1. Clemens RA, Jones JM, Kern M, Lee SY, Mayhew EJ, Slavin JL, Zivanovic S. Functionality of sugars in foods and health. Comprehensive Reviews in Food Science and Food Safety. 2016;15(3):433-70. https://doi.org/10.1111/1541-4337.12194
2. Clemens RA Jones JM, Kern M, Lee SY, Mayhew EJ, Slavin JL, et al. Functionality of sugars in foods and health. Comprehensive Reviews in Food Science and Food Safety. 2016;15(3):433-70. https://doi.org/10.1111/1541-4337.12194.
3. Guh DP, Zhang W, Bansback N, Amarsi Z, Birmingham CL, Anis AH. The incidence of co-morbidities related to obesity and overweight: a systematic review and meta-analysis. BMC Public Health. 2009;9(1):88. https://doi.org/10.1186/1471-2458-9-88.
4. Smith K, Smith M. Obesity statistics. Primary care: Clinics in Office Practice. 2016;43(1):121-135. https://doi.org/10.1016/j.pop.2015.10.001.
5. Prentice AM, Black AE, Coward WA, Cole TJ. Energy expenditure in overweight and obese adults in affluent societies: an analysis of 319 doubly-labelled water measurements. European Journal of Clinical Nutrition1996;50(2):93-7.
6. Fonseca DC, Sala P, de Azevedo Muner Ferreira B, Reis J, Torrinhas RS, Bendavid I, et al. Body weight control and energy expenditure. Clinical Nutrition Experimental. 2018;20:55-9. https://doi.org/10.1016/j.yclnex.2018.04.001k.
7. Piaggi P, Thearle MS, Bogardus C, Krakoff J. Lower energy expenditure predicts long-term increases in weight and fat mass. The Journal of Clinical Endocrinology and Metabolism. 2013;98(4):E703-7. https://doi.org/10.1210/jc.2012-3529.
8. Piaggi P, Vinales KL, Basolo A, Santini F, Krakoff J. Energy expenditure in the etiology of human obesity: spendthrift and thrifty metabolic phenotypes and energy-sensing mechanisms. Journal of Endocrinological Investigation. 2018;41(1):83-9. https://doi.org/10.1007/s40618-017-0732-9.
9. Dixon AE, Peters U. The effect of obesity on lung function. Expert Review of Respiratory Medicine. 2018;12(9):755-67. https://doi.org/10.1080/17476348.2018.1506331.
10. Kress JP, Pohlman AS, Alverdy J, Hall JB. The impact of morbid obesity on oxygen cost of breathing (Vo 2RESP) at rest. American Journal of Respiratory and Critical Care Medicine. 1999;160(3):883-6. https://doi.org/10.1164/ajrccm.160.3.9902058.
11. Balmain BN, Halverson QM, Tomlinson AR, Edwards T, Ganio MS, Babb TG. Obesity blunts the ventilatory response to exercise in men and women. Annals of the American Thoracic Society. 2021;18(7):1167-74. https://doi.org/10.1513/AnnalsATS.202006-746OC.
12. Shariq OA, McKenzie TJ. Obesity-related hypertension: a review of pathophysiology, management, and the role of metabolic surgery. Gland Surgery. 2020;9(1):80-93. doi: https://doi.org/10.21037/gs.2019.12.03.
13. Torres SJ, Turner AI, Jayasinghe SU, Reynolds J, Nowson CA. The effect of overweight/obesity on cardiovascular responses to acute psychological stress in men aged 50-70 years. Obes Facts. 2014;7(6):339-50. https://doi.org/10.1159/000369854.
14. Abassi W, Ouerghi N, Nikolaidis PT, Hill L, Racil G, Knechtle B, et al. Interval training with different intensities in overweight/obese adolescent females. International Journal of Sports Medicine. 2022;43(05):434-43. http://dio.org/10.1055/a-1648-4653.
15. Ouerghi N, Fradj MKB, Duclos M, Bouassida A, Feki M, Weiss K, et al. Effects of high-intensity interval training on selected adipokines and cardiometabolic risk markers in normal-weight and overweight/obese young males—A pre-post test trial. Biology. 2022;11(6):853. https://doi.org/10.3390/biology11060853.
16. Rodrigues-Santana L, Hugo L, Pérez-Gómez J, Hernández-Mocholí MA, Carlos-Vivas J, Saldaña-Cortés P, et al. The effects of whole-body muscle stimulation on body composition and strength parameters: A PRISMA systematic review and meta-analysis. Medicine. 2023;102(8):e32668. http://dio.org/10.1097/MD.0000000000032668.
17. Reljic D, Herrmann HJ, Neurath MF, Zopf Y. Iron beats electricity: Resistance training but not whole-body electromyostimulation improves cardiometabolic health in obese metabolic syndrome patients during caloric restriction—A randomized-controlled study. Nutrients. 2021;13(5):1640. https://doi.org/10.3390/nu13051640.
18. Willert S, Weissenfels A, Kohl M, Von Stengel S, Fröhlich M, Kleinöder H, et al. Effects of whole-body electromyostimulation on the energy-restriction-induced reduction of muscle mass during intended weight loss. Frontiers in Physiology. 2019;10:1012. https://doi.org/10.3389/fphys.2019.01012.
19. Woessner MN, Tacey A, Levinger-Limor A, Parker AG, Levinger P, Levinger I. The evolution of technology and physical inactivity: the good, the bad, and the way forward. Frontiers in Public Health. 2021;9:655491. https://doi.org/10.3389/fpubh.2021.655491.
20. Kemmler W, Kohl M, Freiberger E, Sieber C, von Stengel S. Effect of whole-body electromyostimulation and/or protein supplementation on obesity and cardiometabolic risk in older men with sarcopenic obesity: the randomized controlled FranSO trial. BMC Geriatrics. 2018;18(1):70. https://doi.org/10.1186/s12877-018-0759-6.
21. Teschler M, Heimer M, Schmitz B, Kemmler W, Mooren FC. Four weeks of electromyostimulation improves muscle function and strength in sarcopenic patients: a three‐arm parallel randomized trial. Journal of Cachexia, Sarcopenia and Muscle. 2021;12(4):843-54. https://doi.org/10.1002/jcsm.12717.
22. Amaro-Gahete FJ, De-La-O A, Sanchez-Delgado G, Robles-Gonzalez L, Jurado-Fasoli L, Ruiz JR, et al. Whole-body electromyostimulation improves performance-related parameters in runners. Frontiers in Physiology. 2018;9:1576. dio: https://doi.org/10.3389/fphys.2018.01576.
23. Kemmler W, Teschler M, Weißenfels A, Bebenek M, Fröhlich M, Kohl M, et al. Effects of whole‐body electromyostimulation versus high‐intensity resistance exercise on body composition and strength: a randomized controlled study. Evidence‐Based Complementary and Alternative Medicine. 2016;2016(1):9236809. https://doi.org/10.1155/2016/9236809.
24. Wittmann K, Sieber C, von Stengel S, Kohl M, Freiberger E, Jakob F, et al. Impact of whole body electromyostimulation on cardiometabolic risk factors in older women with sarcopenic obesity: the randomized controlled FORMOsA-sarcopenic obesity study. Clinical Interventions in Aging. 2016:1697-706. https://doi.org/10.2147/CIA.S116430.
25. Enge D. Effects of Obesity and Type 2 Diabetes on Cardiac Structure and Arterial Stiffness: University of Colorado at Denver; 2022. http://dio.org/10.1097/HJH.0000000000003534.
26. Rodrigues JAL, Ferrari GD, Trapé ÁA, de Moraes VN, Gonçalves TCP, Tavares SS, et al. β2 adrenergic interaction and cardiac autonomic function: effects of aerobic training in overweight/obese individuals. European Journal of Applied Physiology. 2020;120(3):613-24. https://doi.org/10.1007/s00421-020-04301-z.
27. Moholdt T, Garnaes KK, Morkved S, Salvesen KA, Ingul CB. Effect of exercise training on cardiorespiratory fitness, cardiac function, and endothelial function in pregnant people with overweight/obesity: secondary results from a randomised, controlled trial. European Journal of Preventive Cardiology. 2024;31(Supplement_1). https://doi.org/10.1093/eurjpc/zwae175.382.
28. Ghaith A, Chacaroun S, Borowik A, Chatel L, Doutreleau S, Wuyam B, et al. Hypoxic high-intensity interval training in individuals with overweight and obesity. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology. 2022;323(5):R700-r9. https://doi.org/10.1152/ajpregu.00049.2022.
29. Bo B, Guo A, Kaila SJ, Hao Z, Zhang H, Wei J, et al. Elucidating the primary mechanisms of high-intensity interval training for improved cardiac fitness in obesity. Frontiers in Physiology. 2023;14:1170324. https://doi.org/10.3389/fphys.2023.1170324.
30. Salhi A, Ouerghi N, Zouhal H, Baaziz M, Salhi A, Ben Salah FZ, et al. The effect of whole-body electromyostimulation program on physical performance and selected cardiometabolic markers in obese young females. Medicina (Kaunas). 2024;60(2). dio: https://doi.org/10.3390/medicina60020230.
31. Sara JD, Rajai N, Breuer L, Bjerke J, Olson TP, Nagai T, et al. Physical training augmented with whole body electronic muscle stimulation is superior to conventional training alone in healthy subjects, a pilot randomized controlled trial. Circulation. 2022;146(Suppl_1):A11957-A. https://www.jacc.org/doi/full/10.1016/S0735-1097%2823%2902597-4.
32. Maunder E, Plews DJ, Kilding AE. Contextualising maximal fat oxidation during exercise: determinants and normative values. Frontiers in Physiology. 2018;9:599. https://doi.org/10.3389/fphys.2018.00599.
33. Achten J, Jeukendrup A. Maximal fat oxidation during exercise in trained men. International Journal of Sports Medicine. 2003;24(08):603-8. http://dio.org/10.1055/s-2003-43265.
34. Cheneviere X, Malatesta D, Peters EM, Borrani F. A mathematical model to describe fat oxidation kinetics during graded exercise. Medicine & Science in Sports & Exercise. 2009;41(8):1615-25. http://dio.org/10.1249/MSS.0b013e31819e2f91.
35. Kemmler W, Von Stengel S, Schwarz J, Mayhew JL. Effect of whole-body electromyostimulation on energy expenditure during exercise. The Journal of Strength & Conditioning Research. 2012;26(1):240-5. http://dio.org/10.1519/JSC.0b013e31821a3a11.
36. Filipovic A, Kleinöder H, Dörmann U, Mester J. Electromyostimulation—a systematic review of the influence of training regimens and stimulation parameters on effectiveness in electromyostimulation training of selected strength parameters. The Journal of Strength & Conditioning Research. 2011;25(11):3218-38. http://dio.org/10.1519/JSC.0b013e318212e3ce.
37. Price M, Bottoms L, Hill M, Eston R. Maximal fat oxidation during incremental upper and lower body exercise in healthy young males. International Journal of Environmental Research and Public Health. 2022;19(22):15311. https://doi.org/10.3390/ijerph192215311.
38. Zinner C, Matzka M, Krumscheid S, Holmberg H-C, Sperlich B. Cardiorespiratory, metabolic and perceived responses to electrical stimulation of upper‐body muscles while performing arm cycling. Journal of Human Kinetics. 2021;77:117. https://doi.org/10.2478/hukin-2021-0016.
39. Crandall R, Seigler N, Rodriguez-Miguelez P, McKie K, Forseen C, Harris R. A single maximal exercise test improves lung function in patients with cystic fibrosis: 465. Pediatric Pulmonology. 2015;50:367. https://doi.org/10.1016/j.jcf.2017.05.011.
40. Derakhshan Nejad M, Nikbakht M, Ghanbarzadeh M, Ranjbar R. Effect of Concurrent Training Order With Electromyostimulation on Physical Performance in Young Elderly Women. Archives of Rehabilitation. 2021;21(4):508-25. http://dx.doi.org/10.32598/RJ.21.4.3147.1.
41. Chlif M, Chaouachi A, Ahmaidi S. Effect of aerobic exercise training on ventilatory efficiency and respiratory drive in obese subjects. Respir Care. 2017;62(7):936-46. https://doi.org/10.4187/respcare.04923.
42. Chlif M, Chaouachi A, Ahmaidi S. Effect of aerobic exercise training on ventilatory efficiency and respiratory drive in obese subjects. Respiratory Care. 2017;62(7):936-46. https://doi.org/10.4187/respcare.04923..
43. Miyamoto T, Kamada H, Tamaki A, Moritani T. Low-intensity electrical muscle stimulation induces significant increases in muscle strength and cardiorespiratory fitness. European Journal of Sport Science. 2016;16(8):1104-10. https://doi.org/10.1080/17461391.2016.1151944.
44. Watanabe K, Taniguchi Y, Moritani T. Metabolic and cardiovascular responses during voluntary pedaling exercise with electrical muscle stimulation. European Journal of Applied Physiology. 2014;114(9):1801-7. https://doi.org/10.1007/s00421-014-2906-x.
45. Biss S, Teschler M, Heimer M, Thum T, Bär C, Mooren FC, et al. A single session of EMS training induces long-lasting changes in circulating muscle but not cardiovascular miRNA levels: a randomized crossover study. Journal of Applied Physiology. 2023;134(4):799-809. https://doi.org/10.1152/japplphysiol.00557.2022.