

allowing it to model a wide range of extreme 

behaviors depending on the tail characteristics 

of the data. This flexibility is particularly 

advantageous when dealing with climatic data, 

which can exhibit varying degrees of tail 

heaviness (Katz et al., 2002). The selection of 

the GEV distribution arises from its superiority 

in fitting various climatic datasets, which is 

http://en.wikipedia.org/wiki/Random_variable
http://en.wikipedia.org/wiki/Logarithm
http://en.wikipedia.org/wiki/Normal_distribution
http://en.wikipedia.org/wiki/Normal_distribution
http://en.wikipedia.org/wiki/Mean
http://en.wikipedia.org/wiki/Standard_deviation
http://en.wikipedia.org/wiki/Logarithm
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particularly relevant in the context of 

hydrological and meteorological extremes. 

The GEV distribution has been extensively 

applied in hydrological studies for flood 

frequency analysis, demonstrating its 

effectiveness in predicting the occurrence of 

rare events. Recent studies have reinforced its 

applicability in various climatic contexts, 

highlighting its robustness in capturing the 

dynamics of extreme hydrological phenomena 

(Salvadori et al., 2007; Karamouz et al., 2014).  

The GEV distribution is characterized by 

three parameters: a shape parameter (ξ), a 

location parameter (μ), and a scale parameter 

(σ). This distribution can capture the tail 

behavior of extreme values effectively. For 

example, when assessing annual maximum 

daily rainfall, the GEV’s flexibility allows it to 

adapt to datasets that show both heavy tails and 

trends, which are common in climatic data 

impacted by climate change (Kharin et al., 

2013). The CDF of the GEV distribution for 

the considered variable (x) is calculated as 

follows: 
𝐹(𝑥, 𝜁, 𝜇, 𝜎) = 

𝑒𝑥𝑝 {− [1 + 𝜁(
𝑥 − 𝜇

𝜎
)]
−
1
𝜁
} 

(16) 

 

2.6.  Goodness-of-fit test to select the 

most appropriate distribution 

To assess the compatibility of the time 

series data for each variable with the specified 

probability distribution functions, the 

nonparametric Kolmogorov-Smirnov (KS) 

goodness of fit test is employed (Chakravart et 

al., 1967). This test evaluates how well the 

distribution functions align with the climate 

data. The KS statistic (KSD) quantifies the 

distance between the empirical distribution 

function of the data (𝐹𝑖(𝑥)) and the cumulative 

distribution function of the distribution of 

interest. The KS test is framed in terms of two 

hypotheses and a statistic (KSD).  

The null hypothesis posits that the data 

conform to the theoretical distribution, while 

the alternative hypothesis asserts that they do 

not. The KSD statistic for a given cumulative 

distribution function is calculated as follows: 

𝐾𝑆𝐷𝑖 = 𝑠𝑢𝑝
𝑥
|𝐹𝑖(𝑥) − 𝐹(𝑥)| (17) 

where 𝑠𝑢𝑝
𝑥

 represents the supremum of the 

set of the distances. For extreme annual data 

within each time series, collected over a 

continues time period and sorted in a 

descending order such that 𝑥1 < 𝑥2 <. . . < 𝑥𝑛, 

the empirical cumulative distribution function 

for the ith data point is defined as: 

𝐹𝑖(𝑥) =
1

𝑖
× 𝑛(𝑖)                    1 ≤ 𝑖 ≤ 𝑛 (18) 

where 𝑛(𝑖) is the number of data points that 

are less than 𝑥𝑖. For the empirical distribution, 

if the value of the variable originates from a 

specified theoretical distribution, then 

𝐾𝑆𝐷𝑖converges to 0. This null hypothesis is 

rejected at the chosen significance level (α) if 

the KSD exceeds the critical value obtained 

from Kolmogorov-Smirnov table (Chakravart 

et al., 1967).  

 

2.7.  Extreme values’ return period 

After applying the KS test to identify the 

most suitable distribution that best fits the 

historical extreme annual data, the annual 

exceedance probability (EP)-defined as the 

probability that an event is equaled or 

exceeded in any given year-is determined. To 

achieve this, the CDF of the fitted distribution 

is utilized. The EP for an event with a 

magnitude of 𝑥𝐷 is estimated as follows: 

𝐸𝑃 = 𝑃{𝑥 ≥ 𝑥𝐷} = 1 − 𝑃{𝑥 < 𝑥𝐷} 
= 1 − 𝐹(𝑥𝐷) 

(19) 

where P represents the probability and F 

denotes the CDF of the fitted distribution. The 

relationship between the return period (T) and 

the exceedance probability (EP) is expressed 

as: 

𝑇 =
1

𝐸𝑃
 (20) 

A T-year extreme event is defined as an 

event that is equaled or exceeded, on average, 

once every T-year. The optimal distribution for 

the historical data is employed to estimate 

extreme values of the variable across different 

return periods.  

 

2.8. Multivariate frequency analysis 

The application of simple univariate FA 

methods may result in a significant 

underestimation of the risk associated with a 

given extreme event. In hydrology, the 

analysis of multivariate events is particularly 

important. A wide range of methods has been 

employed for univariate FA of extreme events; 

however, multivariate FA is seldom 
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implemented. One reason for this may be the 

limited availability of multivariate models that 

adequately represent extreme values. 

Commonly used multivariate distributions in 

hydrologic studies include normal, bivariate 

exponential, bivariate gamma and bivariate 

extreme value distributions. These methods 

have several drawbacks, including: (1) the 

requirement for identical families for each 

marginal distribution, (2) ambiguity in 

extending beyond the bivariate case, and (3) 

the use of parameters from marginal 

distributions to model the dependence between 

random variables (Favre et al., 2004).  

In contrast, a multivariate distribution that 

does not exhibit these drawbacks is known as 

a copula (Sklar, 1996). Copulas account for all 

dependencies between two random variables 

of interest. A critical step before fitting copulas 

is to investigate whether there is a correlation 

between the variables. Various tests can be 

employed for this purpose.  

In this study, three distinct tests are 

employed to assess whether there is a 

correlation among water level and rainfall, as 

well as between water level and temperature.  

 

2.8.1. Kendall correlation coefficient 

The correlation coefficient between 

variables x and y, based on the Kendal test, is 

evaluated as follows: 

𝜏𝑛 = (
𝑛
2
)
−1

∑𝑠𝑖𝑔𝑛 [(𝑥𝑖 − 𝑥𝑗)(𝑦𝑖 − 𝑦𝑗)]

𝑖<𝑗

 

     𝑖, 𝑗 = 1,2,… , 𝑛 

(21) 

where n represents the number of data 

points. The sign of the correlation coefficient 

is determined as follows: it is +1 if [(𝑥𝑖 −
𝑥𝑗)(𝑦𝑖 − 𝑦𝑗)] >0, indicating a positive 

correlation, and -1 if [(𝑥𝑖 − 𝑥𝑗)(𝑦𝑖 − 𝑦𝑗)] <

0, indicating a negative correlation.  

 

2.8.2. Spearman correlation coefficient 

The Spearman’s correlation coefficient for 

the uth component of the data is defined as 

follows: 

𝑆(𝑢) = 

∑(𝑖 −
𝑛 + 1

2
) (𝑟𝑎𝑛𝑘 (𝑥𝑖

(𝑢))

𝑛

𝑖=1

−
𝑛 + 1

2
)  

    𝑢 = 1,… , 𝑑 

(22) 

The 𝑟𝑎𝑛𝑘(𝑥𝑖
(𝑢)) is denoted as rank of 𝑥𝑖

(𝑢)
 

in the time series of observed data 

𝑥1
(𝑢), … , 𝑥𝑛

(𝑢)
.  

 

2.8.3. Pearson correlation coefficient 

For any given pair of variables x and y, the 

Pearson correlation coefficient is calculated as 

follows: 

𝑟𝑥𝑦 =
(∑𝑥 − 𝑥̄)(∑𝑦 − 𝑦̄)

√∑𝑥2∑𝑦2
 (23) 

where 𝑥̅  and 𝑦̅  represent the long-term 

averages of the data time series for variables x 

and y, respectively. 

 

2.9.  Copula joint probability distribution 

Copulas are defined as “multivariate 

distribution functions that link joint probability 

distributions to their one-dimensional 

marginal distributions” (Nelsen, 2006). 

Marginal distributions that are uniform within 

the interval [0, 1] can be connected using 

copula multivariate distribution functions. To 

achieve this, the marginal univariate 

distributions must first be identified within that 

interval. Subsequently, a copula function 

correlates the variables by constructing a 

multivariate distribution utilizing the copula 

parameter ().  

Copulas are particularly valuable for 

implementing efficient algorithms for 

simulating joint distributions (Favre et al., 

2004). One of the primary advantages of 

copulas is that they allow for the separate 

examination of the marginal properties and 

dependence structure of the variables (Xu et 

al., 2014). To obtain a joint CDF F(x,y) for 

random variables, X and Y, with marginal 

distributions defined as 𝑢1 =FX(x)=Pr(X≤x) 

and 𝑢2=FY(y)=Pr(Y≤y), a copula function C is 

utilized: 

𝐹(𝑥, 𝑦) = 𝐶(𝑢1, 𝑢2, 𝜃) 
= 𝐶(𝐹𝑋(𝑥), 𝐹𝑌(𝑦))  

(24) 

where F(x,y)=Pr(X≤x,Y≤y) represents the 

joint probability distribution function of X and 

Y (Sklar, 1996). If FX(x) and FY(y) are 

continuous, then the copula function C is 

unique. To estimate the probability density 

function (PDF) of FX(x) and FY(y), the 

following expression is employed: 
𝑓(𝑥, 𝑦) = 

𝐷(𝐹𝑋(𝑥), 𝐹𝑌(𝑦))𝑓𝑋(𝑥), 𝑓𝑌(𝑦) = 

𝐷(𝑢1, 𝑢2; 𝜃)𝑓𝑋(𝑥), 𝑓𝑌(𝑦) 
(25) 
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where f(x, y) is the bivariate PDF, and 𝑓𝑋(𝑥) 
and 𝑓𝑌(𝑦) are the marginal PDFs of X and Y. 

The term D (u1, u2;) represents a bivariate 

copula density function: 

𝐷(𝑢1, 𝑢2; 𝜃) =
𝜕2𝐶(𝑢1, 𝑢2; 𝜃)

𝜕𝑢1𝜕𝑢2
 (26) 

There are various types of copulas, 

including elliptical copulas, Archimedean 

copulas, and copulas with quadratic sections. 

 

2.9.1. Archimedean copulas 

In contrast to copulas based on multivariate 

distributions, there are several copulas that 

exhibit a relatively simple form. These copulas 

belong to the class of Archimedean copulas, 

which interpolate between specific 

dependency structures, namely counter 

monotonicity, independence, and 

comonotonicity. Archimedean copulas possess 

several advantageous features, such as 

symmetric and associativity. Furthermore, the 

computation of measures of dependence is 

simplified in Archimedean copulas. However, 

a limitation of these copulas is that they are 

symmetric (Favre et al., 2004).  

In this study, four commonly used 

Archimedean copulas- Gumbel, Gaussian, 

Clayton and Frank-are employed to analyze 

pairs of water level and rainfall, as well as 

water level and temperature. These copulas are 

compared to identify the best fit for the pairs 

of considered variables. The expressions for 

these copulas are provided in Table. It should 

be noted that all of these functions are one-

parameter copulas (Liu et al., 2015).  
 

Table 2. The applied bivariate copula functions 
Copula Copula function, C (u1, u2;) 

Gaussian ∫ ∫
1

2𝜋(1 − 𝜃2)
1
2⁄
𝑒𝑥𝑝 [−

𝑥2 − 2𝜌𝑥𝑦 + 𝑦2

2(1 − 𝜃2)
]

𝜑−1(𝑢2)

−∞

𝜑−1(𝑢1)

−∞

𝑑𝑦𝑑𝑥 

Clayton (𝑢1
−𝜃 + 𝑢2

−𝜃 − 1)−1/𝜃  

Frank −
1

𝜃
ln [1 +

(𝑒−𝜃𝑢1 − 1)(𝑒−𝜃𝑢2 − 1)

𝑒−𝜃 − 1
] 

Gumbel 𝐶(𝑢1, 𝑢2) = 𝑒𝑥𝑝{−((−ln(𝑢1))
𝜃 + (−ln(𝑢2))

𝜃 )
1/𝜃

} 

 

2.9.2. Selection of the most appropriate 

Archimedean copula 

A critical step in multivariate FA using 

copulas is to identify the most appropriate 

function that best fits the data. For this 

purpose, various goodness of fit test can be 

employed. In this study, the Cramér-von Mises 

(CvM) test is utilized to determine the best 

copula function to fitting the joint data time 

series. The CvM statistic (Sn) is expressed as 

follows: 

𝑆𝑛 = ∫ ∆𝐶𝑛(𝑢)
2 𝑑

𝑢

𝐶𝑛(𝑢) (27) 

∆𝐶𝑛 = √𝑛(𝐶𝑛 − 𝐶𝜃𝑛) (28) 

where 𝐶𝑛  is the empirical copula, n is the 

sample size, and 𝐶𝜃𝑛 is the parametric copula 

estimated for a sample size n. The null 

hypothesis states that the parametric copula 

adequately fits the data (i.e., 𝐻0: 𝐶𝑛 ∈ 𝐶𝜃𝑛). P-

values greater than the significance level 

indicate acceptance of the null hypothesis, 

otherwise, it is rejected (Genest and Werker, 

2002).  

Therefore, among the considered copula 

functions, the one with the highest p-value 

(i.e., the smallest 𝑆𝑛) is preferred and selected 

for further analysis (Salvadori and Michele., 

2004; Genest et al., 2009; Madadgar and 

Moradkhani, 2013; Madadgar, 2013). 

 

2.9.3. Estimation of the model’s 

parameter: maximum likelihood estimation 

(MLE) 

Likelihood-based methods are frequently 

employed for parameter estimation. In this 

study, MLE is utilized to estimate the 

parameters of the selected copula model. The 

likelihood is expressed as follows: 

𝑙(𝜃) =∏g(𝑋𝑡|𝜃)

n

t=1

 (29) 

where g represents the probability density 

function of the variable Xt. n is the number of 

data points, and θ denotes the model 

parameter. The maximum likelihood estimate 

(MLE) of θ is defined as the value of θ that 

maximizes the likelihood function, denoted as 

l (θ) (Wang et al., 2009). 
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2.9.4. Estimation of the model’s 

parameter: maximum pseudo-likelihood 

(MPLE) 

Pseudo-likelihood is an approximation of 

the joint probability distribution of a time 

series of a random variable and is calculated as 

follows: 

ln 𝑙(𝜃) =∑ln 𝑐𝜃(𝑈𝑖̂)

𝑛

𝑖=1

 (30) 

where 𝑈𝑖̂ = (𝑈̂𝑖,1, … , 𝑈̂𝑖,𝑑)  represents the 

pseudo observations obtained from the time 

series of  𝑋𝑖 = (𝑋𝑖,1, … , 𝑋𝑖,𝑑)  using the 

formula: 𝑈̂𝑖,𝑗 =
𝑅(𝑋𝑖,𝑗)

𝑛+1
. Here, 𝑅(𝑋𝑖,𝑗)  denotes 

the rank of 𝑋𝑖,𝑗 among the values 𝑋𝑖,1, … , 𝑋𝑖,𝑑. 

The term 𝑐𝜃  refers to the selected copula 

model with parameter 𝜃  (Shih and Louis, 

1995; Kojadinovic and Yan, 2010). 

 

2.10.  Return period of joint extreme 

events 

The multivariate return period is derived 

using the concept of copulas (Nelsen, 2006; 

Cong and Brady, 2012; Li et al., 2013; 

Keerthirathne and Perera, 2015). For two 

variables, X and Y (e.g., rainfall and water level 

or temperature and water level), the joint 

survival distribution can be defined as: 

𝐹̅(𝑥, 𝑦) = Pr(𝑋 > 𝑥, 𝑌 > 𝑦) = 

𝐶̅(𝐹̅𝑋(𝑥), 𝐹̅𝑌(𝑦)) 
(31) 

where 𝐹̅𝑋 = 1 − 𝐹𝑋  and 𝐹̅𝑌 = 1 − 𝐹𝑌  are 

the marginal survival functions of X and Y, 

respectively, and 𝐶̅  represents the survival 

copula. By utilizing the survival critical layer 

with probability t (where 𝑡 ∈ (0,1)), we can 

obtain a survival critical layer on which the 

data sets for X and Y share the same probability 

level t (Burn, 1990; Schoelzel and Friederichs, 

2008): 

𝐿𝑡
𝐹 = {𝑥, 𝑦 ∈ 𝑅𝑑: 𝐹̅(𝑥, 𝑦) = 𝑡} (32) 

The survival Kendal return period of 

simultaneous occurrence of X and Y, denoted 

as 𝑇𝑋,𝑌, is then calculated as follows: 

𝑇𝑋,𝑌 =
𝜇𝑇

1 − 𝑇̅(𝑡) = Pr(𝐹̅(𝑥, 𝑦) ≥ 𝑡)
 

=
𝜇𝑇

Pr (𝐶̅(𝐹̅𝑋(𝑥), 𝐹̅𝑌(𝑦)) ≥ 𝑡)
 

(33) 

where 𝜇𝑇 is the average interarrival time of 

the concurrence of X and Y. By inverting the 

Kendal survival function at the probability 

level 𝑝 = 1 −
𝜇

𝑇
, the survival layer 

corresponding to return period T can be 

estimated as: 

𝑞̅ = 𝑞̅(𝑝) =  𝑇̅−1(𝑝) (34) 

where 𝑞̅ is the survival Kendall quantile of 

order p. The survival critical layer, denoted as 

𝐿𝑡
𝐹 , corresponds to the quantile 𝑞̅ , indicating 

that the combined variables X and Y have a 

joint return period T (Salvadori and De 

Michele, 2004; Salvadori et al., 2007; 

Salvadori et al., 2011; Salvadori et al., 2013; 

Graeler et al., 2013; Liu et al., 2015). 

 

3. Results and Discussion 

Figure 3 illustrates the variation in the time 

series data. This figure indicates an increasing 

trend in the data, with the exception of the time 

series of maximum annual temperature. 

Subsequently, trend analysis is conducted on 

the time series of individual variables. 

Following this, the effects of rainfall and 

temperature on the trend of water level are 

examined. 

 

3.1.  Trend analysis of climate variables 

The results of the Mann-Kendal (MK) test 

at the 5 % confidence level for the climate 

variables under consideration are presented in 

Table 3. In this table, “MAWL” denotes 

maximum annual water level, and “MDP” 

represents maximum daily precipitation. 

Additionally, “Tmin” and “Tmax” correspond 

to minimum and maximum temperatures, 

respectively. Based on the Z statistic and P-

values, the hypothesis of trend’s existence is 

accepted for all the climate variables, with the 

exception of Tmax. 

 

3.2.  PMK test for multivariate trend 

analysis 

A trend analysis of water level, designated 

as the dependent variable, was conducted with 

rainfall and temperature serving as the 

independent variables over the period from 

1920 to 2015. The results are presented in 

Table 4.  

Based on the results presented in Table 3, 

the value of the test statistics (i.e., Z) for the 

climate variables exceeds 1.96, indicating that 

the application of the MK test demonstrates the 

existence of a trend in the data. However, as 

shown in Table 4, the results from the PMK 

test indicate that precipitation has the strongest 
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influence on water levels compared to 

temperature.  

This finding suggests that as rainfall 

patterns change, they have a more pronounced 

effect on the water levels in our study area. For 

instance, if we observe an increase in heavy 

rainfall events, we can expect to see 

corresponding increases in water levels, which 

could lead to flooding. This relationship 

underscores the importance of monitoring 

rainfall trends when assessing flood risks. This 

conclusion is supported by the observation 

that, when analyzing trends, the inclusion of 

precipitation alongside water level resulted in 

the greatest reduction in the value of the test 

statistic compared to the Z value for water 

level alone in Table 3.  

Following precipitation, minimum and 

maximum temperatures are ranked in 

descending order regarding their impact on 

water level trend. 

 

3.3.Univariate frequency analysis 

The Kolmogorov-Smirnov (KS) statistic is 

utilized to determine the most suitable 

probability distribution function for fitting 

climate variables. The results are summarized 

in Table 5. The KS statistic for the GEV was 

significantly lower, suggesting a closer 

alignment with the empirical distribution of the 

observed data. Recent studies have also 

demonstrated that the GEV distribution often 

outperforms other commonly used 

distributions (e.g., Normal, Log-Normal, and 

Exponential) in accurately describing extreme 

value behavior (Su et al., 2020; Zeng et al., 

2023). Using the fitted distributions (GEV), 

values of climate variables in different return 

periods are estimated and reported in Table 6. 

  

  
a b 

  
c d 

Fig. 3. Variation of a: Maximum annual water level (MAWL), b: Maximum daily precipitation (MDP), c: 

Maximum temperature (Tmax), and d: Minimum temperature (Tmin) 
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Table 3. Mann-Kendall test results 

Data Z 
Kendall's 

tau 
S Var(S) 

p-value 

(Two-tailed) 
alpha Sen's slope 

MAWL (m) 4.37 0.305 1379 99659.66 < 0.0001 0.05 0.003 

MDP (mm) 2.74 0.190 865 99791 0.006 0.05 0.253 

Tmin (oC) 2.28 0.162 718 99286 0.023 0.05 0.026 

Tmax (oC) -0.96 -0.069 -302 98826.66 0.338 0.05 0 

 
Table 4. PMK test results for multivariate trend analysis 

Data Z p-value S Var (S) 

MAWL & MDP 3.71 0.0002 1116.29 90455.5 

MAWL & Tmin 4.08 4.47E-05 1274.93 97574.1 

MaWL & Tmax 4.32 1.59E-05 1359.49 99247.4 

 

Table 5. K-S test results to investigate different probability distribution functions to climate data 
Data Distribution Log-pearon Type 3 Log normal GEV 

MAWL (m) 
Parameters α=0.86363, β=0.09407, γ=1.1026 σ=0.08697, μ=1.1839 k=0.17253, σ=0.17921, μ=3.1403 

K-S statistic 0.12341 0.14972 0.07212 

MDP (mm) 
Parameters α=120.09, β=0.03191, γ=0.481 σ=0.34782, μ=4.3135 k=0.04415, σ=21.817, μ=65.873 

K-S statistic 0.05669 0.06533 0.05857 

Tmin (oC) 
Parameters No fit σ=0.02466, μ=4.8831 k=-0.36259, σ=3.3004, μ=-15.812 

K-S statistic No fit 0.09082 0.0866 

Tmax (oC) 
Parameters α=1697.8, β=0.00122, γ=1.5229 σ=0.05, μ=3.5941 k=-0.22776, σ=1.7921, μ=35.731 

K-S statistic 0.07399 0.07612 0.07168 

Table 6. Univariate frequency analysis of 

climate variables 
Return Period 

(years) 

MAWL 

(m) 

MDP 

(mm) 

Tmin 

(C) 

Tmax 

(C) 

2 3.2 73.93 -14.67 36.36 

5 3.44 99.7 -11.99 38 

10 3.63 117.49 -10.73 38.88 

25 3.9 140.82 -9.56 39.8 

50 4.1 158.77 -8.92 40.36 

100 4.39 177.15 -8.42 40.84 

200 4.69 196.04 -8.04 41.24 

500 5.13 221.85 -7.66 41.68 

600 5.23 227.11 -7.6 41.76 

1000 5.52 242.07 -7.45 41.98 

 

3.4. Bivariate frequency analysis 

Archimedean Copulas are among the most 

commonly employed models for the 

multivariate frequency analysis of hydrologic 

variables. To utilize copulas effectively, it is 

essential to investigate the correlation between 

the variables. Various statistical tests can be 

applied for this purpose. The results of the 

correlation analysis between the variables are 

presented in Table 7.  

Based on this table, it is observed that the 

correlation between water level and both 

precipitation and minimum temperature is 

positive, as indicated by the calculated 

coefficients. Consequently, three copula 

models will be examined for the joint 

probability of these variables. It is important to 

note that when Kendall’s coefficients are 

negative, the Clayton and Gumbel copula 

functions are not applicable. 

 

Table 7. Correlation coefficient among climate 

variables 
Correlation 

coefficient 

MAWL 

and MDP 

MAWL 

and Tmin 

MAWL 

and Tmax 

Kendal 0.205 0.105 -0.05 

Spearman 0.305 0.145 -0.064 

Pearson 0.136 0.219 0.022 

 

3.5.  Parameter estimation for copula 

models 

The Probability Maximum Likelihood 

Estimation (PMLE) method is employed to 

accurately estimate the parameters of the 

copula models. This approach ensures that the 

estimation of the model parameters is not 

influenced by the model itself. The copula 

model with the maximum value of the 

Maximum Likelihood Estimation (MLE) is 

considered the most suitable for joint 

probability analysis. 

 

3.6.  Selection of the most appropriate 

copula model 

The Cramer-von Mises method is utilized to 

identify the most appropriate copula model. 

This method incorporates bootstrap and Monte 

Carlo techniques to generate random data that 

aligns with the estimated copula. According to 

this method, the model with the minimum 

value of Sn will be selected. Furthermore, it is 

essential that the model is not rejected based 

on the goodness-of-fit test. The results of this 

analysis are presented in Table 8. 
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Since all the copulas under consideration 

belong to the Archimedean family, there is no 

significant difference in the performance of the 

models. However, because the Frank copula 

does not have the limitations associated with 

other copulas - specifically, its applicability 

when the correlation between variables is 

negative - it has been selected for further 

analysis (Singh and Strupczewski, 2002; 

AghaKouchak et al., 2014; Cheng et al., 2016). 

 

3.7. Joint return period 

Figures 4 to 6 illustrate the joint return 

periods of precipitation and water level, 

minimum temperature and water level, as well 

as maximum temperature and water level. 

In our study, we employed a copula-based 

approach to analyze the joint probabilities of 

extreme water levels, rainfall, and temperature, 

which allows for the modeling of dependencies 

between variables without the strict assumptions 

of independence and stationarity.  

This approach is supported by recent 

advancements in multivariate frequency 

analysis, which recognize the 

interdependencies among hydrological 

variables (Favre et al., 2004; Xu et al., 2014). 

For example, Xu et al. (2014) conducted a 

joint probability analysis of extreme 

precipitation and storm tide, acknowledging 

that the correlation between these variables can 

significantly affect flood risk assessments. 

Their findings underscore the importance of 

considering variable interdependencies, 

particularly in coastal regions where extreme 

events are influenced by multiple climatic 

factors. In contrast, studies that have assumed 

independence and stationarity may overlook 

critical interactions between variables, 

potentially leading to underestimations of 

flood risks. For instance, Karamouz et al. 

(2014) highlighted that static bivariate 

frequency analyses, which do not account for 

changing climatic conditions, may yield 

misleading results in flood risk assessments. 

 
Table 8. Fitted copula models to the joint climate variables and parameter estimation for the models 

V
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Parameter estimation method 
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Inversion 

Of 

Spearman's rho 

Inversion 

Of 

Kendall's tau 

Maximum 

Likelihood 

Maximum 

Pseudo-

Likelihood 

M
A

W
L

 a
n

d
 M

D
P

 Gaussian - 0.31 0.30 - - - 0.11 0.4 - 

Clayton 0.52 0.51 0.43 0.43 3.95 0.15 0.052 0.004 2.84 

Frank 1.92 1.91 1.86 1.86 4.43 0.68 0.043 0.006 2.733 

Gumbel 1.26 1.25 1.18 1.18 2.32 0.09 0.074 <2e-16 13.14 

M
A

W
L

 a
n

d
 T

m
in

 Gaussian - 0.16 0.20 - - - 0.12 0.27 - 

Clayton 0.21 0.23 0.20 0.20 2.18 0.12 0.11 0.098 1.65 

Frank 0.88 0.96 1.08 1.08 1.2 0.63 0.092 0.091 1.69 

Gumbel 1.11 1.12 1.1 1.1 0.87 0.07 0.092 <2e-16 15.57 

M
A

W
L

 a
n

d
 T

m
ax

 

Gaussian - 0.21 0.003 - - - 15.2 0 - 

Clayton -0.08 -0.10 -0.21 -0.21 2.29 0.08 0.20 0.009 -2.62 

Frank -0.38 -0.49 -0.34 -0.34 0.14 0.57 0.15 0.55 -0.59 

Gumbel - 1.16 1 - - - 15.1 0 - 
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Fig. 4. Joint return period of water level and precipitation 

 

 
Fig. 5. Joint return period of water level and minimum temperature 

 

 
Fig. 6. Joint return period of water level and maximum temperature 
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4. Conclusion 

This study investigates trend analysis in 

several climate variables under the potential 

impacts of climate change. The climate 

variables considered include water level, 

precipitation, maximum temperature, and 

minimum temperature. The Manhattan coastal 

region in New York City is selected as the case 

study. The required data for analysis were 

obtained from the Central Park and Battery 

Park stations. For univariate and multivariate 

trend analyses, the Mann-Kendall and Partial 

Mann-Kendall tests were employed, 

respectively. Several common probability 

distributions were examined for the frequency 

analysis of the data.  

To identify the most appropriate 

distribution function, the Kolmogorov-

Smirnov goodness-of-fit test was utilized. 

Subsequently, the joint probability of water 

level with rainfall and temperature was 

investigated. To achieve this, the correlation 

between the climate variables was assessed. 

Various copula functions were fitted to the 

data, and the joint probability of observed 

water levels with both rainfall and temperature 

data for different return periods was 

calculated. 

The results of the trend analysis indicated 

an increase in the long-term average of rainfall, 

water level and minimum temperature, which 

could be attributed to the impacts of climate 

change. Additionally, the results suggested 

that the Generalized Extreme Value (GEV) 

distribution is the most appropriate distribution 

for fitting to the considered extreme 

hydrologic variables. It should be noted that 

the GEV distribution's compatibility with 

copula functions further enhances its utility in 

multivariate analyses, allowing for the 

assessment of joint probabilities of extreme 

events, such as the simultaneous occurrence of 

high rainfall and sea levels.  

The findings from the joint probability 

distribution analysis underscore the necessity 

of considering rainfall, temperature, and water 

level in flood frequency analysis, particularly 

because these climate variables are 

interrelated. 

The results, particularly identifying 

increasing trends in extreme rainfall, water 

levels, and temperature, underscore the urgent 

need for adaptive infrastructure design. As 

climate change continues to exacerbate the 

frequency and intensity of extreme weather 

events, urban planners and engineers must 

consider these trends in designing flood 

defenses, drainage systems, and coastal 

infrastructure. For instance, the application of 

the GEV distribution in our analysis provides 

a statistical basis for estimating the return 

periods of extreme events, which can guide the 

design of levees and floodwalls to withstand 

anticipated future conditions. 

This study highlights the 

interconnectedness of rainfall, temperature, 

and sea level rise, which is critical for urban 

planning in flood-prone areas like New York 

City. Policymakers can utilize our findings to 

inform zoning regulations that restrict 

development in high-risk areas and promote 

the use of green infrastructure, such as 

permeable pavements and green roofs, which 

can mitigate flooding by enhancing 

stormwater management. Additionally, 

integrating our joint probability analysis into 

urban planning frameworks can help identify 

areas at risk of simultaneous flooding from 

rainfall and storm surges, allowing for more 

effective land-use planning. 

The increasing trends in extreme climate 

variables necessitate the development of 

comprehensive climate adaptation strategies. 

Our study's findings can inform local 

governments and agencies in creating action 

plans that prioritize resilience against flooding. 

This includes investing in early warning 

systems, enhancing emergency response 

protocols, and conducting regular risk 

assessments to adapt to changing climatic 

conditions. Furthermore, our results can 

support the implementation of nature-based 

solutions, such as restoring wetlands and 

creating buffer zones, which can provide 

natural flood protection and enhance 

biodiversity. 

Consequently, the insights gained from our 

analysis can serve as a foundation for 

formulating policies that address the impacts 

of climate change on flood risk. Engaging 

stakeholders, including community members, 

urban planners, and environmental 

organizations, in discussions about our 

findings, can foster collaborative approaches 

to flood management. This engagement is 

crucial for developing policies that are not only 
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scientifically sound but also socially equitable 

and economically viable. 
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