
تعداد نشریات | 21 |
تعداد شمارهها | 301 |
تعداد مقالات | 3,173 |
تعداد مشاهده مقاله | 3,211,847 |
تعداد دریافت فایل اصل مقاله | 2,380,305 |
سازوکار اثرات فیتوبیوتیکی مثبت گلبرگ زعفران بر متابولیسم انرژی و نیتروژن و سلامت آنتیاکسیدانی برونتنی شکمبه گوسفند | ||
پژوهش های زعفران | ||
دوره 12، شماره 1 - شماره پیاپی 22، تیر 1403، صفحه 65-79 اصل مقاله (1.37 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22077/jsr.2024.7958.1237 | ||
نویسندگان | ||
مجتبی اکبری شوشود1؛ جواد رضائی* 2؛ مهدی عیاری نوش آبادی3؛ یوسف روزبهان4 | ||
1دانشجوی دکتری تغذیه دام، گروه علوم دامی، دانشکده کشاورزی، دانشگاه تربیت مدرس، تهران، ایران | ||
2دانشیار تغذیه دام، گروه علوم دامی، دانشکده کشاورزی، دانشگاه تربیت مدرس، تهران، ایران | ||
3استادیار گیاهان دارویی، گروه علوم باغبانی، دانشکده کشاورزی، دانشگاه تربیت مدرس، تهران، ایران | ||
4استاد تغذیه نشخوارکنندگان، گروه علوم دامی، دانشکده کشاورزی، دانشگاه تربیت مدرس، تهران، ایران | ||
چکیده | ||
گلبرگ زعفران دارای آثار مثبت بر تخمیر شکمبه و دام میباشد، اما اثرات آن بر میکروارگانیسمها، آنزیمها و سلامت آنتیاکسیدانی شکمبه بررسی نشده است. لذا، این تحقیق سازوکار اثر مثبت گلبرگ زعفران بر متابولیسم انرژی و نیتروژن و سلامت آنتیاکسیدانی برونتنی شکمبه گوسفند را بررسی کرد. جیرههای آزمایشی حاوی صفر (شاهد)، 1، 2 و 3 درصد گلبرگ زعفران تنظیم گردید و آزمون تولید گاز 24 و 72 ساعته انجام شد. سپس، پروتوزوآها، باکتریهای سلولولیتیک و پروتئولیتیک، آنزیمهای هیدرولیتیک، ظرفیت آنتیاکسیدانی، تولید متان، توده میکروبی، هضمپذیری، سوبسترای تجزیهشده حقیقی، آمونیاک و اسیدهای چرب فرار تعیین گردیدند. دادهها در قالب طرح کاملاً تصادفی با 3 تکرار و 2 سری (6 مشاهده\تیمار) تجزیه شد. گنجاندن سطوح مختلف گلبرگ زعفران در جیره موجب افزایش باکتریهای سلولولیتیک، آنزیمهای فیبرولیتیک، آمیلاز، توده میکروبی و کاهش پروتوزوآها شد. ظرفیت آنتیاکسیدانی با مصرف گلبرگ زعفران بهبود یافت (05/0>P)، اما جمعیت باکتریهای پروتئولیتیک و پروتئاز روند کاهشی غیرمعنیداری داشت. درنهایت، تغییرات سازوکاری مذکور موجب افزایش تجزیه و قابلیتهضم جیره، کل اسیدهای چرب فرار، کاهش متان، آمونیاک و نسبت استات به پروپیونات نسبت به شاهد شد (05/0>P). حداکثر بهبود صفات در سطوح 2 و 3 درصد افزودنی مشاهده گردید. در مجموع، اثر مثبت گلبرگ زعفران بر متابولیسم و سلامت آنتیاکسیدانی شکمبهای بهدلیل محتوای آنتیاکسیدانی و تغییرات مفید در جمعیتهای باکتریایی و آنزیمهای هیدرولیتیک است. بنابراین، سطوح اندک (تا 3 درصد جیره) آن میتواند بهعنوان افزودنی فیتوبیوتیکی طبیعی برای بهبود شرایط تخمیر شکمبه و کاهش اتلاف منابع انرژی و نیتروژن مصرف شود، هرچند بهتر است نتایج در شرایط درونتنی تأیید شود. | ||
کلیدواژهها | ||
افزودنی؛ تخمیر برونتنی؛ ترکیبات زیستفعال؛ جمعیت میکروبی؛ فعالیت آنزیمی | ||
مراجع | ||
Abdillah, A. E., Sarah, D., Ardian, A. A., Anas, M. A., Aprianto, M. A., Hanim, C., Kurniawati, A., Muhlisin, & Yusiati, L. M. (2024). Effect of nutmeg essential oil (Myristica fragrans Houtt.) on methane production, rumen fermentation, and nutrient digestibility in vitro. Scientific Reports, 14(1), 3554. https://doi.org/10.1038/s41598-024-52532-3. Alipour, F., Vakili, A. R., Danesh Mesgaran, M., & Ebrahimi, H. (2021). Effect of hydroalcoholic extract of saffron petal on total bacteria, methanogens and protozoa population in in vitro. The 9th National Congress and the 1st International Congress of Animal Sciences of Iran. (In Persian with English Summary). Alipour, F., Vakili, A., Danesh Mesgaran, M., & Ebrahimi, H. (2019). The effect of adding ethanolic saffron petal extract and vitamin E on growth performance, blood metabolites and antioxidant status in Baluchi male lambs. Asian-Australasian Journal of Animal Sciences, 32(11), 1695. https://doi.org/10.5713%2Fajas.18.0615. Bąkowski, M., & Kiczorowska, B. (2021). Probiotic microorganisms and herbs in ruminant nutrition as natural modulators of health and production efficiency–A review. Annals of Animal Science, 21(1), 3-28. https://doi.org/10.2478/aoas-2020-0081. Benzie, I. F., & Strain, J. J. (1996). The ferric reducing ability of plasma (FRAP) as a measure of antioxidant power: the FRAP assay. Analytical Biochemistry, 239(1), 70-76. https://doi.org/10.1006/abio.1996.0292. Buragohain, R. (2017). Phytobiotics as health promoters for productivity: Potentialities and limitations in livestock. Livestock Research International, 5(2), 23-27. Chen, N., Xiang, J., Liu, Y., Li, H., & Yang, B. (2021). Preparation and characterization of antioxidant flavonoid-enriched extract from saffron by-product: A combination of ultrasound-assisted extraction and macroporous resin purification. Chemical Papers, 75, 2749-2763. https://doi.org/10.1007/s11696-021-01522-0. Dehority, B. A. (2003). Rumen Microbiology. Nottingham University Press Nottingham, UK. Duval, S. M., McEwan, N. R., Graham, R. C., Wallace, R. J., & Newbold, C. J. (2007). Effect of a blend of essential oil compounds on the colonization of starch‐rich substrates by bacteria in the rumen. Journal of Applied Microbiology, 103(6), 2132-2141. https://doi.org/10.1111/j.1365-2672.2007.03455. Ebrahimi, S., Nasri, M. F., & Farhangfar, S. H. (2024). Dietary supplementation of saffron petal elicits positive effects on performance, antioxidant status, and health of dairy goats. Small Ruminant Research, 231, 107179. https://doi.org/10.1016/j.smallrumres.2023.107179. Fievez, V., Babayemi, O. J., & Demeyer, D. (2005). Estimation of direct and indirect gas production in syringes: A tool to estimate short chain fatty acid production that requires minimal laboratory facilities. Animal Feed Science and Technology, 123, 197-210. https://doi.org/10.1016/j.anifeedsci.2005.05.001. Galyean, M. L. (2010). Laboratory Procedures in Animal Nutrition Research, Revised 2010. Department of Animal and Food Sciences. Texas Tech University, Lubbock, TX, USA. Hosseini, A., Razavi, B. M., & Hosseinzadeh, H. (2018). Saffron (Crocus sativus) petal as a new pharmacological target: A review. Iranian Journal of Basic Medical Sciences, 21(11), 1091-1099. https://doi.org/10.22038%2FIJBMS.2018.31243.7529. Hosseini-Vashan, S. J., Mohammadian, H., & Afzali, N. (2017). Investigation the effect of Hydroethanolic saffron petals’ extracts on performance, carcass characteristics and blood biochemical parameters of Japanese quail. Journal of Saffron Research (semi-annual), 5(2), 181-189. (In Persian with English Summary) http://dx.doi.org/ 10.22077/JSR.2018.58.1000. Ilias, G., Ioannis, P., Vasiliki, I. C., Stella, D., Konstantina, V., Paraskevi, C., & Praffula, K. (2023). History of Feed Additives. In Sustainable Use of Feed Additives in Livestock: Novel Ways for Animal Production (pp. 79-98). Cham: Springer International Publishing. Kardan Moghaddam, V., Fathi Nasri, M. H., Valizadeh, R., & Farhangfar, H. (2015). Chemical composition, rumen degradability and fermentation parameters of saffron forage using in situ and gas production techniques. Journal of Saffron Research, 2(2), 129-140. (In Persian with English Summary) https://doi.org/10.22077/jsr.2014.317 Kardan Moghaddam, V., Fathi NasriBehdani, M. A., Kardan Moghaddam H., & Fathi Nasari, M. H. (2016). Effect of Pleurotus florida fungi on chemical composition, ruminal degradability and gas production of saffron foliage residues. Journal of Saffron Research, 3(2), 175-187. (In Persian with English Summary) https://doi.org/10.22077/jsr.2015.293 Ku-Vera, J. C., Jiménez-Ocampo, R., Valencia-Salazar, S. S., Montoya-Flores, M. D., Molina-Botero, I. C., Arango, J., Gómez-Bravo, C. A., Aguilar-Pérez, C. F., & Solorio-Sánchez, F. J. (2020). Role of secondary plant metabolites on enteric methane mitigation in ruminants. Frontiers in Veterinary Science, 7, 584. https://doi.org/10.3389%2Ffvets.2020.00584. Lachguer, K., El Merzougui, S., Boudadi, I., Laktib, A., Ben El Caid, M., Ramdan, B., Boubaker, H., & Serghini, M. A. (2023). Major phytochemical compounds, in vitro antioxidant, antibacterial, and antifungal activities of six aqueous and organic extracts of Crocus sativus L. flower waste. Waste and Biomass Valorization, 14(5), 1571-1587. https://doi.org/10.1007/s12649-022-01964-x. Li, M., Hassan, F., Peng, L., Xie, H., Liang, X., Huang, J., Huang, F., Guo, Y., & Yang, C. (2022). Mulberry flavonoids modulate rumen bacteria to alter fermentation kinetics in water buffalo. PeerJ Publishing, 10, e14309. https://doi.org/10.7717/peerj.14309. McDonald, P., Edwards, R. A., Greenhalgh, J. F., Morgan, C. A., Sinclair, L. A., & Wilkinson, R. G. (2022). Animal Nutrition, 8th ed. Prentice Hall, Essex, UK. Menke, K. H., Raab, L., Salewski, A., Steingass, H., Fritz, D., & Schneider, W. (1979). The estimation of the digestibility and metabolizable energy content of ruminant feedingstuffs from the gas production when they are incubated with rumen liquor in vitro. The Journal of Agricultural Science, 93(1), 217-222. https://doi.org/10.1017/S0021859600086305. Newbold, C. J., De La Fuente, G., Belanche, A., Ramos-Morales, E., & McEwan, N. R. (2015). The role of ciliate protozoa in the rumen. Frontiers in Microbiology, 6, 1313. https://doi.org/10.3389/fmicb.2015.01313. Ognik, K., Cholewińska, E., Sembratowicz, I., Grela, E., & Czech, A. (2016). The potential of using plant antioxidants to stimulate antioxidant mechanisms in poultry. World's Poultry Science Journal, 72(2), 291-298. https://doi.org/10.1017/S0043933915002779. Olagaray, K. E., & Bradford, B. J. (2019). Plant flavonoids to improve productivity of ruminants–A review. Animal Feed Science and Technology, 251, 21-36. https://doi.org/10.1016/j.anifeedsci.2019.02.004. Patra, A. K., & Saxena, J. (2010). A new perspective on the use of plant secondary metabolites to inhibit methanogenesis in the rumen. Phytochemistry, 71(11-12), 1198-1222. https://doi.org/10.1016/j.phytochem.2010.05.010. Radzikowski, D. (2017). Effect of probiotics, prebiotics and symbiotics on the productivity and health of dairy cows and calves. World Scientific News, 78, 193-198. Rahmy, H. A. F., El Bana, H. M., El-Bordeny, N. E., & Mahmoud, A. E. (2019). Effect of Caraway, fennel and Melissa addition on in vitro rumen fermentation and gas production. Pakistan Journal of Biological Sciences, 22(2), 67-72. https://doi.org/10.3923/pjbs.2019.67.72. Ramos-Morales, E., Braganca, R., & Newbold, C. J. (2015). In vitro effect of a liquorice extract rich in flavonoids on protozoa activity and rumen fermentation. XVI Jornadas sobre Producción Animal, 19 y 20 de mayo de 2015, Zaragoza, España. Tomo, 2015, 143-145. Seradj, A. R., Abecia, L., Crespo, J., Villalba, D., Fondevila, M., & Balcells, J. (2014). The effect of Bioflavex® and its pure flavonoid components on in vitro fermentation parameters and methane production in rumen fluid from steers given high concentrate diets. Animal Feed Science and Technology, 197, 85-91. https://doi.org/10.1016/j.anifeedsci.2014.08.013. Sheida, E. V., Ryazanov, V. A., & Duskaev, G. K. (2023). Metabolic parameters and methanogenesis in the rumen liquid in in vitro testing experimental diets supplemented with phytobiotics and CoCl2. Agricultural Biology, 58(4), 713-725. http://doi.org/10.15389/agrobiology.2023.4.713eng. Vercoe, P. E., Makkar, H. P. S., & Schlink, A. C. (2010). In Vitro Screening of Plant Resources for Extra-Nutritional Attributes in Ruminants: Nuclear and Related Methodologies. Springer, Netherlands. Yu, S., Zhao, Y., Li, L., Zhao, H., Liu, M., & Jiang, L. (2024). Flavonoids from citrus peel display potential synergistic effects on inhibiting rumen methanogenesis and ammoniagenesis: a microbiome perspective. Environmental Science and Pollution Research, 31, 21208–21223. https://doi.org/10.1007/s11356-024-32509-5. Zhou, L., Cai, Y., Yang, L., Zou, Z., Zhu, J., & Zhang, Y. (2022). Comparative metabolomics analysis of stigmas and petals in Chinese saffron (Crocus sativus) by widely targeted metabolomics. Plants, 11(18), 2427. https://doi.org/10.3390/plants11182427. Zhou, Y. Y., Mao, H. L., Jiang, F., Wang, J. K., Liu, J. X., & McSweeney, C. S. (2011). Inhibition of rumen methanogenesis by tea saponins with reference to fermentation pattern and microbial communities in Hu sheep. Animal Feed Science and Technology, 166, 93-100. https://doi.org/10.1016/j.anifeedsci.2011.04.007. | ||
آمار تعداد مشاهده مقاله: 289 تعداد دریافت فایل اصل مقاله: 188 |