
تعداد نشریات | 21 |
تعداد شمارهها | 301 |
تعداد مقالات | 3,173 |
تعداد مشاهده مقاله | 3,211,769 |
تعداد دریافت فایل اصل مقاله | 2,380,293 |
سازگاری و پایداری عملکرد لاین های امید بخش کینوا در شرایط شور | ||
تنشهای محیطی در علوم زراعی | ||
مقاله 6، دوره 17، شماره 4، دی 1403، صفحه 739-755 اصل مقاله (1.68 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22077/escs.2024.6460.2216 | ||
نویسندگان | ||
معصومه صالحی* 1؛ فرهاد دهقانی1؛ یوسف هاشمی نژاد2؛ علیداد کرمی3؛ سردار کشتکار4 | ||
1مرکز ملی تحقیقات شوری، سازمان تحقیقات آموزش و ترویج کشاورزی، یزد | ||
2مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی خراسان رضوی، سازمان تحقیقات آموزش و ترویج کشاورزی، مشهد | ||
3مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی فارس، سازمان تحقیقات آموزش و ترویج کشاورزی، شیراز | ||
4مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی بوشهر، سازمان تحقیقات آموزش و ترویج کشاورزی، بوشهر | ||
چکیده | ||
به منظور بررسی اثر متقابل ژنوتیپ در محیط و تعیین سازگاری و پایداری عملکرد دانه در لاینهای کینوا، این مطالعه طی دو سال زراعی (99-1398) در 5 منطقه (یزد، سبزوار، شیراز، بوشهر و ایرانشهر) در قالب طرح بلوکهای کامل تصادفی با 5 لاین و سه تکرار انجام شد. بعد از آزمون بارتلت تجزیه مرکب انجام شد و تجزیه پایداری با استفاده از روشهای مختلف پارامتریک و غیر پارامتریک انجام شد. علاوه بر عملکرد، وزن هزار دانه، سایز دانه و میزان ساپونین نیز اندازهگیری شد. تجزیه واریانس مرکب نشان داد اثر متقابل سه جانبه سال، مکان و لاین بر صفات اندازهگیری شده معنیدار بود. بیشترین و کمترین میزان عملکرد دانه به ترتیب مربوط به ایرانشهر سال اول (472 گرم در متر مربع) و سبزوار سال دوم (99.6 گرم در مترمربع) بود. در کلیه مناطق تیتیکاکا بیشترین ارتفاع کف (میزان ساپونین) را داشت و میزان ارتفاع کف لاین D نصف رقم تیتیکاکا بود. نتایج مقایسه میانگین نشان داد که بیشترین عملکرد دانه به لاین D تعلق داشت. بر اساس میزان میانگین مجموع رتبه ها لاین D (1.44±1.09) بیشترین پایداری و لاین B کمترین پایداری را بر اساس شاخص های پارامتریک و غیر پارامتریک پایداری داشت. بر اساس نتایج روش GGEbiplot و روشهای غیرپارامتریک و پارامتریک لاین D بیشترین عملکرد و پایداری را داشت. این لاین به نام رقم صدوق نامگذاری گردیده است. | ||
کلیدواژهها | ||
اثرمتقابل ژنوتیپ×محیط؛ پایداری عملکرد؛ رقم صدوق؛ شوری؛ کینوا | ||
مراجع | ||
Abugoch James, L.E., 2009. Quinoa (Chenopodium quinoa Willd.): composition, chemistry, nutritional, and functional properties. In: Steve, L.T. (ed.), Advances in Food and Nutrition Research. Academic Press. p. 1-31. https://doi.org/10.1016/S1043-4526(09)58001-1 Acikgoz, E., Ustun, A., Gul, I., Anlarsal, E., Tekeli, A.S., Nizam, I., Avcioglu, R., Geren, H., Cakmakci, S. Aydinoglu, B., 2009. Genotype x environment interaction and stability analysis for dry matter and seed yield in field pea (Pisum sativum L.). Spanish Journal of Agricultural Research. 7, 96-1062171-9292. https://doi.org/10.5424/sjar/2009071-402 Alcocer, E., Choquecallata, S., López G. & Marca, F., 2017. Development of Quinoa and Corn Extrusions. In: Records of the Scientific and Technological Symposium on Sustainable Production of Quinoa and Related Species [Memoria de la Jornada Científica y Tecnológica de la Producción Sostenible de Quinua y Especies Afines], pp. 130-132. CIQ, Bolivia. Available at: https://www.fao.org/fao-who-codexalimentarius/sh-proxy/en/?lnk=1&url=https%253A%252F%252Fworkspace.fao.org%252Fsites%252Fcodex%252FCircular%252520Letters%252FCL%2525202020-25%252FCL2019-92-CPL_Comments_CompilationFRENCH.pdf Böndel, K.B., Schmid, K.J., 2021. Quinoa Diversity and Its Implications for Breeding. In: S. M. Schmöckel, editor The Quinoa Genome. Springer International Publishing, Cham. p. 107-118. https://doi.org/10.1007/978-3-030-65237-1_7 Cancino-Espinoza, E., Vázquez-Rowe, I., Quispe, I., 2018. Organic quinoa (Chenopodium quinoa L.) production in Peru: Environmental hotspots and food security considerations using Life Cycle Assessment. Science of the Total Environment. 637, 221-2320048-9697. https://doi.org/10.1016/j.scitotenv.2018.05.029 Chokan, R., 2007. Genetic analysis methods Quantitative traits in plant breedingSeed and plant breeding Institute, Karaj-Iran. [In Persian]. Dendy, D.A., Dobraszczyk, B.J., 2004. Cereales y productos derivados, Química y tecnología. Ed. Acribia. Zaragoza, España. 403-421.ISBN: 978-84-200-1022-9 Eberhart, S.T., Russell, W., 1966. Stability parameters for comparing varieties 1. Crop Science. 6, 36-400011-183X. https://doi.org/10.2135/cropsci1966.0011183X000600010011x Fiallos-Jurado, J., Pollier, J., Moses, T., Arendt, P., Barriga-Medina, N., Morillo, E., Arahana, V., de Lourdes Torres, M., Goossens, A., Leon-Reyes, A., 2016. Saponin determination, expression analysis and functional characterization of saponin biosynthetic genes in Chenopodium quinoa leaves. Plant Science. 250, 188-197. https://doi.org/10.1016/j.plantsci.2016.05.015 Finlay, K., Wilkinson, G., 1963. The analysis of adaptation in a plant-breeding programme. Australian Journal of Agricultural Research. 14, 742-754. http://doi.org/10.1071/AR9630742 Francis, T., Kannenberg, L., 1978. Yield stability studies in short-season maize. I. A descriptive method for grouping genotypes. Canadian Journal of Plant Science. 58, 1029-1034. https://doi.org/10.4141/cjps78-157 Graf, B.L., Rojas‐Silva, P., Rojo, L.E., Delatorre‐Herrera, J., Baldeón, M.E., Raskin, I., 2015. Innovations in health value and functional food development of quinoa (Chenopodium quinoa Willd.). Comprehensive Reviews in Food Science and Food Safety. 14, 431-445. https://doi.org/10.1111/1541-4337.12135 Huehn, M., 1990. Nonparametric measures of phenotypic stability. Part 1: Theory. Euphytica. 47, 189-194. https://doi.org/10.1007/BF00024241. Jafari, T., Farshadfar, E., 2018. Stability analysis of bread wheat genotypes (Triticum aestivum L.) by GGE biplot. Cereal Research. 8, 199-208. [In Persian with English summary]. https://doi.org/10.22124/c.2018.6232.1243 Jamshidmoghaddam, M., Pourdad, S., 2013. Evaluation of seed yield adaptability of spring safflower genotypes using nonparametric parameters and GGE biplot method in rain-fed conditions. Seed and Plant Improvement Journal. 29, 2008-6954. [In Persian with English summary]. https://doi.org/10.22092/spij.2017.111142 Jarvis, D.E., Ho, Y.S., Lightfoot, D.J., Schmöckel, S.M., Li, B., Borm, T.J., Ohyanagi, H., Mineta, K., Michell, C.T., Saber, N., 2017. The genome of Chenopodium quinoa. Nature. 542, 307-312. https://doi.org/10.1038/nature21370 Kang, M., 1988. A rank-sum method for selecting high-yielding, stable corn genotypes. Cereal Research Communications. 16, 113-115. https://www.jstor.org/stable/23782771 Khodarahmi, M., Soughi, H., Jafarby, J., Khavarinejad, M.S., 2021. Stability Analysis of Bread Wheat Genotypes by using GGE Biplot Method in Caspian Sea Regions. Journal of Crop Breeding. 13, 83-90. [In Persian with English summary]. https://doi.org/10.52547/jcb.13.40.83 Koziol, M.J., 1991. Afrosimetric estimation of threshold saponin concentration for bitterness in quinoa (Chenopodium quinoa Willd). Journal of the Science of Food and Agriculture. 54, 211-219. https://doi.org/10.1002/jsfa.2740540206 Liu, C., Ma, R., Tian, Y., 2022. An overview of the nutritional profile, processing technologies, and health benefits of quinoa with an emphasis on impacts of processing. Critical Reviews in Food Science and Nutrition. 13, 1-18. https://doi.org/10.1080/10408398.2022.2155796 Mohammadi, R., Haghparast, R., Amri, A., Ceccarelli, S., 2009. Yield stability of rainfed durum wheat and GGE biplot analysis of multi-environment trials. Crop and Pasture Science. 61, 92-101. https://doi.org/10.1071/CP09151 Mota, C., Santos, M., Mauro, R., Samman, N., Matos, A.S., Torres, D., Castanheira, I., 2016. Protein content and amino acids profile of pseudocereals. Food Chemistry. 193, 55-61. https://doi.org/10.1016/j.foodchem.2014.11.043 Nassar, R., Huehn, M., 1987. Studies on estimation of phenotypic stability: Tests of significance for nonparametric measures of phenotypic stability. Biometrics. 43, 45-53. https://doi.org/10.2307/2531947 Plaisted, R., Peterson, L., 1959. A technique for evaluating the ability of selections to yield consistently in different locations or seasons. American Potato Journal. 36, 381-385. https://doi.org/10.1007/BF02852735 Pour-Aboughadareh, A., Yousefian, M., Moradkhani, H., Poczai, P., Siddique, K.H., 2019. STABILITYSOFT: A new online program to calculate parametric and non‐parametric stability statistics for crop traits. Applications in Plant Sciences. 7,1-6. https://doi.org/10.1002/aps3.1211 Roustaie, M., Moghaddam, M., Mahfouzi, S., Mohammadi, A., 1996. Comparison of stability of grain yield in wheat and barley cultivars in dry lands. Proceeding of the 4 th Iranian Crop Sci Congress. Isfahan. University of Technology, Isfahan, Iran. [In Persian]. Roustaie, M., Sadeghzadeh Ahari, D., Hesami, A., Soleymani, K., Pashapour, H., Nader Mahmoudi, K., Pour Siah Bidi, M., Ahmadi, M., Hassanpour Hosni, M., Abediasl, G., 2003. Study Of Adaptability And Stability Of Grain Yield Of Bread Wheat Genotypes In Cold And Moderate-Cold dryland Areas. Seed and Plant Journal. 19, 263-275. [In Persian with English summary]. https://sid.ir/paper/357880/en Ruiz, K.B., Biondi, S., Oses, R., Acuña-Rodríguez, I.S., Antognoni, F., Martinez-Mosqueira, E.A., Coulibaly, A., Canahua-Murillo, A., Pinto, M., Zurita-Silva, A., 2014. Quinoa biodiversity & sustainability for food security under climate change. A review. Agronomy for sustainable development. 34, 349-359. https://doi.org/10.1007/s13593-013-0195-0 Sabaghnia, N., Mohammadi, M., Karimizadeh, R., 2013. Interpreting genotype× environment interaction of beard wheat genotypes using different nonparametric stability statistics. Agriculture and Forestry, Poljoprivreda i Sumarstvo. 59, 21-35. UDC (UDK) UDK 633.11 Salehi, M., Dehghani, F., 2024. Determination of salinity stress tolerance threshold of quinoa genotypes under field conditions. Enviromental Stresses in Crop Science. 16 (4), 1123-1137. [In Persian with English summary]. https://doi.org/10.22077/ESCS.2023.5309.2138 Salehi, M., Pourdad, S.S., 2021. Preliminary evaluation of the quinoa seed yield under rainfed spring cropping in warm and temperate regions. Iranian Dryland Agronomy Journal. 10, 23-39. [In Persian with English summary]. https://doi.org/10.22092/idaj.2021.342612.302 Shukla, G., 1972. Some statistical aspects of partitioning genotype environmental components of variability. Heredity. 29, 237-245. https://doi.org/10.1038/hdy.1972.87 Soughi, H., Vahabzadeh, M., Arabi, M.K., Jafarby, J., Khavarinejad, S., Ghasemi, M., Fallahi, H., Amini, A., 2009. Study on grain yield stability of some promising bread wheat lines in northern warm and humid climate of Iran. Seed and Plant Improvement Journal. 25, 211-222. [In Persian with English summary]. https://doi.org/10.22092/spij.2017.111023 Thennarasu, K., 1995. On Certain Non-parametric Procedures for Studying Genotype-Environment Inertactions and Yield Stability. IARI, Division of Agricultural Statistics, New Delhi. Corpus ID: 202933464 Vaezi, B., Ahmadi, J., 2010. Assessment of genotype× environment interaction and stability of yield in advanced barley lines in rain fed conditions. Iranian Journal of Field Crop Science. 41, 395-402. [In Persian with English summary]. https://doi.org/20.1001.1.20084811.1389.41.2.18.9 Van Loo, E., Trindade, I.L.L., Borm, T.T., 2016. Marker Development for Bitter-Tasting-Saponin Gene in Quinoa (Chenopodium quinoa). https://edepot.wur.nl/394421 Wricke, G., 1962. Uber eine Methode zur Erfassung der okologischen Streubreite in Feldverzuchen. Z. pflanzenzuchtg. 47, 92-96. https://www.scirp.org/(S(lz5mqp453edsnp55rrgjct55.))/reference/referencespapers.aspx?referenceid=2658333 Yan, W., 2001. GGEbiplot—A Windows application for graphical analysis of multienvironment trial data and other types of two‐way data. Agronomy Journal. 93, 1111-1118. https://doi.org/10.2134/agronj2001.9351111x | ||
آمار تعداد مشاهده مقاله: 537 تعداد دریافت فایل اصل مقاله: 265 |