1. Nisbet RM, Polanco J-C, Lttner LM, Götz J. Tau aggregation and its interplay with amyloid-β. Acta Neuropathologica. 2015;129:207-20. https://dx.doi.org/10.1007/s00401-014-1371-2.
2. Goodarzi F, Nikbakht H, Abednatanzi H, Ebrahim K, Ghazaliyan F. Aerobic and resistance training on some oxidative markers and TGF-β in cardiac tissue of elderly rats. Razi Journal of Medical Sciences. 2020; 27(3): 93-100. [In Persian].
3. Kumar A, Sidhu J, Lui F, Tsao JW. Alzheimer disease. StatPearls [internet]: StatPearls Publishing; 2024.
4. Querfurth HW, LaFerla FM. Alzheimer’s disease. New England Journal of Medicine. 2010;362(4):329-44. https://dx.doi.org/10.1056/NEJMra0909142.
5. Abraki SB, Chavoshi-Nezhad S. Mitochondrial defects and oxidative stress in Alzheimer disease. Te Neuroscience Journal of Shefaye Khatam. 2014;2(1):85-94. [In Persian].
6. Abramov E, Dolev I, Fogel H, Ciccotosto GD, Ruff E, Slutsky I. Amyloid-β as a positive endogenous regulator of release probability at hippocampal synapses. Nature Neuroscience. 2009;12(12):1567-76. https://dx.doi.org/10.1038/nn.2433
7. Butterfield DA, Reed T, Newman SF, Sultana R. Roles of amyloid β-peptide-associated oxidative stress and brain protein modifications in the pathogenesis of Alzheimer’s disease and mild cognitive impairment. Free Radical Biology and Medicine. 2007;43(5):658-77. https://dx.doi.org/10.1016/j.freeradbiomed.2007.05.037
8. Dorostkar MM, Zou C, Blazquez-Llorca L, Herms J. Analyzing dendritic spine pathology in Alzheimer’s disease: problems and opportunities. Acta Neuropathologica. 2015;130:1-19. https://dx.doi.org/10.1007/s00401-015-1449-5
9. Sędzikowska A, Szablewski L. Insulin and insulin resistance in Alzheimer’s disease. International Journal of Molecular Sciences. 2021;22(18):9987. https://dx.doi.org/10.3390/ijms22189987.
10. Sathya M, Premkumar P, Karthick C, Moorthi P, Jayachandran KS, Anusuyadevi M. BACE1 in Alzheimer’s disease. Clinica Chimica Acta. 2012;414:171-8. https://dx.doi.org/10.1016/j.cca.2012.08.013.
11. Cai H, Cong W-n, Ji S, Rothman S, Maudsley S, Martin B. Metabolic dysfunction in Alzheimer’s disease and related neurodegenerative disorders. Current Alzheimer Research. 2012;9(1):5-17. https://dx.doi.org/10.2174/156720512799015064.
12. Van Dyck CH. Anti-amyloid-β monoclonal antibodies for Alzheimer’s disease: pitfalls and promise. Biological Psychiatry. 2018;83(4):311-9. https://dx.doi.org/10.1016/j.biopsych.2017.08.010.
13. Moazzami M, Yaghoubi A. Effect of Eight–Weeks of Resistance Training on Serum Levels of Neurofilament Light Chain and Tau Protein in Women with Multiple Sclerosis. Medical Laboratory Journal. 2021;15(4):33-8. [In Persian].
14. Xu L, Li M, Wei A, Yang M, Li C, Liu R, et al. Treadmill exercise promotes E3 ubiquitin ligase to remove amyloid β and P-Tau and improve cognitive ability in APP/PS1 transgenic mice. Journal of Neuroinflammation. 2022;19(1):243. https://dx.doi.org/10.1186/s12974-022-02607-7.
15. Mattson MP, Moehl K, Ghena N, Schmaedick M, Cheng A. “ Intermittent metabolic switching, neuroplasticity and brain health”: Publisher Correction. 2020. https://dx.doi.org/10.1038/s41583-020-0342-y.
16. Mayor E. Neurotrophic effects of intermittent fasting, calorie restriction and exercise: a review and annotated bibliography. Frontiers in Aging. 2023;4:1161814. https://dx.doi.org/10.3389/fragi.2023.1161814.
17. Hu N, Yu J-T, Tan L, Wang Y-L, Sun L, Tan L. Nutrition and the Risk of Alzheimer′ s Disease. BioMed Research International. 2013;2013(1):524820. https://doi.org/10.1155/2013/524820.
18. de Carvalho TS. Calorie restriction or dietary restriction: how far they can protect the brain against neurodegenerative diseases? Neural Regeneration Research. 2022;17(8):1640-4. https://doi.org/10.4103/1673-5374.332126.
19. Müller L, Power Guerra N, Stenzel J, Rühlmann C, Lindner T, Krause BJ, et al. Long-term caloric restriction attenuates β-amyloid neuropathology and is accompanied by autophagy in APPswe/PS1delta9 mice. Nutrients. 2021;13(3):985. https://dx.doi.org/10.3390/nu13030985.
20. Lalo U, Pankratov Y. Astrocytes as Perspective Targets of Exercise-and Caloric Restriction‐Mimetics. Neurochemical Research. 2021;46(10):2746-59. https://dx.doi.org/10.1007/s11064-021-03277-2.
21. Kang EB, Cho JY. Effects of treadmill exercise on brain insulin signaling and β-amyloid in intracerebroventricular streptozotocin induced-memory impairment in rats. Journal of Exercise Nutrition & Biochemistry. 2014;18(1):89. https://dx.doi.org/10.5717/jenb.2014.18.1.89.
22. Liu H-l, Zhao G, Zhang H, Shi L-d. Long-term treadmill exercise inhibits the progression of Alzheimer’s disease-like neuropathology in the hippocampus of APP/PS1 transgenic mice. Behavioural Brain Research. 2013;256:261-72. https://dx.doi.org/10.1016/j.bbr.2013.08.008.
23. Kang E-B, Kwon I-S, Koo J-H, Kim E-J, Kim C-H, Lee J, et al. Treadmill exercise represses neuronal cell death and inflammation during Aβ-induced ER stress by regulating unfolded protein response in aged presenilin 2 mutant mice. Apoptosis. 2013;18:1332-47. https://dx.doi.org/10.1007/s10495-013-0884-9.
24. Yaghoubi A, Saghebjoo M, Fallah Mohammadi Z, Hedayati M, Hajizadeh Moghaddam A. Effects of continuous training intensity on amyloid beta1-42 (Aβ1-42) levels in hippocampus of homocysteine-induced Alzheimer’s Model rats. Journal of Arak University of Medical Sciences. 2016;18(11):83-93. [In Persian].
25. Farahpour MR, Sheikh S, Kafshdooz E, Sonboli A. Accelerative effect of topical Zataria multiflora essential oil against infected wound model by modulating inflammation, angiogenesis, and collagen biosynthesis. Pharmaceutical Biology. 2021;59(1):1-10. https://dx.doi.org/10.1080/13880209.2020.1861029.
26. Salvatore MF, Soto I, Kasanga EA, James R, Shifflet MK, Doshier K, et al. Establishing equivalent aerobic exercise parameters between early-stage Parkinson’s disease and Pink1 knockout rats. Journal of Parkinson’s Disease. 2022;12(6):1897-915. https://dx.doi.org/10.3233/JPD-223157.
27. Radak Z, Suzuki K, Posa A, Petrovszky Z, Koltai E, Boldogh I. The systemic role of SIRT1 in exercise mediated adaptation. Redox Biology. 2020;35:101467. https://dx.doi.org/10.1016/j.redox.2020.101467.
28. Zhao Y, Jia M, Chen W, Liu Z. The neuroprotective effects of intermittent fasting on brain aging and neurodegenerative diseases via regulating mitochondrial function. Free Radical Biology and Medicine. 2022;182:206-18. https://dx.doi.org/10.1016/j.freeradbiomed.2022.02.021.
29. Paillard T, Rolland Y, de Souto Barreto P. Protective effects of physical exercise in Alzheimer’s disease and Parkinson’s disease: a narrative review. Journal of Clinical Neurology. 2015;11(3):212-9. https://dx.doi.org/10.3988/jcn.2015.11.3.212.
30. Selkoe DJ. Alzheimer’s Disease--Genotypes, Phenotype, and Treatments. Science. 1997;275(5300):630-1. https://dx.doi.org/10.1126/science.275.5300.630.
31. Sojkova J, Zhou Y, An Y, Kraut MA, Ferrucci L, Wong DF, Resnick SM. Longitudinal patterns of β-amyloid deposition in nondemented older adults. Archives of Neurology. 2011;68(5):644-9. https://dx.doi.org/10.1001/archneurol.2011.77.
32. Mohammadi ZF, Khezri A, Ebrahimzadeh M. The effects of voluntary exercise on a running wheel and allium paradoxum on Tau protein in the cerebellum of diabetic rats. Journal of Isfahan Medical School. 2012;30(185). [In Persian].
33. Liang KY, Mintun MA, Fagan AM, Goate AM, Bugg JM, Holtzman DM, et al. Exercise and Alzheimer’s disease biomarkers in cognitively normal older adults. Annals of Neurology. 2010;68(3):311-8. https://dx.doi.org/10.1002/ana.22096.
34. Kim D-Y, Jung S-Y, Kim T-W, Lee K-S, Kim K. Treadmill exercise decreases incidence of Alzheimer’s disease by suppressing glycogen synthase kinase-3β expression in streptozotocin-induced diabetic rats. Journal of Exercise Rehabilitation. 2015;11(2):87. https://dx.doi.org/10.12965/jer.150198.
35. Kim B-K, Shin M-S, Kim C-J, Baek S-B, Ko Y-C, Kim Y-P. Treadmill exercise improves short-term memory by enhancing neurogenesis in amyloid beta-induced Alzheimer disease rats. Journal of Exercise Rehabilitation. 2014;10(1):2. https://dx.doi.org/10.12965/jer.140086.
36. Kim H-B, Jang M-H, Shin M-C, Lim B-V, Kim Y-P, Kim K-J, et al. Treadmill exercise increases cell proliferation in dentate gyrus of rats with streptozotocin-induced diabetes. Journal of Diabetes and its Complications. 2003;17(1):29-33. https://dx.doi.org/10.1016/s1056-8727(02)00186-1.
37. Kim T-W, Shin M-S, Park J-K, Shin M-A, Lee H-H, Lee S-J. Treadmill exercise alleviates prenatal noise stress-induced impairment of spatial learning ability through enhancing hippocampal neurogenesis in rat pups. Journal of Exercise Rehabilitation. 2013;9(5):451. https://doi.org/10.12965/jer.130064.
38. Hernandez F, Lucas JJ, Avila J. GSK3 and tau: two convergence points in Alzheimer's disease. Journal of Alzheimer’s Disease. 2012 ;33(s1):S141-4. https://doi.org/10.3233/jad-2012-129025.
39. Paudel HK, Lew J, Ali Z, Wang JH. Brain proline-directed protein kinase phosphorylates Tau on sites that are abnormally phosphorylated in Tau associated with Alzheimer’s paired helical filaments. Journal of Biological Chemistry. 1993;268(31):23512-8. https://dx.doi.org/10.1016/S0021-9258(19)49492-1.
40. Biessels GJ, Reagan LP. Hippocampal insulin resistance and cognitive dysfunction. Nature Reviews Neuroscience. 2015;16(11):660-71. https://dx.doi.org/10.1038/nrn4019.
41. Pei J-J, Braak E, Braak H, Grundke-Iqbal I, Iqbal K, Winblad B, Cowburn RF. Distribution of active glycogen synthase kinase 3β (GSK-3β) in brains staged for Alzheimer disease neurofibrillary changes. Journal of Neuropathology and Experimental Neurology. 1999;58(9):1010-9. https://dx.doi.org/10.1097/00005072-199909000-00011.
42. Zhang Y, Zhang Z, Wang H, Cai N, Zhou S, Zhao Y, et al. Neuroprotective effect of ginsenoside Rg1 prevents cognitive impairment induced by isoflurane anesthesia in aged rats via antioxidant, anti-inflammatory and anti-apoptotic effects mediated by the PI3K/AKT/GSK-3β pathway. Molecular Medicine Reports. 2016;14(3):2778-84. https://dx.doi.org/10.3892/mmr.2016.5556.
43. Liu Y, Liu F, Grundke‐Iqbal I, Iqbal K, Gong CX. Deficient brain insulin signalling pathway in Alzheimer’s disease and diabetes. The Journal of Pathology. 2011;225(1):54-62. https://doi.org/10.1002/path.2912.
44. Szablewski L. Brain glucose transporters: role in pathogenesis and potential targets for the treatment of Alzheimer’s disease. International Journal of Molecular Sciences. 2021;22(15):8142. https://dx.doi.org/10.3390/ijms22158142.
45. Liu SJ, Wang JZ. Alzheimer-like Tau phosphorylation induced by wortmannin in vivo and its attenuation by melatonin. Acta Pharmacologica Sinica. 2002;23(2):183-7.
46. Bhat RV, Budd Haeberlein SL, Avila J. Glycogen synthase kinase 3: a drug target for CNS therapies. Journal of Neurochemistry. 2004;89(6):1313-7. https://dx.doi.org/10.1111/j.1471-4159.2004.02422.x.