
                
  University of Birjand  
 

 

  

Water Harvesting Research Vol. 7, No. 1, Spring & Summer 2024, p. 125-139 

 

ORIGINAL ARTICLE 

Investigating the Optimization-Simulation Problem of Groundwater 

Remediation Under Various Scenarios 
 

Mohammad Javad Zeynali*&a, Mohammad Nazeri Tahroudib, Omolbani 

Mohammadrezapourc 

 
aAssistant Professor, Department of Civil Engineering, University of Torbat-Heydarieh (UTH), Iran 
bAssistant Professor, Department of Water Engineering, Lorestan University, Khorramabad, Iran 
cAssociate Professor, Department of Water Engineering, Gorgan University of Agricultural Sciences and Natural Resources 

 
*Corresponding Author E-mail address: mj.zeynali@torbath.ac.ir 

Received: 18 July 2024/ Revised: 19 August 2024/ Accepted: 26 August 2024 

 

Abstract 

The efficiency of groundwater remediation by the pump-and-treat (PAT) method is affected by 

several components. The most important of these components is the pumping wells' location. In this 

research, hybrid optimization-simulation models were developed to find the appropriate groundwater 

remediation strategy using the PAT method. The GA-FEM and NSGA-II-FEM models were used to 

solve two optimization problems for a real aquifer (Ghaen aquifer). These optimization problems 

were investigated from one objective problem and two objective problems in three scenarios. In 

solving the single-objective optimization problems, the objective was to determine the optimal 

location of three, five, and seven pumping wells with a rate of 600 m3/day to minimize the mean of 

carcinogenic human health risk. The results indicated that the GA-FEM model has a good efficiency 

with 356.2302×10-6, 356.2253×10-6, and 356.2226×10-6 for three scenarios, respectively. The 

results indicated that increasing the number of pumping wells between scenarios one and two, 

0.0013% and scenarios one and three 0.0021% improves the amount of mean carcinogenic human 

health risk. In the two-objective problems, the second objective function was defined as minimizing 

the drawdown of the groundwater head. The results of the two-objective problems in three scenarios 

indicated that the NSGA-II algorithm had a good performance and the NSGA-II algorithm provided 

a well-distributed set of solutions along the Pareto-optimal front. Also, the results indicated that when 

there are 5 pumping wells, the minimum mean of carcinogenic human health risk is 3.56226 and by 

adding two more pumping wells, this amount reaches 3.56225, while the rate of groundwater 

drawdown increases by 20 meters. Therefore, increasing the number of pumping wells from one limit 

not only does not have a significant effect on reducing pollution but also causes an increased 

groundwater drawdown. 

Keywords: Contaminant concentration, Drawdown of groundwater head, Finite element method, 

Genetic algorithms, Health risk assessment. 

 

1. Introduction 

The main sources of groundwater 

contamination can be from natural or human-

made sources. Natural resources can include 

seawater intrusion, decomposition of natural 

minerals in the earth's crust, and landslides 

(Eldho at al., 2018). In recent decades, 

groundwater quality has been severely affected 

due to improper use and management of 

groundwater resources. The human-made 

sources are plenty ranging from domestic 

sources like leakages from septic tanks and 

sewers, improper disposal of industrial waste, 

widespread use of chemicals in agriculture 

such as fertilizers and pesticides and many 

other human activities (Freeze and Cherry. 

1979). As mentioned, other sources of 

pollution include improper disposal of waste. 

When landfills are not well insulated, waste 

leachate that contains hazardous materials 

such as heavy metals can easily percolate into 
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groundwater and contaminate it (Eldho et al., 

2018). 

Groundwater contamination and reducing 

groundwater quality have made groundwater 

remediation and better management an urgent 

need. Over the past few decades, groundwater 

pollution has become a major problem in many 

parts of the world. In many parts of the world, 

available groundwater is unsuitable for 

drinking and even agriculture. Besides, 

groundwater remediation methods, are very 

expensive. Therefore, in choosing the 

remediation method, an appropriate approach 

should be taken so that the contamination is 

effectively removed and the proper result is 

finally achieved. Therefore, optimization is 

very important in groundwater remediation 

(Eldho et al., 2018). In the discussion of 

groundwater pollution, Darabi and Ghafouri, 

(2007) and Guneshwor et al. (2018) have 

identified sources of pollutants and some other 

researchers have studied various methods of 

groundwater remediation such as in situ 

phytoremediation Kumar et al. (2015) and 

Mategaonkar et al. (2018) or pump and 

treatment method (Wang et al., 2018). 

However, the design of an efficient 

remediation system is done for various 

purposes. Remediation methods generally 

have many influential components. For 

example, the pump and treatment method has 

important components such as the position of 

the pumping well, the rate of pumping, the 

remediation time, and the rate of groundwater 

drawdown during pumping. 

Different methods are used to solve the 

optimization problem of groundwater 

remediation. Some researchers have used 

nonlinear programming methods (Gorelick et 

al., 1984) or meta-heuristic algorithms such as 

AMALGAM (Ouyang et al., 2017), 

probabilistic multi-objective genetic algorithm 

(PMOGA) (Singh et al. 2008), niched Pareto 

genetic algorithm (Erickson et al., 2002). 

One of the most important goals of 

groundwater remediation is to reduce the 

contaminant concentration to the permissible 

level. The carcinogenic human health risk can 

be directly or indirectly related to the 

contaminant concentration (Yang et al., 2013). 

Many researchers have introduced the 

reduction of contaminant concentration and 

pumping cost, or in other words the number of 

pumping wells and pumping rate (Alexander et 

al, 2018) and some others the location of 

pumping wells (Sbai, 2019) and groundwater 

remediation time as the objective function of 

their optimization problem (Mategaonkar et 

al., 2018). Besides, researchers have used 

various methods such as finite difference 

method (He et al., 2017) finite element method 

(Esfahani et al., 2018) and meshfree method 

(Boddula and Eldho, 2017) (Seyedpour et al., 

2019) and MODFOLW software (Joswig et al., 

2017) (Singh et al., 2011) to solve the 

optimization problem of groundwater 

remediation. Younes et al. (2022) present a 

robust upwind MFE scheme is proposed to 

avoid such unphysical oscillations. The new 

scheme is a combination of the upwind 

edge/face centered Finite Volume (FV) 

method with the hybrid formulation of the 

MFE method. The scheme ensures continuity 

of both advective and dispersive fluxes 

between adjacent elements and allows to 

maintain of the time derivative continuously, 

which permits the employment of high-order 

time integration methods via the Method of 

Lines (MOL). 

To our best acknowledge, it can be 

explained that the simultaneous consideration 

of different objectives in groundwater 

remediation is very important. Besides, it is 

essential to use an efficient S/O model that can 

be applied to real-world problems. Therefore, 

the purpose of this study is to provide S/O 

model that can find the best pumping wells 

location for the PAT system. So those different 

objectives such as minimizing the 

carcinogenic human health risk and 

groundwater head drawdown are considered 

simultaneously. Due to the purpose of this 

study, The GA-FEM and NSGA-II-FEM are 

optimization-simulation models. In these 

models, we use the finite element method for 

simulation and GA and NSGA-II for 

optimization. In this study, the decision 

variable is different nodes in the aquifer 

domain. After choosing the nodes by 

population we simulate head and contaminant 

transport. Then we calculate the objective 

function value. This cycle continues until the 

end of the number of Iterations. We present 

GA-FEM and NSGA-II-FEM optimization-

simulation model. Also, the S/O model can 

determine optimal different arrangements of 
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pumping wells at the aquifer domain. So that 

according to the importance of each objective 

in a specific real case study, the decision maker 

can choose one of those arrangements. 

 

2. Materials and Methods 

2.1.  Case study 

In this study, the aquifer located in the 

Ghaen basin is also investigated. Ghaen study 

area with an area of 929.1 km2 is located 

between longitudes 58 53 39    to 59 24 40  east 

and 33 32 07    to 33 51 20    north. The aquifer 

is recharged from the west and south by 8.28 

and 3.61 Mm3/year, respectively. 0.5 Mm3 of 

groundwater is discharged annually from the 

east side of the aquifer. There is a contaminant 

resource with absorptive well. Through this 

absorptive well, various contaminants seepage 

to the ground. Two of these contaminants are 

chloride and nitrate-nitrogen. These pollutants 

have amounts higher than the standard of 

wastewater in Iran. Figure (1) shows the 

position of the contaminant source and 

recharge and discharge zones. Also, there are 

134 pumping wells in the Ghaen aquifer. Due 

to the aquifer grid and distance between nodes 

(200 m), 17 number of pumping wells were 

placed in nearest nodes and their pumping rate 

were added together. Also in Table (1) the 

values of contaminants and their permissible 

limits are given. In order to using hydraulic 

information for aquifer modeling, at first, we 

create thiessen polygon for hydraulic 

conductivity by using ArcGIS software. Five-

days’ time step is chosen for both the 

groundwater flow and the contaminant 

transport model. 
 

 
Fig. 1. Location map of the study area 

 
Table 1. Contaminant values and standard values in Iran 

Contaminant Symbol Unit Value Permissible limit 

Sulfate 4SO −−  mg/lit 452 400 

Chloride Cl −  mg/lit 643.2 600 

Nitrate-Nitrogen 3NO N−  mg/lit 19.6 10 

2.2.  Objective functions 

PAT system costs depend on the residual 

contaminant concentration at the end of the 

remediation period. Two objective functions 

are considered in this case. These objective 

functions are (1) Minimizing the mean of 
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carcinogenic human health risk, (2) 

Minimizing the drawdown of the aquifer head. 

Therefore, the purpose of this study is to 

determine the optimal location of pumping 

wells so that objective functions are 

minimized. We consider three scenarios in one 

and two-objectives problems. In the first to 

third scenario, the number of wells is 3, 5 and 

7 pumping wells, respectively, and the amount 

of pumping from each well is 600 m3/day. 

Also, the remediation time in all scenarios is 

considered 3 years. The objective functions are 

defined mathematically as follows: 

 (1 ) 

( )2

1

NNODE
old new

i i

i

Min F H H
=

= −  (2 ) 

where F1 and F2 are the objective functions 

1 and 4, respectively. 

In the first objective function minimizes the 

mean of carcinogenic human health risk 

where, K is number of monitoring wells and 

ELCKk is carcinogenic human health risk in kth 

nodes. 

 In the second objective function minimizes 

the drawdown of the aquifer head where, 
old

iH and 
new

iH  are aquifer head before and 

after installing pumping wells at ith node, (m), 

respectively. NNODE is the total number of 

nodes in the aquifer domain. In addition, the 

constraint of the PAT optimization model are 

as follows: 
( )

max 1,2,...,
Ex

jq

kc c k K =  (3 ) 

max0 1,2,...,Ex Ex

jq q j J  =
 

(4 ) 

max 1,2,...,kELCK ELCK k K =  (5 ) 

k kELCK SF CDI=   (6 ) 
/ 1000 /

( )

k kCDI CW IR EF ED

AT BW

=   


 (7 ) 

where qmax
Ex is the maximum pumping rate 

from jth pumping well (m3/hr). Ck contaminant 

concentration at kth monitoring well (µg/L). 

Also, Cmax is the maximum contaminant 

concentration (µg/L). ELCKmax is the 

maximum of carcinogenic human health risk. 

SF is a slope factor that is related to 

carcinogenic health risk, (kg day/mg); CDIk is 

the daily intake of given contaminant at 

exposure location k, (mg/kg day); CWk is the 

concentration of exposed contaminant at 

exposure location k, (µg/L); IR is the ingestion 

rate, (L/day); EF is exposure frequency, 

(day/year); ED is exposure duration, year; AT 

is average time, (day); and BW is body weight, 

(Kg) (Yang et al., 2018). 

 

2.3.  Governing equations 

2.3.1. Groundwater flow modeling 

The governing partial differential equations 

describing the steady-state flow in a two-

dimensional inhomogeneous, anisotropic 

confined and unconfined aquifers are given as 

(Wang and Anderson, 1995): 

x y

H H
T T R

x x y y

     
+ =  

      
 (8 ) 

x y

H H
k H k H R

x x y y

     
+ =  

      
 (9 ) 

Moreover, the governing partial differential 

equations describing the Transient flow in a 

two-dimensional inhomogeneous, anisotropic 

confined and unconfined aquifers are given as 

(Wang and Anderson, 1995): 

( )( )

x y

w i i

h h
T T

x x y y

h
S Q x x y y q

t


        + =           


+ − − −



 (10 ) 

( )( )

x y

y w i i

h h
K h K h

x x y y

h
S Q x x y y q

t


        + =           


+ − − −



 (11 ) 

where h(x,y,t) or H(x,y,t) is the piezometric 

head [L], Ti(x,y) is anisotropic transmissivity 

[L2T-1]; Ki(x,y) is anisotropic hydraulic 

conductivity [LT-1]; S(x,y) is storage 

coefficient, Sy(x,y) is specific yield; Qw is 

source or sink function; (-Qw = source and Qw 

= sink) [LT-1];   is Dirac delta function; xi 

and yi are the pumping or recharge well 

location; q(x,y,t) is vertical inflow rate [LT-1]; 

x and y are horizontal space variables [L] and 

t is the time [T]. 

The seepage velocity necessary to the 

solution of the solute-transport model is 

computed using Darcy’s law and can be 

written as: , ,i
i

i

K h
V i x y

x


= − =


 where 

( , )iV x y  is seepage velocity in i-direction [LT-

1]; and   is porosity [-] (Bear, 1988). 

 

1

1

/
K

k

k

Min F ELCK K
=

 
=  
 

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2.3.2. FEM to solve governing equations 

for groundwater flow 

Using Galerkin’s finite element method and 

two-dimensional element for approximation 

Eq (12), the first step is to define a trial 

solution. 

1

ˆ( , , ) ( ) ( , )
NP

L L

L

h x y t h t N x y
=

=
 

(12 ) 

where hL is the unknown head, NL is the 

known basis function at node L, and NP is the 

total number of nodes in the hypothetical 

aquifer domain. A set of simultaneous 

equations is obtained when residuals weighted 

by each of the basis function are forced to be 

zero and integrated over the entire domain   

(Darabi and Ghafouri, 2007). Thus, Eq (12) 

can be written as: 

( , ) 0

x y w

L

h h h
T T Q q S

x x y y t

N x y dxdy


           + − + −               

=

   
(13 ) 

 

( )  ( ) 

ˆ ˆ

ˆ

e ee e
e eL L

x y
e

e
e

L
e

e e

w L L
e e

N Nh h
T T dxdy

x x y y

h
S N dxdy

t

Q N dxdy q N dxdy

          
+    

            
  

+  
   

= −

 

 

   

 (14 ) 

where 

i

je

L

m

n

N

N
N

N

N

 
 
 
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 
  

.  

For an element, Eq (14) can be written in 

matrix form as: 

   
e

e e e eI
I

h
G h P f

t

 
   + =        

(15 ) 

where I = i, j, m, n are four nodes of 

rectangular elements and G, P, f are the 

element matrices known as conductance, 

storage matrices, and recharge vectors, 

respectively. Summation of elemental matrix 

Eq (15) for all the elements gives the global 

matrix as: 

      I
I

h
G h P f

t

 
+ = 

   

(16) 

Applying the implicit finite difference 

scheme for Ih

t




, term in time domain for Eq 

(16) gives. 

     { }t t t
I t t

h h
G h P f

t

+

+

− 
+ = 

   

(17) 

The subscripts t and t + Δt represent the 

groundwater head values at earlier and present 

time steps. By rearranging the terms of Eq 

(17), the general form of the equation can be 

given as (Darabi and Ghafouri, 2007): 

    

  ( )   

( )   

1

1

t t

t

t t t

P t G h

P t G h

t f f





 

+

+

  +  =  
 − −  + 
 
  − +  

 (18 ) 

Where Δt = time step size, {h}t and {h}t+Δt 

are groundwater head vectors at the time t and 

t + Δt, respectively, x is Relaxation factor 

which depends on the type of finite difference 

scheme used. For fully explicit scheme 0 = ; 

Crank–Nicolson scheme 0.5 = ; fully implicit 

scheme 1 = . 

 

2.3.3. Contaminant transport modeling 

The governing differential equation is 

obtained based on the mass balance of any 

particular solute in a control volume of porous 

media. The final unsteady form of the 

equation, including adsorption and other 

chemical reactions, is written as follows 

(Darabi and Ghafouri, 2007): 

x y z

x y z

C C C C
D D D

t x x y y z z

C C C
v v v CHEM

x y z

              = + +                  

  
− − − +

  

 (19 ) 

The seepage velocity required to the solute-

transport model is calculated using Darcy's law 

and is written as: , ,i
i

i

K h
V i x y

x


= − =


; where 

Vi(x,y) is the seepage velocity in i-direction 

[LT-1]; and  = porosity (Wang and Anderson, 

1995). 

In which C is the concentration of 

contamination at any given time and space, D 

the dispersion coefficient, and V is the seepage 

velocity. The first three terms at RHS show the 

dispersion phenomena while the second three 

terms represent the advection of contaminant. 

Also, CHEM consists of the following (Darabi 

and Ghafouri, 2007): 

b s
CHEM

n t

 
= −

  
(20 ) 

Which indicates the superficial forces of 

adsorption and ionization processes, and 

bCHEM C s
n



 

= − + 
   

(21 ) 
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In the above equations ρb is the bulk soil 

density (ML-3), λ is constant decay coefficient 

(T-1), s is the density of absorbed substance on 

soil grains or colloids, and n is the soil 

porosity. Substituting these terms into Eq (21) 

and simplifying them, results in the following 

equation (Bear, 2007): 

b

x y

z x y

b
z

C s

t n t

C C
D D

x x y y

C C C
D v v

z z x y

C
v C s

z n






 
+

 

       = + +           
      − −      

   − − +    

 (22 ) 

Assuming s = kd × C, where kd is a 

distribution coefficient, applying the chain rule 

to the derivative of s and re-ordering the 

resulted relations, Eq (22) may be written as 

follows: 

x y z

x y z

C C C C
R D D D

t x x y y z z

C C C
v v v R C

x y z


          
= + +    

          

  
− − − −

    

(23 ) 

Eq (19) is three dimensional governing 

equation of advection-dispersion of 

contaminants in groundwater resources where 

1 b dk
R

n


= +  is the retardation factor with b  

= media bulk density [ML−3], and Kd = 

sorption coefficient [L3M−1]; C(x,y,t) is solute 

concentration [ML−3]; Dx and Dy are 

components of dispersion coefficient tensor 

[L2T−1]; λ is the reaction rate constant [T−1]. 

For transient flow and transport analysis, 

the following initial conditions are used: 

0( , ,0) ( , ); ( , ,0)

,

h x y h x y C x y f

x y

= =


 (24 ) 

The flow and transport equations should be 

solved with appropriate boundary conditions. 

The boundary conditions can be written as: 

1 1

1

( , , ) ( , , ); ( , , )

,

h x y t h x y t C x y t g

x y

= =


 (25 ) 

1( , , )
h

T q x y t
n


=


 is for confined aquifer, 

2 ( , , )
h

Kh q x y t
x


=


 is for unconfined aquifer: 

2 2,x x y y

C C
D n D n g x y

x y

   
+ =   

      
(26 ) 

where Ω is flow region; 1 2 =    is 

region boundary; 
m




 is normal derivative; 

h0(x,y) is initial head in the flow domain [L]; 

h1(x,y,t) is the known head value at the 

boundary section 1 [L]; f is a given function 

in Ω, 1g   and 2g  are given functions along 

boundary sections 1  and 2 ; and nxny are the 

components of the unit outward normal vector 

to the boundary section 2 . 

 

2.3.4. FEM to solve the governing equation 

for contaminant transport 

The analytical solution of Eq. 17 is usually 

unavailable for aquifers having irregular 

geometries and/or boundary conditions. Hence 

an approximate numerical solution of the 

equation is often sought in most cases. The 

method of finite elements is one of the most 

frequently used methods for this purpose. This 

method is implemented whit a variety of 

element types and number of nodes. The 

elements join together and then, approximate 

solution of the sought unknown, i.e. the 

pollutant concentration (CL), is computed at 

nodal points. For any other given point, the 

concentration value is approximated as 

(Darabi and Ghafouri, 2007): 

1

( , , , ) ( ). ( , , )
NNODE

L L

L

C x y z t C t N x y z
=

= 
 

(27 ) 

where ( , , )LN x y z  is an arbitrary 

approximating function, called shape function, 

of node L. Applying the finite element method 

to Eq. 23 leads to a set of simultaneous 

algebraic equations as: 

     [ ] [ ]
t t t

A C B C f
+

= +
 

(28 ) 

Where: 

1
[ ] [ ] [ ] [ ] [ ]A G U F P

t
= + + +

  
(29 ) 

1
[ ] [ ]B P

t
=
  

(30 ) 

∆t is the length of time interval, the so-

called time-step,{C}t is the vector of known 

concentrations at the beginning of any time 

step and {C}t+∆t is the vector of sought 

unknown concentrations at the end of the time 

step. [G], [U], [F], and [P] are square matrices 

in which the number of rows and columns is 
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equal to the number of nodal points in the 

computational grid. The elements of these 

matrices are computed as follows (Darabi and 

Ghafouri, 2007): 

( , )

e e

i L
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e e
e i L
L i y

e

e e

i L
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N N
D

x x

N N
G D dxdydz

y y
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y y

 
  

 
   
 

  
= + 

   
 
  
 +    
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( , ) .e e e

L i i L

e

P R N N dxdydz= 
 

(32 ) 
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(34 ) 

{ f } is the load vector calculated using the 

following boundary integral: 

 
ˆ ˆ ˆ

x x y y z z L

c c c
f D n D n D n N d

x y z


   
= + +  

   


 

(35

) 

Where ĉ  denotes the given concentration 

values at boundary nodes, ni are directional 

cosines and Γ is the domain boundary 

(Zeynali, 2022). 

 

2.4.  GA and NSGA-II algorithms 

In the genetic algorithm (GA) and its multi-

objective version (Non-Dominated Sorting 

Genetic Algorithm, NSGA-II), there are the 

crossover and mutation phases. In the single-

objective version, population is sorted by the 

value of the objective function, and the 

selection of the best individual is based on the 

objective function value (Akbarpour et al., 

2020). In the NSGA-II algorithm, the rank of 

each solution in the population is based on the 

non-dominated sorting and crowding distance. 

That is, members of the population on the first 

front are better than those on the second front. 

Members on the same front are ranked by 

crowding distance (Felfli et al., 2002). 

 

2.5.  Validation of FEM model 

Before applying FEM model for the 

hypothetical and the real aquifer, the FEM 

model must be validated. For this purpose, our 

FEM model is compared with the analytical 

solution Kulkarni (2015) research (Kulkarni, 

2015). In the Kulkarni’s research, he assumed 

a hypothetical aquifer 3200m×2800m. 

Boundary conditions at the right and left sides 

of the aquifer boundary is considered no flow 

boundaries. Boundary conditions at the bottom 

and top sides of the aquifer boundary is 

considered to have constant value of 100m. 

The location of two pumping wells is (1400m, 

1400m) and (1800m, 1400m) from the origin, 

as shown in Figure 2.  

 

 
Fig. 2. Schematic of aquifer modeled for the validation of FEM model 

 

The observation well is located at a (1000m, 

1000m) from the origin and the water table 

drawdown caused by pumping are observed at 

this well (Zeynali, 2022). 
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3. Results and Discussion 

3.1.  Validation 

Pumping by two wells for 210 days cause 

the groundwater head drawdown, which was 

calculated using the FEM model. Analytical 

solution and FEM model are compared as 

shown in Figure 3. As can be seen from Figure 

3, the drawdown value is computed as 0.4283 

m by finite element method which are 

comparable with the drawdown of 0.4359 m by 

analytical solution. The most difference 

between the modeling results and the 

analytical solution was about 0.0440 m in the 

81th days of the pumping period. 

 

3.2.  The results of the first scenario 

In the first scenario, the optimization 

problem is investigated by considering three 

pumping wells with constant pumping rates 

(600 m3/day). Also, the remediation time is 3 

years. The present problem was investigated as 

one objective and two objectives. 

 

3.2.1.  Results of One-Objective problem 

The optimization problem is finding of the 

three pumping wells in the aquifer domain to 

obtain the optimal values (close to optimal) for 

the first objective function. It should be noted 

that the first step in the pump and treat process 

is to remove the source of contaminants or 

prevent leakage of contamination, and then the 

pumping wells are installed for pumping 

contaminants. 

The genetic algorithm ran five times with 

10 population members and 20 iterations. The 

results of five runs of this algorithm, including 

the best, the worst, and average values of the 

objective function in five runs are given in 

Table (2). As can be seen in this table, the 

genetic algorithm with an average of 

356.2302×10-6 has shown good performance. 

Also, the performance of GA for five runs is 

shown in Figure (4). 

Also, the position of pumping wells and the 

concentration of Sulfate contaminant in the 

aquifer after 3 years of remediation are shown 

in Fig. 5. 

 
Table 2. Statistical characteristics of the GA 

performance 
Algorithm Best Value Worst Value Average values 

GA 
356.2300 

×10-6 

356.2307 

×10-6 

356.2302 

×10-6 
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Fig. 3. Validation of FEM model 
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Fig. 4. The convergance trend of GA algorithm 

 

 
Fig. 5. Sulfate concentration distribution in Aquifer (µg/Lit) and pumping well locations 

 

3.2.2. Results of Two-Objective problem 

In Two-Objective optimization problem, 

we find the best location of wells to find the 

minimum of contaminant concentrations and 

drawdown of the aquifer head. In NSGA-II 

algorithm, like single-objective version, 70% 

of the population could be parents, and the 

mutation rate was set to 90%. NSGA-II is run 

three times. The number of solutions in the 

Pareto-optimal front for run 1 to run 3 are 8, 8 

and 9, respectively. The results of all runs 

shown in Fig. 6. 

As it can be seen in this figure, NSGA-II 

algorithm find the solution with minimum of 

first objective function in run 3. Also, NSGA-

II algorithm find the solution with minimum of 

second objective function in run 2. But, we can 

consider run 1 as the best performance of 

NSGA-II algorithm. Because this run of 

NSGA-II algorithm has a good coverage on 
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solution space. Also, run 1 could to find the 

minimum for two objective functions. 

 

3.3. Results of second scenario 

In second scenario, the optimization 

problem is investigated by considering five 

pumping wells with constant pumping rates 

(600 m3/day). Also, the remediation time is 3 

years. The present problem was investigated as 

one-objective and two-objectives. 

 

3.3.1. Results of One-Objective problem 

The genetic algorithm run five times with 

10 population members and 20 iterations. The 

results of five run of this algorithm, including 

the best, the worst and average values of the 

objective function in five run are given in 

Table (3). As can be seen in this table, the 

genetic algorithm with an average of 

356.2253×10-6 has shown good performance. 

Also, the performance of GA for five run is 

shown in Fig. 7. 

Also, the position of pumping wells and the 

concentration of Nitrate-Nitrogen contaminant 

in the aquifer after 3 years of remediation are 

shown in Fig. 8. 

 
Table 3. Statistical characteristics of the GA 

performance 
Algorithm Best value Worst value Average values 

GA 
356.2253 

×10-6 

356.2268 

×10-6 

356.2261 

×10-6 

 

 
Fig. 6. Pareto fronts in NSGA-II algorithm (Three Wells) 

 

 
Fig. 7. The convergence trend of GA algorithm 
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Fig. 8. Nitrate-Nitrogen concentration distribution (µg/Lit) and pumping well locations 

 

3.3.2. Results of Two-Objective problem 

The results of all three runs for second 

scenario shown in Fig. 9. We can consider run 

2 as the best performance of NSGA-II 

algorithm. Because this run of NSGA-II 

algorithm has a good coverage on solution 

space. Also, run 2 could to find the minimum 

for two objective functions. 

 

3.4. Results of third scenario 

In third scenario, the optimization problem 

is investigated by considering seven pumping 

wells with constant pumping rates (600 

m3/day). Also, the remediation time is 3 years. 

The present problem was investigated as one-

objective and two-objectives. 

 

3.4.1. Results of One-Objective problem 

The genetic algorithm run five times with 

10 population members and 20 iterations. The 

results of five run of this algorithm, including 

the best, the worst and average values of the 

objective function in five run are given in 

Table (4). As can be seen in this table, the 

genetic algorithm with an average of 

356.2226×10-6 has shown good performance. 

Also, the performance of GA for five run is 

shown in Fig. 10. 

Also, the position of pumping wells and the 

concentration of Chloride contaminant in the 

aquifer after 3 years of remediation are shown 

in Fig. 11. 

 
Table 4. Statistical characteristics of the GA 

performance 
Algorithm Best value Worst value Average values 

GA 
356.2226 

×10-6 

356.2247 

×10-6 

356.2236 

×10-6 

 

3.4.2. Results of Two-Objective problem 

In two objective problems for third 

scenario, optimization-simulation model run 

three times. The Pareto front shown in Fig 12. 

It can be seen in this figure that run 2 and 3 are 

the best. Because provide a well-distributed set 

of solutions along the Pareto-optimal front. 

Also, it can be seen that number of solutions in 

this scenario are more than number of 

solutions in other scenarios. 
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Fig. 9. Pareto fronts in NSGA-II algorithm (Five Wells) 

 

 
Fig. 10. The convergance trend of GA algorithm 
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Fig. 11. Chloride concentration distribution in Aquifer (µg/Lit) and pumping well locations 

 

 
Fig. 12. Pareto fronts in NSGA-II algorithm (Seven Wells) 

 

4. Conclusion 

In this study, hybrid optimization-

simulation models, GA-FEM and NSGA-II-

FEM are used to solve a groundwater 

remediation problem by PAT method. The 

optimization problem with these models was 

solved in single-objective and two-objective 

cases in three scenarios. In solving the single-

objective optimization problems, the objective 

was to determine the optimal location of three, 

five and seven pumping wells with a rate of 

600 m3/day to minimize the mean of 

carcinogenic human health risk. The results 

indicated that the GA-FEM model has a good 

efficient with 356.2302×10-6, 356.2253×10-6 

and 356.2226×10-6 for three scenarios, 

respectively. The results indicated with 

increases number of pumping wells amount 

contaminant concentration is significantly 

reduced. But, increasing the number of 

pumping wells can reduce the groundwater 

head and increase the risk of subsidence. So, 

we consider drawdown of the aquifer head as 

second objective function. In the two-objective 
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problems, the drawdown of groundwater head 

was also considered. The optimization 

problem was investigated with tree, five and 

seven pumping wells at a constant pumping 

rate of 600 m3/day. The results indicated that 

among the solutions provided by each model, 

the most efficient solution was able to reduce 

the contaminant concentration in the aquifer to 

the standard pollutant concentrations and, 

conversely, to minimize drawdown of 

groundwater head. In general, among the 

Pareto-optimal solutions, the solution selected 

should establish a balance between the two 

objective functions. 
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