
تعداد نشریات | 21 |
تعداد شمارهها | 301 |
تعداد مقالات | 3,173 |
تعداد مشاهده مقاله | 3,211,861 |
تعداد دریافت فایل اصل مقاله | 2,380,312 |
ارزیابی پاسخهای فیزیولوژیکی و بیوشیمیایی عدس (Lens culinaris)به تنش خشکی و آبیاری مجدد | ||
تنشهای محیطی در علوم زراعی | ||
مقاله 4، دوره 17، شماره 4، دی 1403، صفحه 703-719 اصل مقاله (1.34 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22077/escs.2024.6428.2213 | ||
نویسندگان | ||
سولماز عزیزی1؛ ناصر زارع* 2؛ پریسا شیخ زاده3؛ جوانشیر عزیزی4؛ رحمت کریمیزاده5 | ||
1دانشجوی دکتری، گروه تولید و ژنتیک گیاهی، دانشکده کشاورزی و منابع طبیعی، دانشگاه محقق اردبیلی، اردبیل | ||
2استاد، گروه تولید و ژنتیک گیاهی، دانشکده کشاورزی و منابع طبیعی، دانشگاه محقق اردبیلی، اردبیل | ||
3دانشیار، گروه تولید و ژنتیک گیاهی، دانشکده کشاورزی و منابع طبیعی، دانشگاه محقق اردبیلی، اردبیل | ||
4دانشیار، گروه مهندسی آب، دانشکده کشاورزی و منابع طبیعی، دانشگاه محقق اردبیلی، اردبیل | ||
5استادیار، موسسه تحقیقات کشاورزی دیم کشور، سازمان تحقیقات، آموزش و ترویج کشاورزی، گچساران، ایران | ||
چکیده | ||
این تحقیق بهمنظور بررسی نقش تحمل خشکی و آبیاری مجدد پس از تنش در ارقام عدس طراحی شد. تیمارهای آزمایشی شامل چهار رقم عدس (رقم محلی (نمین)، سپهر، گچساران و کیمیا)، تنش خشکی {شاهد (آبیاری در 80% ظرفیت مزرعهای)، تنش متوسط (آبیاری در 55% ظرفیت مزرعهای) و تنش شدید (آبیاری در 30% ظرفیت مزرعهای)} و سه زمان نمونهبرداری (سه و شش روز پس از تنش و دو روز پس از آبیاری مجدد (بازیابی)) بود. تنش خشکی باعث کاهش کلروفیل a، کلروفیل b، کلروفیل کل، کارتنوئید، پروتئین و عملکرد و اجزای عملکرد شد و کاهش این صفات در زمان شش روز پس از نمونهبرداری بیشتر بود؛ اما در شرایط بازیابی افزایش این صفات قابلمشاهده بود. علاوه بر این، تنش خشکی موجب افزایش میزان پرولین، H2O2، MDA و همچنین افزایش فعالیت آنزیمهای آنتی اکسیدان (CAT، PPO و POX) شد. بهطورکلی، افزایش شدت و مدتزمان تنش موجب افزایش پرولین (63%)، H2O2 (19%)، MDA (110%)، CAT (33%)، PPO (56%) و POX (24%) نسبت به تیمار شاهد گردید. نتایج نشان داد که همبستگی H2O2 و MDA مثبت و معنیدار بود، علاوه بر این در شرایط بازیابی کاهش معنیدار اثرات مخرب تنش (میزان H2O2، MDA) و فعالیت آنزیمهای آنتی اکسیدان قابلمشاهده بود. اثر تنش خشکی بر عملکرد و اجزای عملکرد (تعداد دانه، تعداد غلاف، وزن 100 دانه و 3 دانه) ارقام عدس متفاوت بود. تنش خشکی در مرحله گلدهی باعث کاهش تعداد دانه (20%) و غلاف در بوته (37%) و وزن صد دانه (16%) شد که منجر به کاهش (29%) عملکرد شد. رقم گچساران در شرایط نرمال بیشترین عملکرد را داشت، همچنین در شرایط تنش خشکی ارقام گچساران و سپهر بیشترین عملکرد را از خود نشان دادند. کمترین میزان عملکرد در رقم بومی در شرایط تنش مشاهده شد. بر اساس نتایج این آزمایش ارقام سپهر و گچساران ارقام مناسبی برای کشت در مناطقی که با تنش کمآبی مواجه هستند میباشند. | ||
کلیدواژهها | ||
آنزیمهای آنتیاکسیدان؛ پراکسید هیدروژن؛ تنش خشکی؛ کلروفیل؛ مالوندیآلدهید | ||
مراجع | ||
Abrishamchi, P., Ganjeali, A., Sakeni, H., 2012. Evaluation of morphological traits, proline content and antioxidant enzymes activity in chickpea genotypes (Cicer arietinum L.) under drought stress. Iranian Journal of Pulses Research. 3, 17-30. [In Persian with English summary]. https://doi.org/10.22067/IJPR.V1391I2.24695 Aebi, H., 1984. Catalase in vitro. Methods Enzymol. 105, 121–126. https://doi.org/10.1016/s0076-6879(84)05016-3 Ahmadi, A., Amini Dehaghi, M., Sedghi, M., Mansourifar, C., 2020. The effect of drought stress on antioxidant enzyme activity and chlorophyll content of some advanced genotypes of lentil (Lens culinaris Medik). Enviromental Stress in Crope Seinces. 12, 1105- 1116. https://doi.org/10.22077/escs.2019.1712.1390 Aranjuelo, I., Molero, G., Erice, G., Avice, J. C., Nogués, S., 2011. Plant physiology and proteomics reveal the leaf response to drought in alfalfa (Medicago sativa L.). Journal of Experimental Botany. 62, 111–123. https://doi.org/10.1093/jxb/erq249 Arnon, A., 1967. Method of extraction of chlorophyll in the plants. Agron. Journal. 23, 112–121. Bahadoran, M., Abrishamchi, P., Ejtehadi, H., Ghassemzadeh, F.,2015. Study on some physiological characteristics of Salsola richteri in drought conditions in the two desert regions of the South Khorasan province. Plant Biology. 7, 1-14. [In Persian with English summary]. https://dorl.net/dor/20.1001.1.20088264.1394.7.24.2.0 Bates, L., Waldren, S., Teare, I., 1973. Rapid determination of free proline for water stress studies. Plant Soil. 39, 205–207. https://doi.org/10.1007/BF00018060 Blokhina, O., Virolainen E., Fagerstedt, K.V., 2003. Antioxidants, oxidative damage and oxygen deprivation stress: a review. Annals of Botany. 91, 179-194. https://doi.org/10.1093/aob/mcf118 Bradford, M.M., 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Annals Biochem. 72, 248–254. https://doi.org/10.1016/0003-2697(76)90527-3 Chen, D., Wang, S., Cao, B., Cao, D., Leng, G., Li, H., Yin, L., Shan, L., Deng, X., 2016. Genotypic variation in growth and physiological response to drought stress and re-watering reveals the critical role of recovery in drought adaptation in maize seedlings. Frontiers in Plant Science. 6,1–15. https://doi.org/10.3389/fpls.2015.01241 Demiral, T., Türkan, I., 2004. Does exogenous glycine betaine affect antioxidative system of rice seedlings under NaCl treatment? Journal of Plant Physiology. 161, 1089-1100. https://doi.org/10.1016/j.jplph.2004.03.009 El Haddad, N., Rajendran, K., Smouni, A., Es-safi, N.E., Benbrahim, N., Mentag, R., Nayyar, H., 2020. Screening the FIGS set of lentil (Lens culinaris Medikus) germplasm for tolerance to terminal heat and combined drought-heat stress. Agronomy. 1–27. https://doi.org/10.3390/agronomy10071036 Ganjeali, A., Nezami, A., 2008. Ecophysiology and Limiting the Yield of Beans. Mashhad University Jihad Publishers, pp. 500. [In Persian]. Guo, Z., W. Ou, Lu S., Zhong. Q., 2006. Differential responses of antioxidative system to chilling and drought in four rice cultivars differing in sensitivity. Plant Physiology and Biochemistry. 44, 828-836. https://doi.org/10.1016/j.plaphy.2006.10.024 Hura, T., Grzesiak, S., Hura, K., Elisabeth Thiemt, E., Tokarz, K., Wedzony, M., 2007. Physiological and biochemical tools useful in drought-tolerance detection in genotypes of winter triticale: accumulation of ferulic acid correlates with drought tolerance. Annals of Botany. 100, 767–775. https://doi.org/10.1093/aob/mcm162 Kar, M., Mishra, D.,1976. Catalase, peroxidase and polyphenol oxidase activity during rice leaf senescence. Plant Physiology. 57, 315–319. https://doi.org/10.1104/pp.57.2.315 Kumar, S., Barpete, S., Kumar, J., Gupta, P., Sarker, A., 2013. Global Lentil Production: Constraints and Strategies. SATSA Mukhapatra–Annu Tech. 17, 1-13. Ministry of Agricultural Jahad. 2021. Agricultural Products Statistics. p. 19. [In Persian]. Mollasadeghi, V., Dadbakhsh, A., 2011. Evaluation of some yield components in wheat genotypes under the influence of drought stress after flowering. Australian Journal of Basic and Applied Sciences. 5, 1137-1142. Monakhova, O.F., Chemyadev II., 2002. Protective role of kartolin-4 in wheat plants exposed to soil drought. Applied Biochemistry and Microbiology. 38, 373–380. https://doi.org/10.1023/A:1016243424428 Muscolo, A., Sidari, M., Anastasi, U., Santonoceto, C., Maggio, A., 2013. Effect of PEG-induced drought stress on seed germination of four lentil genotypes. Journal of Plant Interactions. 9, 354–363. https://doi.org/10.1080/17429145.2013.835880 Pintó-Marijuan, M., Munné-Bosch, S., 2014. Photo-oxidative stress markers as a measure of abiotic stress-induced leaf senescence: advantages and limitations. Journal of Experimental Botany. 65, 3845–3857. https://doi.org/10.1093/jxb/eru086 Plaut, Z., Butow, B.J., Blumenthal, C.S., Wrigley, C.W., 2004. Transport of dry matter into meveloping wheat kernels and its contribution to grain yield under post-anthesis water deficit and elevated temperature. Field Crops Research. 86, 185–98. https://doi.org/10.1016/j.fcr.2003.08.005 Rahbarian, R., Khavari-nejad, R., Ganjeali, A., Bagheri A. R., Najafi, F., 2011. Drought stress effects on photosynthesis, chlorophyll fluorescence and water relations in tolerant and susceptible chickpea (Cicer arietinum L.) genotypes. Acta Biologica Cracoviensia. 53, 47-56. https://doi.org/10.2478/v10182-011-0007-2 Rasti Sani, M., Lahouti, M., Ganjeali, A., 2014. Effect of drought stress on some morphophysiological traits and chlorophyll fluorescence of red bean seedlings (Phaseolus vulgaris L.). Iranian Journal of Pulses Research. 5, 103-116. [In Persian with English summary]. https://doi.org/10.22067/IJPR.V1393I1.46210 Sabaghpour, S., Seyedi, F., Mahmoodi, A., Safikhani., M, Pezeshkpour, P., Rostemi, B., Kamel, M., Ferayedi, Y., Alahyar, N., Poursiabidi, M. 2013. Kimiya, a new high yielding lentil cultivar for moderate cold and semi warm climate of Iran. Seed and Plant Journal. 29, 397-399. [In Persian with English summary]. https://doi.org/10.22092/SPIJ.2017.111165 Sehgal, A., Sita, K, Bhandari, K., Kumar, S., Kumar, J., Vara Prasad, P.V., Siddique, K.H.M., Nayyar, H., 2019. Influence of drought and heat stress, applied independently or in combination during seed development, on qualitative and quantitative aspects of seeds of lentil (Lens culinaris Medikus) genotypes, differing in drought sensitivity. Plant Cell and Environment. 42, 198–211. https://doi.org/10.1111/pce.13328 Singh, D., Singh, CK., Taunk, J., Jadon, V., Pal, M., Gailkwad, K., 2019. Genome wide transcriptome analysis reveals vital role of heat responsive genes in regulatory mechanisms of lentil (Lens culinaris Medikus). Science Reporter. 9, 1–19. https://doi.org/10.1038/s41598-019-49496-0 Sinha, R., Kumar, A., Anil, P., Singh, K., 2018. Physiological, biochemical and molecular responses of lentil (Lens culinaris Medik) genotypes under drought stress. Indian Journal Plant Physiology. https://doi.org/10.1007/s40502-018-0411-7 Srivastava, R., Vasishtha, H., 2012. Saponins and lectins of Indian chickpeas (Cicer arietinum) and lentils (Lens culinaris). Indian Journal of Agricultural Biochemistry. 25, 44-47. Talaat, NB., Shawky, BT., Ibrahim, AS., 2015. Alleviation of drought-induced oxidative stress in maize (Zea mays L.) plants by dual application of 24-epibrassinolide and spermine. Environmental and Experimental Botany. 113, 47–58. https://doi.org/10.1016/j.envexpbot.2015.01.006 Tariq, A., Pan, K., Olatunji, OA., Graciano, C., Li, Z., Wu, X., Chen, W., Song, D., Huang, D., Xue, T., Zhang, A., 2018. Phosphorous fertilization alleviates drought effects on Alnus cremastogyne by regulating its antioxidant and osmotic potential. Scientific Reports. 8, 1–11. https://doi.org/10.1038/s41598-018-24038-2 Valentovic, P., Luxova, M., Kolarovic, L., Gasparicova, O., 2006. Effect of osmotic stress on compatible solutes content, membrane stability and water relations in two maize cultivars. Plant, Soil and Environmen. 52, 186-191. https://doi.org/10.17221/3364-PSE Ying, Y. Q., Song, L. L., Jacobs, D. F., Mei, L., Liu, P., Jin, S. H., et al., 2015. Physiological response to drought stress in Camptotheca acuminata seedlings from two provenances. Frontiers in Plant Science. 6, 361. https://doi.org/10.3389/fpls.2015.00361 Zaho, S., Xu, C., Zou, Q., 1994. Improvements of the method for measurement of malondialdehyde in plant tissue. Plant Physiology. Communications. 30, 207–210. Zaragoza-Martínez, F., Lucho-Constantino, GG., Ponce-Noyola, T., Esparza-Garcıa, F., Poggi-Varaldo, H., Cerda-Garcı´a-Rojas, C.M., Trejo-Tapia, G., Ramous-Valdivia, C., 2016. Jasmonic acid stimulates the oxidative responses and triterpene production in Jatropha curcas cell suspension cultures through mevalonate as biosynthetic precursor. Plant Cell, Tissue and Organ Culture. 127, 47–56. https://doi.org/10.1007/s11240-016-1028-z | ||
آمار تعداد مشاهده مقاله: 444 تعداد دریافت فایل اصل مقاله: 241 |