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Abstract 

Rainfall is a crucial component of the hydrological cycle and plays a key role in water resource 

planning. Recent research has investigated the use of gridded data as a supplement to and replacement 

for traditional rain gauge measurements, particularly in areas with limited gauge coverage. Gridded 

precipitation data offering a structured method to represent precipitation patterns across large regions 

by dividing the data into grids. This enables more precise spatial analysis of precipitation distribution 

and variability. The study assessed the accuracy of six high-resolution gridded rainfall product 

estimates (ERA5, ERA-Interim, CMORPH, PERSIANN, PERSIANN-CDR, and PERSIANN-CCS) 

at 12 rain gauge stations in Iran at various time scales. Comparisons with rain gauge network data 

using statistical and graphical methods revealed that ERA5, ERA-Interim, and PERSIANN-CDR data 

outperformed other models on annual and monthly scales, so that  the highest correlation coefficient 

in monthly scale was obtained by ERA5 model at Doroodzan station with correlation coefficient of 

0.93. Also, the results on a daily scale indicate the appropriateness of the output data of the reanalysis 

models (ERA5, ERA-Interim) compared to other models in such a way that the lowest RMSE value 

in all stations except Sefidroud Dam is related to the reanalysis data and the lowest RMSE value is 

equal to with 0.78 mm at the Chahnimeh station and the highest value of the correlation coefficient 

equal to 0.63 corresponds to the Karaj dam rain gauge station; Also, in correctly detecting rainy and 

non-rainy days, ERA5 model has the most accuracy in all stations. 

Keywords:  Evaluation Indicators, Iran Dams, Rainfall Estimation, Reanalysis Data, Satellite Data.  
 

1. Introduction 

Precipitation is considered as an important 

component of the hydrological cycle and the 

key parameter from the environmental and 

meteorological point of view (Li and Shao, 

2010) and a very important input in applied 

sciences such as hydrology, meteorology, 

weather forecasting, and agriculture. (Duan et 

al., 2016). In addition, precipitation can be 

employed in various fields such as creating 

accurate understanding of hydrological 

balance, water resources management, and 

flood forecasting. The spatial and temporal 

qualities of rainfall affect hydrological 

processes such as runoff production and soil 

moisture content. Therefore, accurate 

measurements of rainfall and the development 

of spatial and temporal distribution maps are 

quite challenging. Due to the vast spatial and 

temporal variation of precipitation, it is 

desirable to obtain precipitation data with high 

spatial and temporal accuracy. Measurement 

of precipitation by rain-gauge data and through 

the field studies is considered as one of the 

common methods in rainfall estimation. 

However, the inappropriate spatial distribution 

of these rain gauges reduces the accuracy of the 

rainfall pattern (Javanmard et al., 2010). On 

the other hand, the presence of statistical 

deficiencies and the heterogeneity in the time 

series of the collected data make it difficult to 

use these data in hydrological models (Brunetti 

et al., 2006). It is also worth noting that the 

generalization of the measured data to points 

lacking statistics imposes a significant error to 

the calculations. Therefore, in most of the 
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developing countries, a dense rain estimating 

network is not available at all or often involves 

statistical deficiencies (Bitew and 

Gebremichael, 2011). This situation has been 

worsened by decreasing the number of rain 

gauge stations due to financial problems or 

lack of proper maintenance (Adjei et al., 2012). 

Therefore, the use of measured point data to 

provide precise spatial information of 

precipitation is a difficult task (Jia et al., 2011). 

In other words, although the observations from 

the rain-gauge stations can fully show the most 

accurate measurements at the desired 

locations, as noted, inappropriate spatial 

distribution of these stations reduces the 

accuracy of the rainfall model(Javanmard et 

al., 2010). The measurement of rainfall data 

from a limited number of rain-gauge stations, 

especially in areas where these stations have 

been distributed inappropriately, does not 

provide accurate information regarding the 

rainfall variations in surface. Also, the data 

obtained from the rain-gauge stations only 

reflects the rainfall conditions in the 

neighborhood and its values are not valid for 

farther places (Collischonn et al., 2008). 

Meanwhile, global and continental remote-

sensing precipitation products are becoming 

increasingly available with reasonable spatial 

and temporal resolutions for application in 

hydrological and climatic studies. Therefore, 

these may provide an alternative for 

traditionally measured rainfall at weather 

stations. A major advantage of using such data 

is the improved spatial distribution compared 

to weather stations. With the advancement of 

remote sensing techniques and satellite-based 

reanalysis algorithms in past decades, these 

data are a good source for measuring rainfall 

data (Hobouchian et al., 2017). Therefore, 

precipitation measurement based on satellite 

data has been recognized as the main approach 

to rainfall measurement in recent decades (Tan 

et al., 2015; Xu et al., 2017). Satellite remote 

sensing data as a novel approach provide 

highly accurate spatial and temporal variations 

of rainfall (Xie and Xiong, 2011). In addition, 

in comparison with ground measurements such 

as rain-gauges and radars, satellite data can 

globally cover precipitation systems regardless 

 

1- Global Precipitation Climatology Centre 

2- Climatic Research Unit 

3- Climate Prediction Center  

of mountainous and oceanic terrain. In general, 

rain-gauge data include problems such as lack 

of data, lack of installed station. Moreover, 

these data are affected by wind and heavy 

rains, they lose their measurement accuracy 

(Maggioni et al., 2016). The efficiency of 

rainfall measurement stations under the 

influence of heavy winds is reduced to more 

than 50% (Sieck et al., 2007) and is affected by 

heavy rainfalls by 30% (Humphrey et al., 

1997). Likewise, Geostationary radar-based 

rainfall estimates are affected by signal 

weakness, dispersion of the return level and the 

uncertainty of rainfall-reflector relation 

(Einfalt et al., 2004). Therefore, satellite 

precipitation products are widely used in many 

environmental applications such as analysis of 

rainfall qualities, hydrologic modeling (Tan 

and Duan, 2017) and drought monitoring (Tao 

et al., 2016). A large number of satellite-based 

rainfall estimates and reanalysis data with high 

spatial and temporal separation are available 

and can be used to complete precipitation data 

or even replace these measurements (Fujihara 

et al., 2014; Thiemig et al., 2013) Evaluation 

studies showed that the satellite precipitation 

estimates can still contain substantial biases 

and errors, and a further merging or blending 

satellite precipitation estimates with rain gauge 

data can result in improved precipitation 

products (Ebert et al., 2007; Xie and Xiong, 

2011). Over the past decades, great efforts 

have been made to generate gridded 

precipitation products, thereby leading to the 

increasing availability of precipitation datasets 

at different spatial and temporal resolutions 

over the global scale (Tapiador et al., 2012).  

These data can be broadly classified into four 

categories (Duan et al., 2016).  

A- Gauge-only products that build only on 

observations from rain gauge stations using 

different interpolation methods, these 

widely used products for example include 

the Global Precipitation Climatology 

Centre (GPCC)1 monthly precipitation 

product (Schneider et al. 2014, 2015), the 

Climatic Research Unit (CRU)2 monthly 

precipitation (Harris et al., 2014) and the 

Climate Prediction Center (CPC)3 unified 

gauge-based analysis of global daily 
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precipitation (Chen et al., 2008). These 

products are often available at a spatial 

resolution greater than 0.5°. 

B- Data obtained from reanalysis of 

historical data by numerical weather 

predictions or atmospheric models that use 

a combination of satellite and in-situ 

observations of various atmospheric 

properties as inputs. These data are called 

reanalysis data (Balsamo et al., 2015).  

National Centers for Environmental 

Prediction–National Center for 

Atmospheric Research (NCEP–NCAR)1  

and European Centre for Medium-Range 

Weather Forecasts (ECMWF)2 are in this 

group (Balsamo et al., 2015). 

C- Satellite-only products. These data are 

extracted by using IR, MV or IR-MV 

combined information. Multi-satellite 

precipitation analysis (TMPA)3 3B42 RT 

V7 and Tropical Rainfall Measuring 

Mission (TRMM)4are in this group of 

products. 

D- Satellite-gauge products that combine 

two individual (gauge-only and satellite-

only) products together through different 

bias correction or blending procedures. The 

CMORPH (Joyce et al., 2004) and 

Precipitation Estimation from Remotely 

Sensed Information using Artificial Neural 

Networks (PERSIANN) (Hsu et al., 1997) 

are in this group. Such products are often 

available at the spatial resolution of 0.25°or 

finer. 

The rain measurement instrument at the 

surface of the planet, in addition to direct use 

of rain gauges, does not come out of this series. 

If precipitation measurements would be 

possible through some of these methods at 

stations which have defective data, then these 

data can be used to complete ground 

measurements in the future. Also, in places 

where ground measurement is not possible, by 

processing these types of data, precipitation 

measurement can be done faster and at a more 

suitable time. Over the past decades, many 

efforts have been made to produce satellite 

data, so precipitation is widely available at 

temporal and spatial scales (Tapiador et al., 

 

1- National Centers for Environmental Prediction–

National Center for Atmospheric Research 

2- European Centre for Medium-Range Weather 

Forecast 

2012). These values vary from one region to 

another. (Duan et al., 2016) evaluated eight 

high spatial resolution gridded precipitation 

products in Adige Basin located in Italy in 

daily, monthly and annually basis. Evaluation 

results showed that in terms of overall 

statistical metrics the CHIRPS, TRMM and 

CMORPH_BLD comparably rank as the top 

three best performing products, while the PGF 

performs worst. (Worqlul et al., 2017) 

evaluated the advantages and the limitation of 

commonly used high-resolution satellite 

rainfall products CFSR (Climate Forecast 

System Reanalysis) and Multi-Satellite 

Precipitation Analysis (TMPA) 3B42 as input 

to hydrological models and as compared to 

sparsely and densely populated network of rain 

gauges. The results of comparisons between 

CFSR and 3B42 data with the gauged rainfall 

indicated that CFSR data captured the pattern 

and volume of gauged rainfall well while 3B42 

did not. In other words, TMPA 3B42 data is 

not capable of describing temporal rain 

changes. However, the two data of rain-

gauging and reanalysis data of CFSR are well 

able to create the river current data. (Poméon 

et al., 2017) conducted an investigation to 

evaluate ten freely available satellite and 

reanalysis datasets 

for six differently sized and located basins in 

West Africa. These data were compared with 

rain-gauge dataset. Results showed that best 

results were achieved by datasets which use a 

multitude of input data, namely infrared and 

microwave satellite data, as well as 

observations from rain gauges (usually GPCC) 

for bias correction. Tan and Santo, (2018) 

performed a comparison between GPM 

IMERG, TMPA 3B42 and long-term 

PERSIANN-CDR products in Malaysia. The 

results showed that all the SPPs (satellite 

precipitation products) perform well in annual 

and monthly precipitation measurements and 

precipitation detection ability, except the 

PERSIANN-CDR. Gao et al., (2018) evaluated 

and compared two long-term monthly satellite 

precipitation datasets of CHIRPS (Climate 

Hazards Group Infrared Precipitation with 

Stations data) and PERSIANN-CDR, with in-

3- Trmm Multi-satellite Precipitation Analysis 

4- TRMM (Tropical Rainfall Measuring Mission) 

Multi-satellite Precipitation Analysis 

 



88                                                                                        Gorjizade. /Water Harvesting Research, 2024, 7(1):85-105 

     

situ measurements from 105 meteorological 

stations in Xinjiang, China. Results showed 

that PERSIANN-CDR and CHIRPS had 

similar correlations with observed data. 

However, CHIRPS outperformed 

PERSIANN-CDR with the smaller errors and 

bias, and PERSIANN-CDR tended to 

overestimate the precipitation in the rain 

season (from May to September). Kim et al., 

(2019) evaluated precipitation extremes over 

the Asian domain using observation and 

modeling studies. They highlighted the 

importance of accurate precipitation datasets 

for understanding extreme precipitation 

events, which are particularly relevant to 

regions with complex terrain such as Iran. In 

Iran, Gorjizade et al., (2019) evaluate the 

accuracy of some of these data types, including 

high-resolution spatial data consist of ERA-

Interim, CHIRPS and PERSIANN-CDR at the 

upstream of the Maroon Dam on daily, 

monthly and annual timescales. In the daily 

rainfall estimation, like the monthly rainfall, 

the best estimate is the ReAnalysis product 

(ERA-Interim product), which has the best 

estimate of precipitation in all stations. Tang et 

al., (2020) conducted a comprehensive 

comparison of the Global Precipitation 

Measurement (GPM) Integrated Multi-

satellitE Retrievals for GPM (IMERG) with 

nine satellite and reanalysis datasets. They 

found that GPM IMERG exhibited 

improvements over the last two decades, 

indicating advancements in satellite 

precipitation products. Bandhauer et al., 

(2022) conducted an evaluation of daily 

precipitation analyses in the E‐OBS (v19.0e) 

and ERA5 datasets by comparing them to 

regional high‐resolution datasets in European 

regions. Their research focused on assessing 

the performance of these datasets in capturing 

daily precipitation, particularly in European 

regions. The findings of this study contribute 

to the understanding of the strengths and 

limitations of different precipitation datasets in 

a specific geographical context. Rao et al., 

(2024) evaluates 11 sets of gridded 

precipitation products over the Qinghai-Tibet 

Plateau, the results of their research showed 

that the CMFD precipitation product 

performed better than other products at 

meteorological sites from the National 

Meteorological Information Center (NMIC), 

with average daily and monthly correlation 

coefficients (CCs) of 0.55 and 0.94 and root 

mean square errors (RMSEs) of 3.78 and 0.44 

mm/d, respectively. In the table 1, some of the 

studies done in the world is presented on the 

remote sensing data set.  

 
 

Table 1. Comparison of evaluation studies at daily scale estimation. 

Reference Study area Period CC 
RMSE 

(mm/day) 
POD 

Rao et al. (2024) over the Qinghai-Tibet Plateau 2010-2017 0.55 3.78 - 

Gomis-Cebolla et al. (2023) over Spain 1951–2020 0.5-0.9 2-8 - 

Gorjizade et al. (2022) Maroon Dam basin 2003-2014 0.5 5.5 0.42 

Tan and Santo (2018) Malaysia 
12 March 2014 to 29 February 

2016 

0.5–

0.6 

12.94–

14.93 

0.86–

0.89 

Sharifi et al. (2016) Iran March 2014 to February 2015 
0.4–

0.52 

6.38–

19.41 

0.46–

0.7 

 

Unfortunately, meteorological stations in 

Iran are scattered and have incomplete 

information; therefore, it is very necessary to 

evaluate the performance of satellite 

precipitation products in Iran, where most of 

the regions are arid and semi-arid. This study 

can also be useful in improving the 

performance of future versions of gridded 

rainfall data. Therefore, the purpose of this 

study is evaluating the appropriateness of 

CMORPH, ERA5, ERA-Interim, PERSIANN, 

PERSIANN-CCS and PERSIANN-CDR 

models in Iran, with local measurements in 

daily, monthly and annual basis. So far, such a 

study has not been conducted in Iran based on 

the information of rain gauge stations in the 

dams as the main sources of water storage. 

 

2. Materials and Methods 

2.1. Study area 

In this study, recorded data by rain-gauge 

stations in-situ of 12 dams in different parts of 

Iran were collected. Figure 1 shows the 

location of dams and their geographic 

coordinates. In this study, we tried to select 

dams which cover almost the major part of the 
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country. Considering that the operation period 

of these dams is different and also the data of 

satellite models are available in different 

periods, we have tried to evaluate and compare 

satellite and measured data in their joint 

period. Table 2 shows the operation years of 

these dams. 

 

 
Fig. 1. Study area 

 

2.2. Precipitation datasets 

 In this study, six satellite precipitation 

products were used to evaluate the 

performance of satellite data. Table 3 examines 

the details of the spatial coverage of each data 

set, the pixel length and width, and the type of 

data generation algorithm. 

 

2.2.1. CMORPH 

The CMORPH model was presented in 

2004 by Joyce et al. at the NOAA Climate 

Prediction Center and has been available from 

December 2002 at ftp://ftp.cpc.ncep.noaa.gov . 

The CMORPH model is a method used to 

combine the cloud system advection vectors, 

derived from images of the infrared satellite 

data, and passive microwave signals to 

estimates precipitation in different places 

(Joyce et al., 2004). In time when these images 

are available, a relationship will be established 

 

1- Raw satellite-only precipitation product 

2- Bias corrected product 

between the precipitation obtained from these 

images and high cloud temperature obtained 

from infrared images. By utilizing this 

relationship, when the microwave images are 

not available, the amount of precipitation 

would be estimated. 

More information on this technique is 

presented in Joyce et al. reference. 

Precipitation prediction in this model is 

available in two versions of CMORPH.x 

(Koutsouris et al., 2016) and CMORPH1.0. 

Initially, no bias correction and no rain gauge 

data were used in the CMORPH technique for 

previous Version 0.x product. The latest 

(Version1.0) CMORPH products include three 

different products: the raw satellite-only 

precipitation product (CMORPH_RAW)1, bias 

corrected product (CMORPH_CRT)2 and 

satellite-gauge blended product 

(CMORPH_BLD)3. The RAW product 

3- satellite-gauge blended product 

ftp://ftp.cpc.ncep.noaa.gov/
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belongs to the “satellite-only” category while 

the CRT and BLD products belong to the 

“satellite-gauge” category and rain-gauge 

stations. In this study the product of 

(CMORPH_RAW) has been used. 

 
Table 2. Studied time period in this study 

Dams 
ERA5 ERA-Interim CMORPH PERSIANN 

PERSIANN-

CDR 

PERSIANN-

CCS 

Bookan 2008-2017 2000-2017 2005-2018 2000-2018 2000-2018 2003-2018 

Chahnime 2008-2017 2000-2017 2005-2018 2000-2018 2000-2018 2003-2018 

Doroodzan 2008-2017 2000-2017 2005-2018 2000-2018 2000-2018 2003-2018 

Ilam 2008-2017 2001-2017 2005-2018 2001-2018 2001-2018 2003-2018 

Jiroft 2009-2017 2009-2017 2009-2018 2009-2018 2009-2018 2009-2018 

Karaj 2008-2012 2000-2012 2005-2012 2000-2012 2000-2012 2003-2012 

Latian 2008-2017 2000-2017 2005-2018 2000-2018 2000-2018 2003-2018 

Mahabad 2008-2017 2000-2017 2005-2018 2000-2018 2000-2018 2003-2018 

Rajaei 2008-2017 2000-2017 2005-2018 2000-2018 2000-2018 2003-2018 

Sefidrood 2008-2017 2000-2017 2005-2018 2000-2018 2000-2018 2003-2018 

Zayanderood 2008-2017 2000-2017 2005-2018 2000-2018 2000-2018 2003-2018 

Zagros 2011-2017 2011-2017 2011-2018 2011-2018 2011-2018 2011-2018 

 
Table 3. Summary of gridded precipitation products to be evaluated in this study. 

Datasets Name Coverage 
Temporal 

resolution 

Spatial 

resolution 
Period Category Refrence 

ERA5 Global 1 h 0.25° × 0.25° 1950-Present ReAnalysis ECMWF 

ERA-Interim Global 3 h 0.75° × 0.75° 1979-Present ReAnalysis (Dee et al., 2011) 

CMORPH 60°N-60°S 0.5 h 0.25° × 0.25° 2002-Present Satelite-Gague (Joyce et al, 2004) 

PERSIANN 60°N-60°S 1 h 0.25° × 0.25° 2000-Present Satelite-based (Ashouri et al, 2015) 

PERSIANN-

CDR 
60°N-60°S Daily 0.25° × 0.25° 

1983-

(delayed)Present 
Satelite-Gague (Ashouri et al, 2015) 

PERSIANN-

CCS 
Global 0.5 h 0.04° × 0.04° 2003-present Satelite-based 

(Sorooshian et al., 

2015) 

 

2.2.2. ERA-Interim 

ERA-Interim is the fourth generation of 

reanalysis data. This data has been generated 

by the ECMWF with a precision of 0.75 * 0.75. 

Also, these data are updated every month. 

Generally speaking, a re-analysis of a system 

for generating a cluster of data is called 

reanalysis. Reanalysis data are obtained from 

the combination of the results of short-term 

forecasts which are acquired by Numerical 

Weather Precipitation models (NWP) with 

observational data. The model predictions, 

which are called initial guesses, are derived 

from the input data into the model and the data 

assimilation and the mathematical relation 

defined for the model (Balsamo et al., 2015; 

Dee et al., 2011). Since model predictions are 

always associated with uncertainties, this 

initial prediction is optimized by controlling 

with existing observational data, in order to 

reduce the prediction error. The ECMWF 

Center has been able to provide ERA-interim 

data after providing two data sets ERA-15 and 

ERA-40, according to the feedback provided 

by the above data. ERA-interim data is a more 

advanced generation of the two earlier versions 

(Dee et al., 2011). In this study, ERA-Interim 

daily precipitation data was used with a spatial 

resolution of 0.25 ° and the method of data 

extraction using the ECMWF Web API. These 

data can be ordered after registration by 

following link: 

http://apps.ecmwf.int/datasets/data/interim-

full-daily/levtype=sfc/ 

 

2.2.3. ERA5 

ERA5 is a new (fifth generation) re-analysis 

data set developed by the ECMWF European 

Weather Forecasting Center. The most 

important difference in comparison with ERA-

Interim are as follow: 

Using a 2016 rather than a 2006 version of 

the ECMWF data assimilation system, using 

higher horizontal resolution ~30km rather than 

https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/2017RG000574#rog20155-bib-0052
http://apps.ecmwf.int/datasets/data/interim-full-daily/levtype=sfc/
http://apps.ecmwf.int/datasets/data/interim-full-daily/levtype=sfc/
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~79km, and using more number of levels 137 

rather than 60, higher time resolution 1 hour 

rather than 3 hours, new analyses of sea-

surface temperature and sea-ice concentration, 

changes in use of satellite data on ozone 

(youreka et al., 2018). Data cover the period 

from 1950 to 1978 but at the time of extraction 

only information for the period 2008-2018 is 

available. In this study, daily rainfall data of 

ERA5 was used with a spatial resolution of 

0.25 °. Data extraction was done using 

ECMWF Web API. The instructions for 

downloading the data are listed below. 

https://software.ecmwf.int/wiki/display/CK

B/How+to+download+ERA5+data+via+the+

ECMWF+Web+API. 

 

2.2.4. PERSIANN 

Satellite-based data of PERSIANN model is 

a rainfall estimation algorithm using remote 

sensing and an artificial neural network. The 

base algorithm is based on an artificial neural 

network. Shu et al. developed the model at the 

University of Arizona in 1999. The approach 

of this algorithm is to calibrate infrared (IR, 

infrared) data with non-active microwave 

measurements (PMW, Microwave Passive). 

This is done by updating the parameters at any 

time available for PMW estimation. In fact, 

estimates are made by IR waves and then 

calibrated with PMW. The base inputs of this 

model are the high temperature clouds 

produced by images of the infrared spectrum, 

which are obtained by Earth-circuit satellites, 

GoEs8 and GoEs9. The significant features of 

Earth-circuit satellite imagery are high 

temporal resolution. However, the spatial 

resolution of this image is low due to the 

greater distance of this satellite from the Earth 

than polar satellites.  

Using these images, PERSIANN estimates 

the rainfall intensity at a given time (Homg et 

al., 2004). In order to increase spatial 

resolution, this algorithm uses satellite images 

of the TRMM, NOAA14 and NOAA13 

satellites, which are of polar circuit types, as 

well as artificial neural network, to make 

spatial resolution of 0.25 * 0.25 degrees with a 

half-hour time interval. Among high-

resolution, satellite-based, precipitation 

estimation algorithms, PERSIANN, because of 

its primary reliance on infrared information 

 

1- Climate Data Record 

that dates back to 1979, is very suitable for 

estimating historical precipitation over the past 

three decades. 

 

2.2.5. PERSIANN-CDR1  

The PERSIANN-CDR dataset is jointly 

developed by the University of California and 

the NOAA and is available since 1983 

(Ashouri et al., 2015). The existing 

PERSIANN algorithm provides global 

precipitation estimates using combined IR and 

PMW information from multiple GEO 

(Geostationary Orbit Earth) and LEO (Low 

Orbit Earth) satellites. The algorithm uses an 

artificial neural network (ANN) model to 

extract cold-cloud pixels and neighboring 

features from GEO longwave infrared images 

and associates variations in each pixel’s 

brightness temperature to estimate the pixel’s 

surface rainfall rate (Hsu et al., 1997; 

Sorooshian et al., 2000). The PERSIANN 

algorithm uses infrared data from GridSat-B1, 

which is derived from GOE satellites. The 

output from the PERSIANN model without the 

use of microwave data (PMW) - (where this 

data is not available) – and without any data 

modification is called Persiann-B1. To reduce 

the biases in the PERSIANN-estimated 

precipitation while preserving the spatial and 

temporal patterns in high resolution, 2.5° 

monthly GPCP precipitation data were 

utilized. The bias-corrected PERSIANN 

precipitation estimates maintain a monthly 

total consistent with the monthly GPCP 

(Global Precipitation climatology project) 

product. The final product, called the 

PERSIANN-CDR (for Climate Data Record). 

In this study, daily precipitation data of 

PERSIANN-CDR using a spatial resolution of 

0.25 ° was used.  

 

2.2.6. PERSIANN-CCS2  

PERSIANN-CCS is upgraded generation of 

satellite-based PERSIANN data. As 

mentioned before, The PERSIANN algorithm 

fits the pixel brightness temperature and its 

neighbor temperature textures, in terms of 

means and standard deviations, to the 

calculated pixel rain rates based on an 

Artificial Neural Network (ANN) model. With 

development of the PERSIANN Cloud 

Classification System (CCS) is introduced. 

2- Cloud classification System   

https://software.ecmwf.int/wiki/display/CKB/How+to+download+ERA5+data+via+the+ECMWF+Web+API
https://software.ecmwf.int/wiki/display/CKB/How+to+download+ERA5+data+via+the+ECMWF+Web+API
https://software.ecmwf.int/wiki/display/CKB/How+to+download+ERA5+data+via+the+ECMWF+Web+API
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Instead of direct pixel-to-pixel fitting of 

infrared cloud images to the rain rate, the 

PERSIANN CCS takes into account image 

segmentation and objective classification 

methods to process cloud images into a set of 

disjointed cloud-patch regions; informative 

features are extracted from cloud patches and 

classified into a number of patch groups based 

on the similarity of selected features, such as 

the patch size and texture. In this study, 

PERSIANN-CCS daily rainfall data with 

spatial separation of 0.04 were used. The 

following figure displays the structure of 

PERSIANN -CCS model. 

 

2.3. Evaluation Indices 

In the present study, different statistical and 

categorical indices were adopted to 

qualitatively and quantitatively evaluate the 

precision of the six SPPs. IDW1 methodology 

and spatial analysis were used for annual 

evaluation. Also, Taylor Diagram was used for 

monthly evaluation and finally, three RB, 

RMSE and CC evaluation indices and three 

classification indicators of POD, FAR and CSI 

were used for daily evaluation. 

As mentioned, Taylor's diagram is used for 

monthly evaluation. The Taylor diagram 

(Taylor, 2001) has been developed using 

standard deviation values, correlation 

coefficient and CRMSE2, for observational 

data and all satellite models of precipitation 

estimating. This graph shows the three 

indicators (STDEV, CC and CRMSE) at each 

point. Each diagram contains a real data 

represented by a separate point in the Taylor 

chart; obviously, the point closer to the real 

point, has better proficiency as a point of 

defined indictors.  

Also, three evaluation indicators and three 

classification indexes were used for daily 

evaluation. The following table shows the 

computational relationships of these indices. 

In the table 5, Pi is the predicted value and 

Gi is the observed value. H is the number of 

times the observed rain is correctly detected 

and F is the number of observed rain that is not 

detected. Also, M is the number of times that 

rainfall has not occurred, but the model has 

shown the occurrence of precipitation. 

 
Table 5- List of the statistical metrics used in the evaluation of precipitation products. 

Statistical Index Equation Optimized Value 

The correlation coefficient 
𝐶𝐶 =

∑ (𝐺𝑖 − 𝐺̅)(𝑃𝑖 − 𝑃̅)𝑛
𝑖=1

√∑ (𝐺𝑖 − 𝐺̅)𝑛
𝑖=1

2
√∑ (𝑃𝑖 − 𝑃)𝑛

𝑖=1
2

 
1 

Root Mean Square Error 𝑅𝑀𝑆𝐸 = √
∑ (𝑃𝑖 − 𝐺𝑖)

2𝑛
𝑖=1

𝑛
 0 

Relative Bias 𝑅𝐵 =
∑ (𝑃𝑖 − 𝐺𝑖)
𝑛
𝑖=1

∑ (𝐺𝑖)
𝑛
𝑖=1

 0 

Probability of Detection (POD) 
𝑃𝑂𝐷 =

𝐻

𝐻 +𝑀
 1 

False Alarm Ratio (FAR) 
𝐹𝐴𝑅 =

𝐹

𝐻 + 𝐹
 0 

Critical Success Index (CSI) 
𝐶𝑆𝐼 =

𝐻

𝐻 +𝑀 + 𝐹
 1 

 

- The Person correlation coefficient 

(CC) assesses the correlation between 

satellite precipitation products and rain gauge 

observations. The value of this parameter 

varies from -1 to 1. CC = 0 indicates that 

there is no linear correlation between 

observed and estimated data. The values of -

1 and 1 of this parameter indicate a 

completely negative and positive correlation, 

respectively (Tan and Santo, 2018). 

 

1- Inverse Distance weighting 

- Root Mean Square Error (RMSE) 

measures the difference between the 

distributions of the ground observed rainfall 

and the distribution of satellite rainfall 

estimation and calculates a weighted average 

error, weighted according to the square of the 

error (Worqlul et al., 2014).  

- Relative Bias is a measure of how does 

the average satellite rainfall magnitude 

compared to the ground rainfall observation. 

If this value is greater than zero, it indicates 

2- Centered root mean square between estimation and 

observation 
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that the rainfall model is estimated to be 

greater than the observed value, and if it is 

smaller than zero, then it is shown that 

rainfall is estimated by the model less. If this 

amount is Equal to zero, then there is not any 

error. 

- Three FAR, POD and CSI 

classification indexes were used to determine 

the accuracy of the model in detecting the 

occurrence of precipitation. 

- Probability of Detection (POD), shows 

how often rain occurrences are correctly 

detected by satellite, and the optimal value is 

equal to one.  

- The FAR, the ratio of the false reported 

precipitation by model, while actually rain 

did not occur, to the total recorded rainfall. 

The optimal value for this parameter is zero. 

- The Critical Success Index (CSI) 

provides no unique verification information 

since it is a function of both FAR and POD, 

understanding its behavior can help identify 

which component would be more beneficial 

to target in a warning strategy. This indicator 

expresses the probability of true detection of 

rainy and non-rainy days. The optimum value 

is one. 

As previously mentioned, the present study 

evaluates the results of estimated rainfall by 

ERA5, ERA-Interim, CMORPH, PERSIANN, 

PERSIANN-CCS, PERSIANN-CDR satellites 

and observational precipitation of 12 rain-

gauge stations in-situ of some dams in Iran. 

This assessment is based on the observational 

data available at the rain-gauge stations and 

rainfall estimation models in different years, 

on daily, monthly and annual scales. 

 

3. Results and Discussion 

3.1. Annual and monthly estimates 

Fig. 2 shows the mean annual precipitation 

values measured by the rain-gauge stations and 

estimated precipitation values by satellite 

models. As it is shown in this figure, rainfall 

by CMORPH model at all stations except for 

the Chahnime, Sefidrud and Zayanderud has 

been estimated less than observation rates. The 

estimated value of these stations was less than 

250 mm.Estimated precipitation values by 

PERSIANN-CCS model in all stations except 

Doroodzan and Ilam were more than 

observational values. Meanwhile, the highest 

estimate of rainfall was estimated at the Rajaee 

station by the ERA5 model at around 900 mm 

and the lowest estimate of precipitation was at 

Chahnime station by the ERA5 model at about 

45 mm. This is while, the highest and lowest 

average observed rainfall was at Shahid Rajaee 

and Chahnime rain-gauge Station, respectively 

(560 mm and 40 mm).  

 

 
Fig. 2. Total annual precipitation measured from gauges and precipitation datasets  
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Fig. 3. Spatial pattern of observational data and estimated annual rainfall 

 

The main advantage of the IDW (Inverse 

Distance Weighted) method for rain 

interpolation is that it is a simple and intuitive 

way to estimate values at unsampled locations 

based on the surrounding sample points. IDW 

assumes that values at any given moment are 

more closely related to nearby points than 

those further away, making it a suitable 

method for spatially distributed data like 

rainfall. In this study, using the IDW method, 

precipitation data of the existing stations was 

subsequently interpolated and the fully 

covered patterns were generated in Fig. 3. This 

shape represents the variation in the annual 

rainfall in Iran. As you can see, ERA5, ERA-

Interim, and PERSIANN-CDR data are more 

consistent with the average annual observed 

rainfall. On the other hand, the results of the 

two CMORPH and PERSIANN-CCS models 

indicate that the two models are less consistent 

with observational data in most parts of Iran. 

Precipitation estimate by the CMORPH model 

in most parts of Iran range from 150 to 250 mm 

/ year and was under estimate. This is while, 

rainfall estimate by the PERSIANN-CCS 

model was higher than the observational data 
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and was over estimated. All precipitation 

products from the above-mentioned satellites 

have estimated rainfall in eastern Iran 

(Chahnime location), less than elsewhere. 

Rainfall estimates are also rising by satellite 

models from the east to the north. 

For evaluation and comparison of monthly 

rainfall data of models with observational 

precipitation data, the Taylor diagram for all 

stations is presented in Figures 4.1 and 4.2. As 

can be seen, on the monthly scale, the ERA5, 

ERA-Interim and PERSIANN-CDR models 

show the best correlation coefficient among 

different stations. 

At the stations of Drozden, Ilam, Karaj, 

Latyan, Mahabad, Rajaee and Zagros, the 

ERA5 models, at Bukan, Chahnime, Jiroft and 

Zayanderud stations, ERA-Interim models and 

finally at the Sefidrud station, the PERSIANN-

CDR model showed the highest correlation 

coefficients. On the other hand, the lowest 

correlation coefficient in all stations except the 

Chahnime, Ilam and Rajaee have been 

provided by the CMORPH model. 

The highest correlation coefficient in the 

monthly scale was provided by ERA5 model at 

Doroodzan Station with a correlation 

coefficient of 0.93 and the lowest correlation 

coefficient calculated by PERSIANN model at 

Rajaee Station at 0.04. According to Figures 

4.1 and 4.2, the most and least standard 

deviations of observational data were recorded 

at Doroodzan and Chahnime stations with 

values of 55.75 and 7.015. Also, the highest 

and lowest standard deviations of estimated 

data are shown in the results of PERSIANN-

CCS and CMORPH satellite models with 

values of 59.91 and 7.23. 

 

3.2. Daily evaluation 

Table 6 shows the results of the evaluation 

and comparison of the accuracy of satellite 

data in the estimation of precipitation values 

using the parameters mentioned. In this table, 

each of the RMSE, BIAS, and CC evaluation 

indicators and the POD, FAR, and CSI 

classification indices are depicted for each 

satellite precipitation product and at different 

stations. The results show that, at the Buccan 

Station, the ERA5 model has the highest 

correlation coefficient (0.3417), and then the 

ERA-Interim model with the 0.3151 was 

ranked as a second. As Table 6 shows, the 

obtained RB values indicate that the 

computational rainfall which is estimated by 

three models of CMORPH, ERA5 and 

PERSIANN, were under estimate and 

estimated rainfall by three other models were 

over estimate. 

As already mentioned, RMSE is one of the 

other criteria for evaluating the accuracy of 

data estimation. The results of Table 6 

indicated that the lowest RMSE is related to 

the ERA5 model at 3.3348 mm / day and the 

highest value is related to the PERSIANN-

CCS model with 5.4448 mm / day. Due to the 

presence of RMSE in the range of 0 to 10, 

simulations of rainfall data by the ERA5 model 

were excellent at Bukan Station. In other 

words, the ERA5 model is very suitable for 

simulating daily rainfall data in the Bukan 

Dam area. Considering the higher RMSE 

provided by the ERA5 model in comparison 

with other models, it can be concluded that the 

model can be used to complete the data series 

and replace the lost data. 

Similarly, in each station, the parameters of 

Table 6 can be used to analyze the accuracy of 

the resulting data. These results indicate that 

based on RMSE values at all stations except 

Ilam, Jiroft, Rajaee, Sefidrud and Zagros on 

the daily scale, the best model of rainfall 

estimation was ERA5. Meanwhile at 

mentioned stations ERA- Interim was the best 

estimator of daily precipitation. Also, at the 

Sefidrud station the best model was 

PERSIANN-CDR. 

 

 

1 
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Fig. 4-1. Taylor diagram graphical presentation for evaluation satellite monthly precipitation 
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Fig. 4-2. Taylor diagram graphical presentation for evaluation satellite monthly precipitation 
 

As mentioned earlier, one of the other 

criteria for assessing the accuracy of rainfall 

data is the correlation coefficient. This 

parameter is also suitable for completing 

unrecorded data. Based on this parameter, the 

best model for estimating precipitation in Jiroft 

and Sefidrud was ERA-Interim and in all other 

stations was ERA5 model. In accordance with 

Table 6, the range of variations of these 

parameters is visible. The results indicate that 
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the CC parameter variation range at all stations 

was from 0.0062 at Zagros station (by 

CMORPH) to 0.6278 at Karaj Station (by 

ERA5 model), and the absolute variation range 

of RB in the range of 0.002 at Karaj station (by 

PERSIANN-CDR) up to 6.08 (by 

PERSIANN-CCS) and the range of variations 

of the RMSE parameter was in the range of 

0.78 mm / d at the Chahnime station (by 

ERA5) to 7.80 at Rajaee Station (by 

PERSIANN-CCS). 

Three POD, FAR and CSI indexes were 

evaluated to assess the estimated rainfall 

detection limits by satellite algorithms and its 

values are shown in Table 6 at all stations. The 

highest POD value was obtained by ERA5 

model at all stations except Karaj dam station. 

This value was obtained at the Karaj Station by 

the PERSIANN-CCS model and is equal to 

0.4699. The amount of POD obtained at this 

station, recorded its highest value. 

POD=0.4699 means that 46.99 percent of the 

rainy days are correctly predicted by the 

model. Among other parameters, the CSI 

parameter can be mentioned. The highest value 

of observed CSI, with a value of 0.43, is related 

to ERA5 and ERA-Interim models at Karaj 

Station. This means that the accuracy of the 

model in the determination of rainy days and 

non-rainy days is 43%. As previously 

mentioned, FAR is another parameter for 

evaluating the accuracy of estimated rainfall 

data. High FAR values indicate that the 

number of non-rainy days estimated by the 

model and the recorded station data are not 

good matches. The highest amount of FAR 

(equal to 0.8421) has recorded at the Zagros 

station and was related to the CMORPH 

model, which means that, while 84.21% of the 

predictions indicate rainy days, this fact has 

not really occurred. Also, the lowest amount of 

FAR was related to the ERA-Interim model at 

the Zayanderud Station (equal to 0.05). 

In order to evaluate the daily rainfall 

intensity, the probability density function 

method (PDF 1 ) was used (Tan and Santo, 

2018). This method helps capture statistical 

properties of precipitation data and provides 

valuable insights into spatial patterns of 

precipitation. Ultimately, it improves the 

accuracy of rainfall interpolation from satellite 

products in regions where direct measurements 

are lacking. In general, rainfall intensity is 

divided into eight different groups according to 

the World Meteorological Organization 

(WMO2) standards (0-0.1 mm / d, 0.1-1 mm / 

d, 1-2 mm / d, 2-5 mm / d, 5- 10 mm per day, 

10-20 mm per day, 20-50 mm per day and 

more than 50 mm per day) (Tan and Duan, 

2017).  

Figures 5.1 and 5.2 represent the amount of 

PDF calculated by rainfall estimation models 

and observation station's rain-gauge data. In all 

observational and computational precipitation, 

the highest and lowest number of precipitation 

in all stations are related to the intensity of 0 to 

0.1 mm / day and more than 50 mm / day, 

respectively . The best performance of all 

models ranges from 0 to 0.1 mm per day and 

more than 50 mm per day and their worst 

performance is in the range of 0.1 to 1 mm per 

day. In all stations, except for Rajaee station, 

the percentage of rainfall occurrence with 

intensity of 0 to 0.1 mm / day were over 

estimated. In the following figures, the 

estimated rainfall intensity by observational 

data and satellite models are shown. For 

example, at Bukan Station, about 85% of 

observations have low rainfall rates (less than 

1 mm / h), 12% indicate the intensity of 0.1 to 

20 mm per day, and only about 3% of 

observations indicate heavy rainfall (over 20 

mm per day) 

 
  

 

1- Probability Density Function 

2-World Meteorological Organization 

 

https://www.wmo.int/
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Table 6. Evaluation Indexes for daily precipitation 
Station Datasets Name RMSE (mm) RB CC POD FAR CSI 

B
o

o
k

an
 

CMORPH 3.901 -0.406 0.105 0.201 0.487 0.17 

ERA5 3.334 -0.22 0.341 0.356 0.331 0.30 

ERA-Interim 3.785 0.407 0.315 0.3 0.153 0.29 

PERSIANN 3.872 -0.349 0.106 0.28 0.617 0.19 

PERSIANN-CCS 5.444 0.625 0.104 0.281 0.536 0.21 

PERSIANN-CDR 4.114 0.498 0.178 0.257 0.323 0.23 

C
h

ah
n

im
e 

CMORPH 1.398 1.844 0.078 0.059 0.388 0.06 

ERA5 0.783 0.428 0.619 0.247 0.303 0.22 

ERA-Interim 0.958 0.464 0.582 0.219 0.247 0.20 

PERSIANN 1.443 0.982 0.157 0.149 0.486 0.13 

PERSIANN-CCS 3.142 6.085 0.168 0.117 0.369 0.11 

PERSIANN-CDR 1.133 1.285 0.296 0.122 0.221 0.12 

D
o

ro
o
d

za
n
 

CMORPH 5.1717 -0.657 0.186 0.115 0.42 0.11 

ERA5 4.912 -0.232 0.386 0.37 0.273 0.33 

ERA-Interim 5.578 -0.164 0.419 0.34 0.187 0.32 

PERSIANN 5.667 -0.709 0.216 0.321 0.609 0.21 

PERSIANN-CCS 5.887 -0.309 0.207 0.274 0.577 0.20 

PERSIANN-CDR 5.456 -0.387 0.348 0.228 0.377 0.20 

Il
am

 

CMORPH 5.976 -0.514 0.141 0.275 0.516 0.21 

ERA5 5.389 0.115 0.463 0.353 0.197 0.33 

ERA-Interim 4.855 -0.037 0.407 0.303 0.254 0.28 

PERSIANN 5.205 -0.495 0.248 0.285 0.527 0.22 

PERSIANN-CCS 5.905 -0.07 0.178 0.234 0.561 0.18 

PERSIANN-CDR 5.1350 -0.016 0.266 0.207 0.347 0.19 

Ji
ro

ft
 

CMORPH 3.855 0.102 0.081 0.174 0.504 0.15 

ERA5 3.744 0.747 0.506 0.280 0.318 0.25 

ERA-Interim 2.711 0.103 0.529 0.28 0.327 0.25 

PERSIANN 2.956 -0.376 0.197 0.253 0.655 0.17 

PERSIANN-CCS 3.702 0.53 0.168 0.21 0.571 0.16 

PERSIANN-CDR 2.7545 -0.059 0.355 0.174 0.332 0.16 

K
ar

aj
 

CMORPH 5.066 -0.534 0.063 0.276 0.449 0.23 

ERA5 3.068 0.062 0.627 0.389 0.145 0.37 

ERA-Interim 3.957 -0.007 0.574 0.329 0.07 0.32 

PERSIANN 4.798 -0.524 0.26 0.461 0.487 0.32 

PERSIANN-CCS 6.357 0.436 0.313 0.47 0.363 0.37 

PERSIANN-CDR 4.571 -0.002 0.368 0.362 0.171 0.34 

L
at

ia
n

 

CMORPH 4.494 -0.132 0.024 0.226 0.41 0.20 

ERA5 2.9073 -0.222 0.622 0.452 0.184 0.41 

ERA-Interim 3.209 0.037 0.538 0.279 0.056 0.27 

PERSIANN 3.959 -0.449 0.227 0.434 0.488 0.30 

PERSIANN-CCS 6.058 0.709 0.266 0.424 0.359 0.34 
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Station Datasets Name RMSE (mm) RB CC POD FAR CSI 

PERSIANN-CDR 3.808 0.082 0.327 0.316 0.171 0.30 

M
ah

ab
ad

 

CMORPH 3.723 -0.568 0.112 0.257 0.574 0.19 

ERA5 2.6404 -0.057 0.622 0.422 0.157 0.39 

ERA-Interim 3.187 0.541 0.597 0.372 0.066 0.36 

PERSIANN 3.68 -0.332 0.257 0.387 0.506 0.28 

PERSIANN-CCS 5.812 0.743 0.174 0.370 0.422 0.29 

PERSIANN-CDR 3.902 0.627 0.355 0.322 0.208 0.30 

R
aj

ae
i 

CMORPH 5.2700 -0.599 0.02 0.285 0.538 0.21 

ERA5 4.64 0.539 0.594 0.464 0.143 0.43 

ERA-Interim 4.262 -0.301 0.465 0.454 0.114 0.43 

PERSIANN 5.37 -0.602 0.038 0.368 0.71 0.19 

PERSIANN-CCS 7.806 0.295 0.01 0.341 0.651 0.21 

PERSIANN-CDR 5.0529 -0.385 0.14 0.367 0.483 0.27 

S
ef

id
ro

o
d
 

CMORPH 3.475 0.242 0.069 0.187 0.467 0.16 

ERA5 5.767 1.7 0.301 0.342 0.449 0.27 

ERA-Interim 3.808 2.143 0.433 0.21 0.073 0.21 

PERSIANN 3.241 0.2004 0.1679 0.298 0.483 0.23 

PERSIANN-CCS 6.342 2.282 0.124 0.286 0.402 0.24 

PERSIANN-CDR 3.585 1.407 0.258 0.252 0.203 0.24 

Z
ay

an
d

er
o
o

d
 

CMORPH 3.294 0.03 0.061 0.135 0.472 0.12 

ERA5 2.191 -0.089 0.576 0.33 0.253 0.30 

ERA-Interim 2.613 0.6118 0.564 0.265 0.057 0.26 

PERSIANN 2.7745 -0.125 0.332 0.317 0.4628 0.25 

PERSIANN-CCS 4.1605 1.092 0.2346 0.283 0.4187 0.24 

PERSIANN-CDR 2.89 0.586 0.4316 0.237 0.2439 0.22 

Z
ag

ro
s 

CMORPH 4.417 -0.792 -0.006 0.086 0.842 0.06 

ERA5 4.5305 0.369 0.452 0.215 0.201 0.20 

ERA-Interim 4.095 0.0569 0.437 0.215 0.208 0.21 

PERSIANN 4.563 -0.179 0.312 0.186 0.4868 0.16 

PERSIANN-CCS 5.975 0.489 0.161 0.158 0.4868 0.14 

PERSIANN-CDR 4.2278 0.1218 0.3729 0.148 0.2416 0.14 
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Fig. 5-1. Probability Density Function (PDF) of intensity daily precipitation in (a) Bookan (b) Chahnime (c) 

Ilam (d) Doroodzan (e) Jiroft (f) Karaj 
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Fig. 5-2. Probability Density Function (PDF) of intensity daily precipitation in (g) Latian (h) Mahabad (i) 

Rajaei (j) Sefidrood (k) Zayanderood (l) Zagros 

 

4. Conclusion 

In this study, various satellite precipitation 

products from models such as ERA-Interim 

and ERA5 reanalysis, as well as satellite-gauge 

data from CMORPH, PERSIANN, 

PERSIANN-CDR, and TPERSIANN-CCS, 

were compared with observational data. The 

study aimed to evaluate the accuracy and 

consistency of these different precipitation 

products with ground-based measurements. 

Annual rainfall estimates were generated 

using the IDW method to compare with 

observed data, while monthly evaluations were 

conducted using Taylor diagrams to assess 

data at 12 stations. Daily precipitation 

evaluations were performed using evaluation 

indices like CC, RMSE, and RB, as well as 

classification indices like FAR, POD, and CSI. 

Probability density function curves were 

mapped to assess model performance and 
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precision in detecting different rainfall 

intensities. 

The results indicated that reanalysis data 

from ERA-Interim and ERA5, as well as the 

PERSIANN-CDR product, showed 

consistency with observational data. Bias 

correction techniques were applied to improve 

the accuracy of estimated precipitation data 

from satellite models. The study also 

highlighted the impact of incorporating ground 

observation data into satellite precipitation 

products, with better results observed when 

combining satellite and ground-based data. 

Overall, the ERA5, ERA-Interim, and 

PERSIANN-CDR satellite products showed 

higher accuracy in estimating precipitation 

compared to other models. These models were 

also found to be more suitable for filling data 

gaps and completing missing information. 

Further analysis revealed that ERA5 and ERA-

Interim models performed better in detecting 

rainy and non-rainy days, with ERA5 showing 

the best overall performance among the 

models evaluated. 

The study concluded that satellite 

precipitation products, particularly from ERA-

Interim, ERA5, and PERSIANN-CDR, offer 

higher accuracy in estimating precipitation and 

can be valuable for filling data gaps in areas 

without ground measurements. The results also 

emphasized the importance of considering 

different factors, such as spatial resolution and 

model performance, when evaluating satellite 

precipitation products for hydrological studies.  
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