1. Portaccio E, Magyari M, Havrdova EK, Ruet A, Brochet B, Scalfari A, Di Filippo M, Tur C, Montalban X, Amato MP. Multiple sclerosis: emerging epidemiological trends and redefining the clinical course. The Lancet Regional Health–Europe. 2024;1:44. https://doi.org/10.1016/j.lanepe.2024.100979
2. Walton C, King R, Rechtman L, Kaye W, Leray E, Marrie RA, Robertson N, La Rocca N, Uitdehaag B, van Der Mei I, Wallin M. Rising prevalence of multiple sclerosis worldwide: Insights from the Atlas of MS. Multiple Sclerosis Journal. 2020;26(14):1816-21. https://doi.org/10.1177/1352458520970841
3. Sadeghi B, Estebsari F, Ebadi A, Rasouli M, Sadeghi E. The social support needs of family caregivers of patients with multiple sclerosis: a qualitative study. Archives of Rehabilitation. 2022;23(1):68-87. [In Persian]. https://doi.org/10.32598/RJ.23.1.3330.1
4. Jalali, A., & Pourhosein, R. adaptability to multiple sclerosis (MS) from psychological and social perspectives: a systematic review of literature. Rooyesh-e-Ravanshenasi. 2021;9(10):143-152. [In persian]. https://doi.org/20.1001.1.2383353.1399.9.10.1.2
5. Rommer PS, Eichstädt K, Ellenberger D, Flachenecker P, Friede T, Haas J, Kleinschnitz C, Pöhlau D, Rienhoff O, Stahmann A, Zettl UK. Symptomatology and symptomatic treatment in multiple sclerosis: Results from a nationwide MS registry. Multiple Sclerosis Journal. 2019;25(12):1641-52. https://doi.org/10.1177/1352458518799580
6. Artemiadis AK, Anagnostouli MC. Apoptosis of oligodendrocytes and post-translational modifications of myelin basic protein in multiple sclerosis: possible role for the early stages of multiple sclerosis. European Neurology. 2010;63(2):65-72. https://doi.org/10.1159/000272940
7. Halper J, Holland N. Multiple sclerosis: A self-care guide to wellness. Demos Medical Publishing; 2005 Jun 1.
8. Baltan S, Jawaid SS, Chomyk AM, Kidd GJ, Chen J, Battapady HD, Chan R, Dutta R, Trapp BD. Neuronal hibernation following hippocampal demyelination. Acta Neuropathologica Communications. 2021;9(1):34. https://doi.org/10.1186/s40478-021-01130-9
9. Zhan J, Mann T, Joost S, Behrangi N, Frank M, Kipp M. The cuprizone model: dos and do nots. Cells. 2020;9(4):843. https://doi.org/10.3390/cells9040843
10. Guo LY, Lozinski B, Yong VW. Exercise in multiple sclerosis and its models: Focus on the central nervous system outcomes. Journal of Neuroscience Research. 2020;98(3):509-23. https://doi.org/10.1002/jnr.24524
11. Ye JN, Chen XS, Su L, Liu YL, Cai QY, Zhan XL, Xu Y, Zhao SF, Yao ZX. Progesterone alleviates neural behavioral deficits and demyelination with reduced degeneration of oligodendroglial cells in cuprizone-induced mice. PLoS One. 2013;8(1):e54590. https://doi.org/10.1371/journal.pone.0054590
12. Rieckmann P, Centonze D, Elovaara I, Giovannoni G, Havrdová E, Kesselring J, Kobelt G, Langdon D, Morrow SA, Oreja-Guevara C, Schippling S. Unmet needs, burden of treatment, and patient engagement in multiple sclerosis: a combined perspective from the MS in the 21st century steering group. Multiple Sclerosis and Related Disorders. 2018;19:153-60. https://doi.org/10.1016/j.msard.2017.11.013
13. Sandroff BM, Jones CD, Baird JF, Motl RW. Systematic review on exercise training as a neuroplasticity-inducing behavior in multiple sclerosis. Neurorehabilitation and Neural Repair. 2020;34(7):575-88. https://doi.org/10.1177/1545968320921836
14. Aslam M, Ladilov Y. Emerging role of cAMP/AMPK signaling. Cells. 2022;11(2):308. https://doi.org/10.3390/cells11020308
15. Gaetani L, Salvadori N, Chipi E, Gentili L, Borrelli A, Parnetti L, Di Filippo M. Cognitive impairment in multiple sclerosis: lessons from cerebrospinal fluid biomarkers. Neural Regeneration Research. 2021;16(1):36-42. https://doi.org/10.4103/1673-5374.286949
16. Ammar RA, Mohamed AF, Kamal MM, Safar MM, Abdelkader NF. Neuroprotective effect of liraglutide in an experimental mouse model of multiple sclerosis: role of AMPK/SIRT1 signaling and NLRP3 inflammasome. Inflammopharmacology. 2022;30(3):919-34. https://doi.org/10.1007/s10787-022-00956-6
17. Narine M, Azmi MA, Umali M, Volz A, Colognato H. The AMPK activator metformin improves recovery from demyelination by shifting oligodendrocyte bioenergetics and accelerating OPC differentiation. Frontiers in Cellular Neuroscience. 2023;17:1254303. https://doi.org/10.3389/fncel.2023.1254303
18. Patel S, Khan H, Majumdar A. Crosstalk between Sirtuins and Nrf2: SIRT1 activators as emerging treatment for diabetic neuropathy. Metabolic Brain Disease. 2022;37(7):2181-95. https://doi.org/10.1007/s11011-022-00956-z
19. Paintlia AS, Paintlia MK, Mohan S, Singh AK, Singh I. AMP-activated protein kinase signaling protects oligodendrocytes that restore central nervous system functions in an experimental autoimmune encephalomyelitis model. The American Journal of Pathology. 2013;183(2):526-41. https://doi.org/10.1016/j.ajpath.2013.04.030
20. Yang Y, Liu Y, Wang Y, Chao Y, Zhang J, Jia Y, Tie J, Hu D. Regulation of SIRT1 and its roles in inflammation. Frontiers in Immunology. 2022;13:831168. https://doi.org/10.3389/fimmu.2022.831168
21. Bamps S, Wirtz J, Savory FR, Lake D, Hope IA. The Caenorhabditis elegans sirtuin gene, sir-2.1, is widely expressed and induced upon caloric restriction. Mechanisms of Ageing and Development. 2009;130(11-12):762-70. https://doi.org/10.1016/j.mad.2009.10.001
22. Fagerli E, Escobar I, Ferrier FJ, Jackson CW, Perez-Lao EJ, Perez-Pinzon MA. Sirtuins and cognition: implications for learning and memory in neurological disorders. Frontiers in Physiology. 2022;13:908689. https://doi.org/10.3389/fphys.2022.908689
23. Wu QJ, Zhang TN, Chen HH, Yu XF, Lv JL, Liu YY, Liu YS, Zheng G, Zhao JQ, Wei YF, Guo JY. The sirtuin family in health and disease. Signal Transduction and Targeted Therapy. 2022;7(1):402. https://doi.org/10.1038/s41392-022-01257-8
24. Nageeb RS, Fawzy A, Ateya MA, Talaat A. Sirtuin-1 level and gene polymorphisms in multiple sclerosis. The Egyptian Journal of Neurology, Psychiatry and Neurosurgery. 2024;60(1):43. https://doi.org/10.1186/s41983-024-00819-7
25. Atkinson KC, Osunde M, Tiwari-Woodruff SK. The complexities of investigating mitochondria dynamics in multiple sclerosis and mouse models of MS. Frontiers in Neuroscience. 2023;17:1144896. https://doi.org/10.3389/fnins.2023.1144896
26. Warutkar V, Gulrandhe P, Morghade S, Kovela RK, Morghade Jr SV. Physiotherapy for multiple sclerosis patients from early to transition phase: A scoping review. Cureus. 2022;14(10). https://doi.org/10.7759/cureus.30779
27. Harrison AM, Safari R, Mercer T, Picariello F, van der Linden ML, White C, Moss-Morris R, Norton S. Which exercise and behavioural interventions show most promise for treating fatigue in multiple sclerosis? A network meta-analysis. Multiple Sclerosis Journal. 2021;27(11):1657-78. https://doi.org/10.1177/1352458521996002
28. Torres-Costoso A, Martinez-Vizcaino V, Reina-Gutiérrez S, Álvarez-Bueno C, Guzmán-Pavón MJ, Pozuelo-Carrascosa DP, et al. Effect of exercise on fatigue in multiple sclerosis: a network meta-analysis comparing different types of exercise. Archives of Physical Medicine and Rehabilitation. 2022;103(5):970-87. https://doi.org/10.1016/j.apmr.2021.08.008
29. Deforges S, Branchu J, Biondi O, Grondard C, Pariset C, Lécolle S, Lopes P, Vidal PP, Chanoine C, Charbonnier F. Motoneuron survival is promoted by specific exercise in a mouse model of amyotrophic lateral sclerosis. The Journal of Physiology. 2009;587(14):3561-72. https://doi.org/10.1113/jphysiol.2009.169748
30. Kim JY, Yi ES, Lee H, Kim JS, Jee YS, Kim SE, Kim CJ, Ko IG. Swimming exercise ameliorates symptoms of MOG-induced experimental autoimmune encephalomyelitis by inhibiting inflammation and demyelination in rats. International Neurourology Journal. 2020;24(Suppl 1):S39. https://doi.org/10.5213/inj.2040156.078
31. Barclay W, Shinohara ML. Inflammasome activation in multiple sclerosis and experimental autoimmune encephalomyelitis (EAE). Brain Pathology. 2017;27(2):213-9. https://doi.org/10.1111/bpa.12477
32. Nazari M, Kordi MR, Minasian V, Quchan AH. Ameliorating effect of 6-week swimming exercise on mice with experimental autoimmune encephalomyelitis (EAE) by reducing fetuin-A and increasing AMPK & NAD⁺ levels in liver tissue. Iranian Journal of Basic Medical Sciences. 2022;25(8):1016. https://doi.org/10.22038/IJBMS.2022.65117.14335
33. Zimmermann J, Emrich M, Krauthausen M, Saxe S, Nitsch L, Heneka MT, Campbell IL, Müller M. IL-17A promotes granulocyte infiltration, myelin loss, microglia activation, and behavioral deficits during cuprizone-induced demyelination. Molecular Neurobiology. 2018;55(2):946-57. https://doi.org/10.1007/s12035-016-0368-3
34. Lubrich C, Giesler P, Kipp M. Motor behavioral deficits in the cuprizone model: validity of the rotarod test paradigm. International Journal of Molecular Sciences. 2022;23(19):11342. https://doi.org/10.3390/ijms231911342
35. Ghotbeddin Z, Basir Z, Jamshidian J, Delfi F. Modulation of behavioral responses and CA1 neuronal death by nitric oxide in the neonatal rat’s hypoxia model. Brain and Behavior. 2020;10(11):e01841. https://doi.org/10.1002/brb3.1841
36. Ghotbeddin Z, Khazaeel K, Tabandeh MR, Aliheydari M, Yaghoubi H. Effects of omega-3 fatty acid supplementation during chronic maternal hypoxia on behavioral disorders in male rat offspring: The role of Trk family and oxidative stress. Metabolic Brain Disease. 2022;37(6):1959-67. https://doi.org/10.1007/s11011-022-01012-6
37. McQualter JL, Bernard CC. Multiple sclerosis: a battle between destruction and repair. Journal of Neurochemistry. 2007;100(2):295-306. https://doi.org/10.1111/j.1471-4159.2006.04232.x
38. Omotoso GO, Gbadamosi IT, Afolabi TT, Abdulwahab AB, Akinlolu AA. Ameliorative effects of Moringa on cuprizone-induced memory decline in rat model of multiple sclerosis. Anatomy & Cell Biology. 2018;51(2):119-27. https://doi.org/10.5115/acb.2018.51.2.119
39. Mandolesi G, Bullitta S, Fresegna D, De Vito F, Rizzo FR, Musella A, Guadalupi L, Vanni V, Bassi MS, Buttari F, Viscomi MT. Voluntary running wheel attenuates motor deterioration and brain damage in cuprizone-induced demyelination. Neurobiology of Disease. 2019;129:102-17. https://doi.org/10.1016/j.nbd.2019.05.010
40. Tomas-Roig J, Torrente M, Cabré M, Vilella E, Colomina MT. Long lasting behavioural effects on cuprizone fed mice after neurotoxicant withdrawal. Behavioural Brain Research. 2019;363:38-44. https://doi.org/10.1016/j.bbr.2019.01.036
41. Han SR, Kang YH, Jeon H, Lee S, Park SJ, Song DY, Min SS, Yoo SM, Lee MS, Lee SH. Differential expression of miRNAs and behavioral change in the cuprizone-induced demyelination mouse model. International Journal of Molecular Sciences. 2020;21(2):646. https://doi.org/10.3390/ijms21020646
42. Naghibzadeh M, Ranjbar R, Tabandeh MR, Habibi A. Effects of two training programs on transcriptional levels of neurotrophins and glial cells population in hippocampus of experimental multiple sclerosis. International Journal of Sports Medicine. 2018;39(08):604-12. https://doi.org/10.1055/a-0608-4635
43. Fietsam AC, Darling WG, Sosnoff JJ, Workman CD, Kamholz J, Rudroff T. Cerebellar contributions to motor impairments in people with multiple sclerosis. The Cerebellum. 2022;21(6):1052-60. https://doi.org/10.1007/s12311-021-01336-6
44. Parmar K, Fonov VS, Naegelin Y, Amann M, Wuerfel J, Collins DL, Gaetano L, Magon S, Sprenger T, Kappos L, Granziera C. Regional cerebellar volume loss predicts future disability in multiple sclerosis patients. The Cerebellum. 2022;21(4):632-46. https://doi.org/10.1007/s12311-021-01312-0
45. D’Ambrosio A, Pagani E, Riccitelli GC, Colombo B, Rodegher M, Falini A, Comi G, Filippi M, Rocca MA. Cerebellar contribution to motor and cognitive performance in multiple sclerosis: an MRI sub-regional volumetric analysis. Multiple Sclerosis Journal. 2017;23(9):1194-203. https://doi.org/10.1177/1352458516674567
46. Wilkins A. Cerebellar dysfunction in multiple sclerosis. Frontiers in Neurology. 2017;8:312. https://doi.org/10.3389/fneur.2017.00312
47. Liu Y, Fan H, Li X, Liu J, Qu X, Wu X, Liu M, Liu Z, Yao R. Trpv4 regulates Nlrp3 inflammasome via SIRT1/PGC-1α pathway in a cuprizone-induced mouse model of demyelination. Experimental Neurology. 2021;337:113593. https://doi.org/10.1016/j.expneurol.2020.113593
48. Zhang YJ, Li J, Huang W, Mo GY, Wang LH, Zhuo Y, Zhou ZY. Effect of electroacupuncture combined with treadmill exercise on body weight and expression of PGC-1α, Irisin and AMPK in skeletal muscle of diet-induced obesity rats. Zhen ci yan jiu= Acupuncture Research. 2019;44(7):476-80. https://doi.org/10.13702/j.1000-0607.180460
49. Morissette MP, Susser SE, Stammers AN, Moffatt TL, Wigle JT, Wigle TJ, et al. Exercise-induced increases in the expression and activity of cardiac sarcoplasmic reticulum calcium ATPase 2 is attenuated in AMPKα2 kinase-dead mice. Canadian Journal of Physiology and Pharmacology. 2019;97(8):786-95. https://doi.org/10.1139/cjpp-2018-0737
50. Wadley GD, Lee-Young RS, Canny BJ, Wasuntarawat C, Chen ZP, Hargreaves M, Kemp BE, McConell GK. Effect of exercise intensity and hypoxia on skeletal muscle AMPK signaling and substrate metabolism in humans. American Journal of Physiology-Endocrinology and Metabolism. 2006;290(4):E694-702. https://doi.org/10.1152/ajpendo.00464.2005
51. Manjula R, Anuja K, Alcain FJ. SIRT1 and SIRT2 activity control in neurodegenerative diseases. Frontiers in Pharmacology. 2021;11:585821. https://doi.org/10.3389/fphar.2020.585821
52. Ruderman NB, Julia Xu X, Nelson L, Cacicedo JM, Saha AK, Lan F, Ido Y. AMPK and SIRT1: a long-standing partnership?. American Journal of Physiology-Endocrinology and Metabolism. 2010;298(4):E751-60. https://doi.org/10.1152/ajpendo.00745.2009
53. Wang J, Zhao C, Kong P, Bian G, Sun Z, Sun Y, Guo L, Li B. Methylene blue alleviates experimental autoimmune encephalomyelitis by modulating AMPK/SIRT1 signaling pathway and Th17/Treg immune response. Journal of Neuroimmunology. 2016;299:45-52. https://doi.org/10.1016/j.jneuroim.2016.08.014
54. Govindarajan V, de Rivero Vaccari JP, Keane RW. Role of inflammasomes in multiple sclerosis and their potential as therapeutic targets. Journal of Neuroinflammation. 2020;17(1):260. https://doi.org/10.1186/s12974-020-01944-9
55. Farahmand F, Nourshahi M, Soleimani M, Rajabi H, Power KE. The effect of 6 weeks of high intensity interval training on myelin biomarkers and demyelination in experimental autoimmune encephalomyelitis model. Journal of Neuroimmunology. 2020;346:577306. https://doi.org/10.1016/j.jneuroim.2020.577306
56. Marosi K, Bori Z, Hart N, Sárga L, Koltai E, Radák Z, Nyakas C. Long-term exercise treatment reduces oxidative stress in the hippocampus of aging rats. Neuroscience. 2012;226:21-8. https://doi.org/10.1016/j.neuroscience.2012.09.001
57. Salamon A, Torok R, Sumegi E, Boros F, Pesei ZG, Molnar MF, et al. The effect of physical stimuli on the expression level of key elements in mitochondrial biogenesis. Neuroscience Letters. 2019;698:13-8. https://doi.org/10.1016/j.neulet.2019.01.003
58. Shen J, Li Y, Qu C, Xu L, Sun H, Zhang J. The enriched environment ameliorates chronic unpredictable mild stress-induced depressive-like behaviors and cognitive impairment by activating the SIRT1/miR-134 signaling pathway in hippocampus. Journal of Affective Disorders. 2019;248:81-90. https://doi.org/10.1016/j.jad.2019.01.031
59. Bernardes D, Oliveira-Lima OC, da Silva TV, Faraco CC, Leite HR, Juliano MA, dos Santos DM, Bethea JR, Brambilla R, Orian JM, Arantes RM. Differential brain and spinal cord cytokine and BDNF levels in experimental autoimmune encephalomyelitis are modulated by prior and regular exercise. Journal of neuroimmunology. 2013;264(1-2):24-34. https://doi.org/10.1016/j.jneuroim.2013.08.014