
تعداد نشریات | 21 |
تعداد شمارهها | 314 |
تعداد مقالات | 3,321 |
تعداد مشاهده مقاله | 3,546,635 |
تعداد دریافت فایل اصل مقاله | 2,591,253 |
Measuring Discharge in a Shallow River in an Arid Area solely using an Unmanned Aerial Vehicle | ||
مجله پژوهش های خشکسالی و تغییراقلیم | ||
دوره 2، شماره 2 - شماره پیاپی 6، شهریور 1403، صفحه 93-104 اصل مقاله (1.07 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22077/jdcr.2024.7376.1061 | ||
نویسندگان | ||
فرهاد اکبرپور* 1؛ محمدعادل خراسانی نژاد2؛ شروین شهریاری3؛ مصطفی رحمان شاهی4 | ||
1مهندس حفاظت از رودخانه، شرکت آب منطقهای تهران، تهران، ایران. | ||
2دانشجوی دکتری، دانشگاه آزاد اسلامی، واحد علوم و تحقیقات، تهران، ایران. | ||
3دانش آموخته دکتری، موسسه مهندسی هیدرولیک و مدیریت منابع آب، دانشگاه صنعتی گراتس، اتریش. | ||
4پژوهشگر پسادکتری، دانشگاه پلیتکنیک هنگ کنگ، هنگ کنگ. | ||
چکیده | ||
Unmanned Aerial Vehicles (UAVs) have recently been applied for river flow measurement. In this paper UAV images were first used to acquire surface velocity fields of a small river in an arid area in Iran based on the principles of Large Scale Particle Image Velocimetry (LSPIV). Subsequently, Large Eddy PIV method was applied on the instantaneous velocity data to obtain turbulent kinetic energy dissipation rates along a selected cross section of the experimented river. In addition, a UAV image was captured and processed to gain the bed material grain size distribution and consequently the Manning roughness coefficient. The resulted gradation curve matched the graph given by sieve analysis with an accuracy of nearly 7.8 percent. Moreover, an equation combining the acquired surface velocity, dissipation rates and Manning coefficient was used to estimate the river bathymetry. Although, the evaluated bathymetry does not fit the surveyed cross section very well, the average predicted depth matches the measured mean depth with a high precision. Finally, the river flow rate calculated using the information solely resulted from UAV images fitted the measured discharge with an accuracy of 5 percent proving the described framework to be a very effective method for primary river flow evaluation especially when supplementary depth measurement is not feasible. | ||
کلیدواژهها | ||
Flow Rate؛ Large Scale Particle Image Velocimetry؛ UAVs؛ Arid areas؛ Large Eddy PIV | ||
مراجع | ||
Akbarpour, F., Fathi-Moghadam, M., & Schneider, J. (2020). Application of LSPIV to measure supercritical flow in steep channels with low relative submergence. Flow Measurement and Instrumentation, 72, 101718. https://doi.org/10.1016/j.flowmeasinst.2020.101718. Albayrak, I., & Lemmin, U. (2007). Large scale PIV-measurements on the water surface of turbulent open channel flow. 18ème Congrès Français de Mécanique, August 27-31., Grenoble, France. https://hal.science/hal-03358595. Benetazzo, A., Gamba, M., & Barbariol, F. (2017). Unseeded large scale PIV measurements corrected for the capillary-gravity wave dynamics. Rendiconti Lincei, 28(2), 393-404. https://doi.org/10.1007/s12210-017-0606-2 Bieri, M., Jenzer, J., Kantoush, S.A., & Boillat, J. L. (2009). Large scale particle image velocimetry applications for complex free surface flows in river and dam engineering. 33rd IAHR Congress Proc. British Columbia, Vancouver, 604-611. Buscombe, D., Rubin, D.M., & Warrick, J.A. (2010). A universal approximation of grain size from images of noncohesive sediment. Journal of Geophysical Research: Earth Surface, 115(F2). https:// doi.org/10.1029/2009JF001477. Butler, J.B., Lane, S.N., & Chandler, J.H. (2001). Automated extraction of grainsize data from gravel surfaces using digital image processing. Journal of hydraulic research, 39(5), 519-529. https://doi.org/10.1080/00221686.2001.9628276 Detert, M., Johnson, E.D., & Weitbrecht, V. (2017). Proof‐of‐concept for low‐cost and non‐contact synoptic airborne river flow measurements. International Journal of Remote Sensing, 38(8-10), 2780-2807. https://doi.org/10.1080/01431161.2017.1294782 Eltner, A., Sardemann, H., & Grundmann, J. (2020). Flow velocity and discharge measurement in rivers using terrestrial and un-manned-aerial-vehicle imagery. Hydrology and Earth System Sciences, 24(3), 1429-1445. https://doi.org/10.5194/hess-24-1429-2020 Fox, J.F & Patrick, A. (2008). Large-scale eddies measured with large scale particle image velocimetry. Flow Measurement and Instrumentation (19), 283–291. https://doi.org/ 10.1016/j.flowmeasinst.2008.01.003. Fujita, I., Muste, M., & Kruger, A. (1998). Large-scale particle image velocimetry for flow analysis in hydraulic engineering applications, Journal of Hydraulic Research, 36(3), 397-414. https://doi. org/10.1080/00221689809498626. Graham, D.J., Rice, S.P., & Reid, I. (2005). A transferable method for the automated grain sizing of river gravels. Water Resources Research, 41(7). https://doi. org/10.1029/2004WR003868. Gunawan, B., Sun, X., Sterling, M., Shiono, K., Tsubaki, R., Rameshwaran, P., Knight, D.W., Chandler, J.H., Tang, X., & Fujita, I. (2012). The application of LSPIV to a small irregular river for inbank and overbank flows. Flow Measurement and Instrumentation, 24, 1-12. https://doi. org/10.1016/j.flowmeasinst.2012.02.001. Huang, W.C., Young, C.C., & Liu, W.C. (2018). Application of an automated discharge imaging system and LSPIV during typhoon events in Taiwan. Water, 10(3), 280. DOI:10.20944/preprints201802.0089.v1 Jin, T., & Liao, Q. (2019). Application of large scale PIV in river surface turbulence measurements and water depth estimation. Flow Measurement and Instrumentation, 67, 142-152. https://doi.org/10.1016/j. flowmeasinst.2019.03.001. Johnson, E.D., & Cowen, E.A. (2016). Remote monitoring of volumetric discharge employing bathymetry determined from surface turbulence metrics. Water Resources Research, 52(3), 2178-2193. https://doi. org/10.1002/2015WR017736 Johnson, E.D., & Cowen, E.A. (2017). Remote determination of the velocity index and mean stream wise velocity profles. Water Resources Research, 53(9), 7521-7535. https://doi. org/10.1002/2017WR020504 Kantoush, S.A., Schleiss, A.J., Sumi, T., & Murasaki, M. (2011). LSPIV implementation for environmental flow in various laboratory and feld cases. Journal of Hydro-environment Research, (5), 263-276. https://doi.org/10.1016/j.jher.2011.07.002 Kinzel, P.J., & Legleiter, C.J. (2019). sUASbased remote sensing of river discharge using thermal particle image velocimetry and bathymetric lidar. Remote Sensing, 11(19), 2317. https://doi.org/10.3390/rs11192317 Lang, N., Irniger, A., Rozniak, A., Hunziker, R., Wegner, J.D., & Schindler, K. (2021). GRAINet: Mapping grain size distributions in river beds from UAV images with convolutional neural networks. Hydrology and Earth System Sciences Discussions, 25(5), 2567-2597. https://doi. org/10.5194/hess-25-2567-2021 Lee, J. S., & Julien, P. Y. (2006). Electromagnetic wave surface velocimetry, J. Hydraul. Eng., 132(2), 146-153. DOI: 10.1061/ (ASCE)0733-9429(2006)132:2(146) McKenna, S.P., & McGillis, W.R. (2004). The role of free-surface turbulence and surfactants in air–water gas transfer. International Journal of Heat and Mass Transfer, 47(3), 539-553. https://doi.org/10.1016/j. ijheatmasstransfer.2003.06.001 Novak, G., Rak, G., Prešeren, T., & Bajcar, T. (2017). Non-intrusive measurements of shallow water discharge. Flow Measurement and Instrumentation (56), 14–17. Orlins, J.J., & Gulliver, J.S. (2000). Measurements of free surface turbulence. Fourth International Symposium on Gas Transfer at Water Surfaces, June 5-8., Miami Beach, Florida, the USA, 1-7. Polatel, C. (2006). Signature of the roughness and the flow regime on the free surface. Ph.D. thesis, Univ. of Iowa, Iowa City. Sheng, J., Meng, H., & Fox, R.O. (2000). A large eddy PIV method for turbulence dissipation rate estimation. Chemical engineering science, 55(20), 4423-4434. https:// doi.org/10.1016/S0009-2509(00)00039-7 Spada, D., Molinari, P., Bertoldi, W., Vitti, A., & Zolezzi, G. (2018). Multi-temporal image analysis for fluvial morphological characterization with application to Albanian Rivers. ISPRS International Journal of Geo-Information, 7(8), 314. https://doi. org/10.3390/ijgi7080314 Sutarto, T.E. (2015). Application of large scale particle image velocimetry (LSPIV) to identify flow pattern in a channel. Procedia Engineering (125), 213 – 219. https:// doi.org/10.1016/j.proeng.2015.11.031 Vázquez-Tarrío, D., Borgniet, L., Liébault, F., & Recking, A. (2017). Using UAS optical imagery and SfM photogrammetry to characterize the surface grain size of gravel bars in a braided river (Vénéon River, French Alps). Geomorphology, 285, 94-105. https://doi.org/10.1016/j. geomorph.2017.01.039 Thielicke, W., & Stamhuis, E.J. (2014). PIVlab- Time-Resolved Rigital Particle Image Velocimetry Tool for MATLAB. Weitbrecht, V., Kühn, G., & Jirka, G.H. (2002). Large scale PIV-measurements at the surface of shallow water flows, Flow. Meas. Instrum. (13), 237–245. https://doi. org/10.1016/S0955-5986(02)00059-6 Welber, M., Le Coz, J., Laronne, J.B., Zolezzi, G., Zamler, D., Dramais, G., Hauet, A., & Salvaro, M. (2016). Field assessment of noncontact stream gauging using portable surface velocity radars (SVR).Water Resour. Res, (52), 1108–1126. https://doi. org/10.1002/2015WR017906 | ||
آمار تعداد مشاهده مقاله: 216 تعداد دریافت فایل اصل مقاله: 131 |