
تعداد نشریات | 21 |
تعداد شمارهها | 314 |
تعداد مقالات | 3,321 |
تعداد مشاهده مقاله | 3,546,613 |
تعداد دریافت فایل اصل مقاله | 2,591,250 |
Removal Efficiency of Sugarcane Bagasse Biochar for Uptake of Sodium Ion from Aqueous Solution: Nonlinear isotherm and kinetics modelling | ||
مجله پژوهش های خشکسالی و تغییراقلیم | ||
دوره 2، شماره 4 - شماره پیاپی 8، اسفند 1403، صفحه 31-54 اصل مقاله (824.75 K) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22077/jdcr.2024.7510.1067 | ||
نویسندگان | ||
جلیل کرمان نژاد* 1؛ حسن ترابی پوده1؛ الهام قنبری عدیوی2؛ بابک شاهی نژاد1 | ||
1گروه مهندسی آب، دانشگاه لرستان، خرم آباد، ایران. | ||
2گروه مهندسی آب، دانشکده کشاورزی، دانشگاه شهرکرد، شهرکرد، ایران. | ||
چکیده | ||
This research examines sodium removability from agricultural wastewater using sugarcane bagasse sorbents, which helps ease the pressure on water resources during droughts. The biochar was produced in an electric furnace, activated with KOH, microwave-heated, and magnetized using a 2:1 ratio of Iron (III) chloride hexahydrate to Iron (II) sulfate heptahydrate. Three KOH-to-biochar ratios, microwave powers, and activation times were used, while sodium concentrations in wastewater samples were adjusted to 2, 4, and 8 g/l with sodium nitrate. Results indicated that higher initial sodium concentrations improved removability. Activated nano biochar achieved 74.4% more sodium removal than non-nano biochar on average. Magnetization reduced sodium removal by an average of 18.8%, with reductions ranging from 10.9% to 31.6%. The activated nano biochar's removability was 1.6 times greater than that of the non-activated version, and magnetization decreased efficiency by 20%. The highest sodium removal occurred at a 3:1 activator-to-biochar ratio during the 200 and 400 W treatments, achieving maximum removability of 61.4% for activated nano biochar and 58.3% for the magnetized version. | ||
کلیدواژهها | ||
Activation؛ KOH (Potassium hydroxide)؛ Microwave؛ Magnetization | ||
مراجع | ||
Ayers, R. S., & Westcot, D. W. (1985). Water quality for agriculture (Vol. 29, p. 174). Rome: Food and agriculture organization of the United Nations. https://www.academia. edu/download/94774091/book_rs_ayers_and_wetscot.pdf Cheng, S., Zhang, S., Zhang, L., Xia, H., Peng, J., & Wang, S. (2017). MicrowaveAssisted Preparation of Activated Carbon from Eupatorium Adenophorum: Effects of Preparation Parameters. High Temperature Materials and Processes, 36(8), 805-814. https://doi.org/ 10.1515/htmp-2015-0285 Chowdhury, T., Miah, J., & Banik, B. K. (2022). Low-Cost Salinity Treatment for Drinking Purpose Using Indigenous Materials. In Advances in Civil Engineering: Select Proceedings of ICACE 2020 (pp. 37-44). Springer Singapore. https://doi. org/10.1007/978-981-16-5547-0_4 Crini, G., & Badot, P. M. (2008). Application of chitosan, a natural aminopolysaccharide, for dye removal from aqueous solutions by adsorption processes using batch studies: A review of recent literature. Progress in polymer science, 33(4), 399-447. https://doi. org/10.1016/j.progpolymsci.2007.11.001 Crini, G., Lichtfouse, E., Wilson, L. D., & Morin-Crini, N. (2019). Conventional and non-conventional adsorbents for wastewater treatment. Environmental Chemistry Letters, 17, 195-213. https://doi.org/10.1007/s10311-018-0786-8 Deniz, F., & Karaman, S. (2011). Removal of an azo-metal complex textile dye from colored aqueous solutions using an agroresidue. Microchemical Journal, 99(2), 296-302. https://doi.org/10.1016/j. microc.2011.05.021 Dudley, L., Ben-Gal, A., & Shani, U. (2006, November). Influence of plant, soil and water properties on the leaching fraction. In Agronomy Abstracts P (Vol. 25711). https://scisoc.confex.com/crops/ 2006am/techprogram/P25711.HTM Ehtaiwesh, A. F. (2022). The effect of salinity on nutrient availability and uptake in crop plants. Scientific Journal of Applied Sciences of Sabratha University, 55-73. https:// doi. org/10.47891/sabujas.v0i0.55-73. Foo, K.Y., & Hameed, B.H. (2010). Insights into the modeling of adsorption isotherm systems. Chemical Engineering Journal, 156(1), 2-10. DOI:10.1016/j.cej.2009.09.013 Hettiarachchi, E., Perera, R., Chandani Perera, A.D. L., & Kottegoda, N. (2016). Activated coconut coir for removal of sodium and magnesium ions from saline water. Desalination and Water Treatment, 57(47), 22341-22352. DOI:10.1080/19443994.2015.1129649 Iwuozor, K. O., Emenike, E. C., Ighalo, J. O., Omoarukhe, F. O., Omuku, P. E., & Adeniyi, A. G. (2022). A review on the thermochemical conversion of sugarcane bagasse into biochar. Cleaner Materials, 6, 100162. https://doi.org/10.1016/j.clema.2022.100162 Jamil, T.S., Ibrahim, H.S., Abd El-Maksoud, I.H., & El-Wakeel, S.T. (2010). Application of zeolite prepared from Egyptian kaolin for removal of heavy metals: I. Optimum conditions. Desalination, 258(1-3), 34-40. doi:10.1016/j.desal.2010.03.05 Kasraee, M., Dehghani, M. H., Mahvi, A. H., Nabizadeh, R., Arjmand, M. M., Salari, M.,... & Tyagi, I. (2022). Adsorptive removal of humic substances using cationic surfactantmodified nano pumice from water environment: Optimization, isotherm, kinetic and thermodynamic studies. Chemosphere, 307, 135983. https://doi.org/10.1016/j.chemosphere.2022.135983 Kathiresan, M., & Sivaraj, P. (2016). Preparation and characterization of biodegradable sugarcane bagasse nano reinforcement for polymer composites using ball milling operation. International Journal of Polymer Analysis and Characterization, 21(5), 428-435. doi:10.1080/1023666X.2016.1168061 Kharel, H. L., Sharma, R. K., & Kandel, T. P. (2016). Water hardness removal using wheat straw and rice husk ash properties. Nepal Journal of Science and Technology, 17(1), 11-16. https://doi.org/10.3126/NJST.V17I1.25057 Khayyun, T. S., & Mseer, A. H. (2019). Comparison of the experimental results with the Langmuir and Freundlich models for copper removal on limestone adsorbent. Applied Water Science, 9(8), 170. https://doi.org/10.1007/s13201-019-1061-2 Kietlińska, A., & Renman, G. (2005). An evaluation of reactive filter media for treating landfill leachate. Chemosphere, 61(7), 933-940. https://doi.org/10.1016/j. chemosphere.2005.03.036 Li, D., Sun, L., Yang, L., Liu, J., Shi, L., Zhuo, L., Ye, T. and Wang, S., (2024). Adsorption behavior and mechanism of modified Pinus massoniana pollen microcarriers for extremely efficient and rapid adsorption of cationic methylene blue dye. Journal of Hazardous Materials, 465, p.133308. https://doi. org/10.1016/j.jhazmat.2023.133308 Li, Y., Gong, D., Zhou, Y., Zhang, C., Zhang, C., Sheng, Y., & Peng, S. (2022). Respiratory Adsorption of Organic Pollutants in Wastewater by Superhydrophobic Phenolic Xerogels. Polymers, 14(8), 1596. https://doi. org/10.3390/polym14081596 Limousin, G., Gaudet, J. P., Charlet, L., Szenknect, S., Barthes, V., & Krimissa, M. (2007). Sorption isotherms: A review on physical bases, modeling and measurement. Applied geochemistry, 22(2), 249-275. https://doi.org/10.1016/j.apgeochem.2006.09.010 López-Luna, J., Ramírez-Montes, L. E., Martinez-Vargas, S., Martínez, A. I., MijangosRicardez, O. F., González-Chávez, M. D. C. A., ... & Vázquez-Hipólito, V. (2019). Linear and nonlinear kinetic and isotherm adsorption models for arsenic removal by manganese ferrite nanoparticles. SN Applied Sciences, 1, 1-19. https://doi.org/10.1007/s42452-019-0977-3 Medyńska-Juraszek, A., Álvarez, M. L., Białowiec, A., & Jerzykiewicz, M. (2021). Characterization and sodium cations sorption capacity of chemically modified biochars produced from agricultural and forestry wastes. Materials, 14(16), 4714. https://doi. org/10.3390/ma14164714 Mehrabinia, P., & Ghanbari-Adivi, E. (2022). Examining nitrate surface absorption method from polluted water using activated carbon of agricultural wastes. Modeling Earth Systems and Environment, 8(2), 1553-1561. DOI:10.1007/s40808-021-01221-5 Mehrabinia, P., Ghanbari-Adivi, E., Fattahi, R., Samimi, H. A., & Kermanezhad, J. (2021). Nitrate removal from agricultural effluent using sugarcane bagasse active nanosorbent. Journal of Applied Water Engineering and Research, 10(3), 238-249. doi:10.1080/23249676.2021.1982030 Mehrabinia, P., Ghanbari-Adivi, E., Samimi, H. A., & Fattahi, R. (2022). Phosphate removal from agricultural drainage using biochar. Water Conservation Science and Engineering, 7(4), 405-417. DOI: 10.1007/s41101-022-00150-3 Mousavi, A., Asadi, H., Esfandbod, M. (2010). Ion Exchange efficiency of nitrate removal from water 1- equilibrium sorption isotherms for nitrate on resin purolite a-400. Water and Soil Science, 20(4), 185. https://watersoil. tabrizu.ac.ir/article_1387.html. [In Persian] Mubarak, A.A., Ilyas, R.A., Nordin, A.H., Ngadi, N. and Alkbir, M.F.M., (2024). Recent developments in sugarcane bagasse fibrebased adsorbent and their potential industrial applications: A review. International Journal of Biological Macromolecules, p.134165. https:// doi.org/10.1016/j.ijbiomac.2024.134165 Musie, W., Gonfa, G., & Prabhu, S. V. (2023). Adsorption studies of sodium ions from aqueous solution with natural and sulfuric acid-treated bean seed husk. Water, Air, & Soil Pollution, 234(3), 170. https://doi. org/10.1016/j.agwat.2008.04.010 Nadavala, S. K., Swayampakula, K., Boddu, V. M., & Abburi, K. (2009). Biosorption of phenol and o-chlorophenol from aqueous solutions on to chitosan–calcium alginate blended beads. Journal of Hazardous Materials, 162(1), 482-489. https://doi. org/10.1016/j.jhazmat.2008.05.070 Naik, B. S., Panda, R. K., Nayak, S. C., & Sharma, S. D. (2008). Hydraulics and salinity profile of pitcher irrigation in saline water condition. Agricultural water management, 95(10), 1129-1134. https://doi. org/10.1016/j.agwat.2008.04.010 Nasri, N.S., Zain, H.M., Sidik, H.U., Abdulrahman, A., & Rashid, N.M. (2017). Adsorption Isotherm breakthrough time of acidic and alkaline gases on treated porous synthesized KOH-FeCl 3. 6H 2 O sustainable agro-based material. Chemical Engineering Transactions, 61, 1243-1248. Doi:10.3303/CET1761205 Nie, C., Yang, X., Niazi, N. K., Xu, X., Wen, Y., Rinklebe, J., ... & Wang, H. (2018). Impact of sugarcane bagasse-derived biochar on heavy metal availability and microbial activity: a field study. Chemosphere, 200, 274-282. https://doi. org/10.1016/j.chemosphere.2018.02.134 Oliveira, E.A., Montanher, S.F., Andrade, A.D., Nobrega, J.A., & Rollemberg, M.C. (2005). Equilibrium studies for the sorption of chromium and nickel from aqueous solutions using raw rice bran. Process Biochemistry, 40(11), 3485-3490. DOI:10.1016/j. procbio.2005.02.026 Pearce, G. K. (2008). UF/MF pre-treatment to RO in seawater and wastewater reuse applications: a comparison of energy costs. Desalination, 222(1-3), 66-73. https:// doi.org/10.1016/j.desal.2007.05.029 Rahal, Z., Khechekhouche, A., Barkat, A., Sergeevna, S. A., & Hamza, C. (2023). Adsorption of Sodium in an Aqueous Solution in Activated Date Pits. Indonesian Journal of Science and Technology, 8(3), 387-412. DOI:10.17509/ijost.v8i3.60066 Rajabi, M., Keihankhadiv, S., Suhas, Tyagi, I., Karri, R. R., Chaudhary, M., ... & Singh, P. (2023). Comparison and interpretation of isotherm models for the adsorption of dyes, proteins, antibiotics, pesticides and heavy metal ions on different nanomaterials and non-nano materials—a comprehensive review. Journal of Nanostructure in Chemistry, 13(1), 43-65. https://doi.org/10.1007/s40097-022-00509-x Ramachandran, P., Vairamuthu, R., & Ponnusamy, S. (2011). Adsorption isotherms, kinetics, thermodynamics and desorption studies of reactive Orange 16 on activated carbon derived from Ananas comosus (L.) carbon. Journal of Engineering and Applied Sciences, 6(11), 15-26. Revellame, E.D., Fortela, D.L., Sharp, W., Hernandez, R. and Zappi, M.E.( 2020). Adsorption kinetic modeling using pseudofirst order and pseudo-second order rate laws: A review. Cleaner Engineering and Technology, 1, p.100032. https://doi. org/10.1016/j.clet.2020.100032 Sarici-Ozdemir, C. (2012). Adsorption and desorption kinetics behaviour of methylene blue onto activated carbon. Physicochemical problems of mineral processing, 48(2), 441-454. Senturk, H. B., Ozdes, D., Gundogdu, A., Duran, C., & Soylak, M. (2009). Removal of phenol from aqueous solutions by adsorption onto organ modified Tirebolu bentonite: Equilibrium, kinetic and thermodynamic study. Journal of hazardous materials, 172(1), 353-362. https://doi.org/10.1016/j. jhazmat.2009.07.019 Shang, H., Ouyang, T., Yang, F., & Kou, Y. (2003). A biomass-supported Na2CO3 sorbent for flue gas desulfurization. Environmental Science & Technology, 37(11), 2596-2599. DOI: 10.1021/ es021026o Singh, P., Garg, S., Satpute, S., & Singh, A. (2017). Use of rice husk ash to lower the sodium adsorption ratio of saline water. International Journal of Current Microbiology and Applied Sciences, 6(6), 448-458. https://doi.org/10.20546/ijcmas.2017.606.052 Wu, D., Sui, Y., He, S., Wang, X., Li, C., & Kong, H. (2008). Removal of trivalent chromium from aqueous solution by zeolite synthesized from coal fly ash. Journal of Hazardous Materials, 155(3), 415-423. https://doi.org/10.1016/j.jhazmat.2007.11.082 Wu, J., Huang, D., Liu, X., Meng, J., Tang, C., & Xu, J. (2018). Remediation of As (III) and Cd (II) co-contamination and its mechanism in aqueous systems by a novel calcium-based magnetic biochar. Journal of hazardous materials, 348, 10-19. https://doi. org/10.1016/j.jhazmat.2018.01.011 Wu, J., Zhang, L., Xia, Y., Peng, J., Wang, S., Zheng, Z., & Zhang, S. (2015). Effect of microwave heating conditions on the preparation of high surface area activated carbon from waste bamboo. High Temperature Materials and Processes, 34(7), 667-674. https://doi.org/10.1515/htmp-2014-0096 Yang, F., Zhang, S., Sun, Y., Cheng, K., Li, J., & Tsang, D.C. (2018). Fabrication and characterization of hydropHilic corn stalk biochar-supported nanoscale zero-valent iron composites for efficient metal removal. Bioresource Technology, 265, 490-497. doi:10.1016/j.biortech.2018.06.029 Zhan, T., Zhang, Y., Yang, Q., Deng, H., Xu, J., & Hou, W. (2016). Ultrathin layered double hydroxide nanosheets prepared from a waterinionic liquid surfactant-free microemulsion for pHospHate removal from aquatic systems. Chemical Engineering Journal, 302, 459-465. doi:10.1016/j.cej.2016.05.073 | ||
آمار تعداد مشاهده مقاله: 181 تعداد دریافت فایل اصل مقاله: 79 |