# JOURNAL OF HORTICULTURE AND POSTHARVEST RESEARCH 2024, VOL. 7(2), 115-140



Journal of Horticulture and Postharvest Research





# Phenotypic diversity of some Iranian grape cultivars and genotypes (*Vitis vinifera* L.) using morpho-phenological, bunch and berry traits

### Saiyed Mohammad Mahdi Mirfatah<sup>1</sup>, Mousa Rasouli<sup>2,\*</sup>, Mansour Gholami<sup>3</sup> and Abbas Mirzakhani<sup>4</sup>

<sup>1</sup>Grape and Raisin Research Institute, Malayer University, Iran

<sup>2</sup>Department of Horticultural Science Engineering, Faculty of Agriculture and Natural Resources, Imam Khomeini International University, Qazvin, Iran

<sup>3</sup>University College of Omran-Toseeh, Hamedan, Iran

<sup>4</sup>Horticulture Crops Research Department, Markazi Agricultural and Natural Resources Research and Education center, AREEO, Arak, Iran

# ARTICLE INFO

#### **Original Article**

#### Article history:

Received 26 January 2024 Revised 2 April 2024 Accepted 3 April 2024

#### **Keywords:**

Berry Cluster analysis Correlation coefficient Grapes Morphological traits

DOI: 10.22077/jhpr.2024.7165.1355

P-ISSN: 2588-4883

E-ISSN: 2588-6169

#### \*Corresponding author:

Department of Horticultural Science Engineering, Faculty of Agriculture and Natural Resources, Imam Khomeini International University, Qazvin, Iran.

Email: mousarasouli@gmail.com; m.rasouli@eng.ikiu.ac.ir

© This article is open access and licensed under the terms of the Creative Commons Attribution License <u>http://creativecommons.org/licenses/by/4.0/</u> which permits unrestricted, use, distribution and reproduction in any medium, or format for any purpose, even commercially provided the work is properly cited.

#### A B S T R A C T

Purpose: Grape (Vitis vinifera L.) is one of the most important horticultural products that are grown in different parts of Iran and has high nutritional values. In this study, the genetic diversity of cultivars and genotypes of some vineyards of Markazi province were investigated for the preliminary selection of superior cultivars and genotypes in terms of morphological and fruit characteristics for use in grape breeding programs. Research method: For this purpose, grouping and comparing 84 grape cultivars and genotypes were carried out using 70 traits including phenological and vegetative traits, trichome and stomata, bunch and berry traits. Findings: Based on the results, the "Sahebi Hazaveh" cultivar with 1000.17 g had highest an average bunch weight to compare other cultivars and genotypes. Results showed that, some traits such as bunch weight, bunch shoulders, fresh weight, rachis weight, the ratio of bunch weight to peduncle weight, the ratio of rachis weight to bunch weight, dry weight of bunch shoulders, length of the tail of bunch, berry weight, pedicel weight, seed weight and length of seed had a high coefficient of variation. Factor analysis reduced the evaluated traits to 10 main factors showed that they justified 78.38% of the total variance. Cluster analysis divided cultivars and genotypes into 4 main groups at five Euclidean distances. Limitations: No limitations were encountered. Originality/Value: This study indicated that grapes germplasm resources in zone are of noticeable diversities and can be promising for the utilization in the breeding programs. Based on the results, cultivars and genotypes of "Khalili Khondab" region, "Yaghoti", "Sahebi", "Fakhri", "Kharvand" and "Kondori" Hazaveh region and "Sahebi" Aghbolagh region in leafing time, late flowering, sugar percentage, bunch and berry characteristics, stomatal density, standing and lying trichome density in leaves were superior to other cultivars and genotypes.



# **INTRODUCTION**

Grapes, scientifically known as *Vitis vinifera* L., belong to the Vitaceae family, also called the Sarmentaceae or Ampelidaceae family (Kellar & Tarara, 2010; Rasouli et al., 2014; Rasouli et al., 2015; Doulti Baneh., 2015; Jahnke et al., 2021; Kupe et al., 2021). This family belongs to the Rhamnales order and is part of the hidden flowering plant group in the Rosids branch. The mentioned family has over 15 genera and approximately 1000 species, with the most important genus, Vitis, having different subgenera with varying chromosome numbers (Rasouli et al., 2015). The Asian group includes 11 species, while the European group consists of only one species. The species found in Europe and the Middle East mainly include V. vinifera. American species are highly important due to their resistance to pests, cold weather, and tolerance to calcareous soils (Rasouli et al., 2015; Jalili Marandi et al., 2016; Rasouli & Kalvandi, 2022) Grapes is one of the most important fruits that have been used by humans since ancient times. Some experts believe that grapes were used even before the emergence of cereal. Based on botanical and archaeological studies, the Near East region is considered the primary center of grapes (Kellar & Tarara, 2010; Doulti Baneh., 2015; Jahnke et al., 2021; Kupe et al., 2021). Grapes have a high nutritional value, and according to research by the Food and Agriculture Organization (FAO, 2017) table grapes contain 67 kilocalories per 100 grams, while raisins contain 268 kilocalories per 100 grams (Doulit Baneh., 2015). Vitis vinifera, known as the wine grape, is one of the most widely used plant species in horticulture and is favored by farmers. It is the only species extensively used in the food industry and consumption worldwide. Alongside apples, citrus fruits, and bananas, it is one of the most important horticultural plants widely cultivated (Kupe et al., 2021). Climate greatly affects grape diversity and production in a specific location (Akram et al., 2021). Local grape cultivars are essential for preserving crop diversity and can be crucial for food, nutrition, and economic security for many individuals. For smallholder farmers and agricultural communities in rural and marginalized areas, the diversity of local grapes can provide insurance against damage due to reduced yield and supply special ingredients for traditional local dishes and specific dietary needs. In any country where grape cultivation is practiced, there are numerous local cultivars that contribute to global grape diversity (Gago et al., 2009; Antolin et al., 2020) According to experts, grape cultivation has been common in Iran for at least 2000 years before the Common Era. Grapes are an important horticultural product with increasing cultivation area in Iran. Due to its extensive history of grape cultivation and production, Iran is recognized as one of the important centers of grape genetic diversity. With over 255,000 hectares of vineyards (10.2% of the total orchards) and an approximate production of 2.8 million tons (about 12.4% of the total fruit production). Iran is among the most significant production centers.

**Table 1.** Geographical location of tested vineyards in Markazi province to investigate morphological diversity of grapes.

| Number | Country | Province | Location   | Above sea level (m) | Latitude    | Longitude   |
|--------|---------|----------|------------|---------------------|-------------|-------------|
| 1      | Iran    | Markazi  | Marzijaran | 1728                | 34.14346552 | 49.64018154 |
| 2      | Iran    | Markazi  | Hazaveh    | 1921                | 34.18479862 | 49.53418064 |
| 3      | Iran    | Markazi  | Khondab    | 1822                | 34.38872495 | 49.15541268 |
| 4      | Iran    | Markazi  | Enaj       | 1765                | 34.23042971 | 49.31798172 |
| 5      | Iran    | Markazi  | Derman     | 2012                | 34.24812195 | 49.47916174 |
| 6      | Iran    | Markazi  | Aghbolagh  | 1965                | 34.10024373 | 49.50501716 |
| 7      | Iran    | Markazi  | Anjudan    | 1972                | 33.97994426 | 50.03023696 |



Grapes have special importance in Iran, and this crop has the highest cultivation area in the horticultural sector after pistachios and the highest production after apples (Papademetriou & Dent, 2001; Rasouli et al., 2015; Elhami et al., 2019; Khan et al., 2020) Markazi province has approximately 57,000 hectares of horticultural products in Iran. The total area of fertile and infertile vineyards in Markazi province (Center of Iran) in 2021 was about 16,000 hectares, with a production of around 148,000 tons grapes in the country according to the latest available information of the statistics of the Ministry of Jihad Agriculture and the Statistics Center of Iran and the statistical yearbooks of different provinces (Organization of Agriculture, 2021; Salehnia & Rafati, 2023). Having precise selection power among plants is necessary for breeding and production of new varieties, which depends on the identification of existing varieties and their diversity. Studying the genetic diversity in plant populations and selecting the appropriate traits for production and introduction of superior genotypes will be helpful. Additionally, studying phenotypic and genotypic diversity is crucial for identifying similar genotypes, evaluating and utilizing genetic reserves, and preserving them. Identifying and differentiating genotypes from each other, as well as studying the diversity of wild, indigenous, or modified germplasm, before starting breeding programs and to respect the intellectual property rights of breeders, is of great importance (Zahedi et al., 2023). Based on the inter- and intraspecific morphological variability, several descriptor lists, manuals and ampelographic studies are available for identification (Bodor-Pesti et al., 2023). Among the organs, leaves have the most traits, while the young shoot, bunch and berry are also important in the characterization of the genotypes. Vitis species and cultivars are described by leaf morphological characterization developed in many ways for the identification of genotypes, to clarify synonymies and distinct clones or evaluate the diversity of wild Vitis taxa (Bodor-Pesti et al., 2023). The identification of grape genotypes is usually based on the characteristics of the mature plant, which are influenced by environmental conditions. Grape genotypes are typically identified and grouped based on 130 phenological traits, evaluated and identified using phenological methods (Razi et al., 2021). Regarding screening, various studies and experiments have been conducted in Iran and other countries with the aim of finding droughttolerant or resistant genotypes as the goal of these experiments and studies. In some others, the identification of cultivars and genotypes with superior traits and high yield under these conditions is desired. Identifying resistant and tolerant cultivars and genotypes to abiotic and biotic stresses is one of the most important strategies for coping with these stresses (Razi et al., 2021). By determining appropriate morphological, physiological, and molecular traits for screening, it is possible to select cultivars and genotypes compatible with the climatic conditions of each region (Amiri & Eslamian, 2010). Among the different cultivars, there are some with desirable fruits that have gained the attention of farmers due to their high quality for table grape, raisin production, and processing. Their cultivation area is increasing recently. On the other hand, cultivars without desirable fruits lose their place and receive less attention. However, these cultivars may possess valuable genes such as resistance to pests, diseases, cold, salinity, drought, and the like, which have not been utilized and gradually become extinct due to lack of identification and accurate understanding of their nature (Khadivi-Khub et al., 2014) In a study conducted by Haddadinejad et al. (2013), screening of drought-tolerant genotypes was carried out among 698 genotypes in three stages. Initially, based on the characteristics of trichomes on the vegetative organs, 150 genotypes were selected. In the second stage, screening was done based on trunk diameter, and 44 genotypes with a diameter greater than 4 centimeters, indicating vigorous growth, were identified. In the third stage, several genotypes such as "Kaj Angor Bajnurd", "Sorkh Ghoochan", "Siah Zarqhan", and "Ghalati Shiraz" were introduced as options with traits related to drought tolerance based on 17 morphological markers related to drought stress and Pearson correlation coefficients



(quantitative traits) and Spearman (qualitative traits) between traits related to drought tolerance (Haddadinejad et al., 2013). These studies can help identify genotypes with higher tolerance and use them as the basis for commercial cultivars to achieve better water efficiency in crop production (Zahedi et al., 2023). In another study conducted by Rasouli et al. (2014), phenotypic diversity of 32 grape cultivars and genotypes was examined over a period of 3 years for morphological and pomological traits, including phenolic content and the level of the anti-cancer compound resveratrol. The results indicated high diversity among the studied cultivars and genotypes in terms of the measured traits, including bunch, berry, seed and resveratrol content (Rasouli et al., 2014). In an experiment on morphological diversity, 36 grape cultivars and genotypes were evaluated using the international grape descriptor to select superior genotypes. The traits such as bunch weight, dried bunch weight, berry weight, rachis weight, berry weight, seed weight, and skin color showed high diversity among the cultivars and genotypes and had high coefficients of variation (Rasouli et al., 2014; Razi et al., 2021). Significant positive and negative correlations were observed between some traits (Rasouli et al., 2014). Factor analysis revealed that the first and second factors had the highest contributions to the variance. Traits such as bunch weight, dried bunch weight, bunch width, berry length, berry pedicel length, and skin color were included in the first factor (PC1), which accounted for 44.16% of the total variance. Additionally, traits such as diameter, weight, length, and size of the berry were included in the second factor (PC2), which accounted for 15% of the total variance. Based on cluster analysis using the Euclidean distance, the cultivars and genotypes were divided into four groups, with important factors for distinguishing the cultivars including bunch weight, dried bunch weight, fruit sugar content, leaf width, leaf length, and leaf surface area (Rasouli et al., 2014; Razi et al., 2021). Kazemi et al. (2022) evaluated the phenotypic diversity of 60 grapevine cultivars and genotypes available in tropical, subtropical region of Khuzestan province in Iran, by using 105 phenological, morphological, biochemical and pomological traits based on the international descriptor for grapevines. Their results showed, the significant diversity of grapevine cultivars and genotypes existing in vineyards of Khuzestan province showed the superiority of native and local cultivars and genotypes such as 'Soltani' (Sultana), 'Bangi' (Ghermez) and 'Yershi' in some traits compared to other foreign cultivars (Kazemi et al., 2022). The aim of this research was to investigate the phenotypic and morphological diversity of some grape cultivars and genotypes from vineyards in different regions of Markazi province that was located in central of Iran, with a focus on morphological traits affecting drought tolerance, fruit characteristics and yield. Also, to identify and introduce superior genotypes present in native and local populations was another objective of this study.

### MATERIALS AND METHODS

The majority of vineyards in Markazi province are located in Hazaveh, Sharra River area, and to some extent in Shazand, Zarandiyeh, and Saveh. The dominant grape cultivars in the grapegrowing areas are "Bidaneh Sefid", "Bidaneh Ghermez", "Asgari", "Farahi", "Yaghoti", "Lal", and "Siah" grapes (Organization of Agriculture, 2021). Markazi province, with an area of 29,530 square kilometers, is one of the industrial and agricultural provinces in Iran, located between 33° 30' to 35° 35' N and less than 2 percent of the total area of the country. Based on the topography of the region, 75 percent of the province is mountainous and 25 percent is plains.

| D   | Cultivar/     | <b>.</b> . | 5   | Cultivar/       | - ·        | 5   | Cultivar/       |            |
|-----|---------------|------------|-----|-----------------|------------|-----|-----------------|------------|
| Row | Genotype      | Location   | Row | Genotype        | Location   | Row | Genotype        | Location   |
| 1   | Khalili       | Aghbolagh  | 29  | Sahebi          | Derman     | 57  | Fakhri          | Aghbolagh  |
| 2   | Khalili       | Marzijaran | 30  | Shirazi         | Aghbolagh  | 58  | Fakhri          | Marzijaran |
| 3   | Khalili       | Anjudan    | 31  | Shirazi         | Marzijaran | 59  | Fakhri          | Anjudan    |
| 4   | Khalili       | Hazaveh    | 32  | Shirazi         | Hazaveh    | 60  | Fakhri          | Hazaveh    |
| 5   | Khalili       | Khondab    | 33  | Shirazi         | Khondab    | 61  | Fakhri          | Khondab    |
| 6   | Khalili       | Enaj       | 34  | Shirazi2        | Khondab    | 62  | Fakhri          | Enaj       |
| 7   | Khalili       | Derman     | 35  | Shirazi         | Enaj       | 63  | Fakhri          | Derman     |
| 8   | Khalili Khani | Marzijaran | 36  | Shirazi         | Derman     | 64  | Fakhri Asgari   | Enaj       |
| 9   | Yaghoti       | Aghbolagh  | 37  | Asgari          | Anjudan    | 65  | Bidaneh Sefid   | Aghbolagh  |
| 10  | Yaghoti       | Marzijaran | 38  | Asgari          | Hazaveh    | 66  | Bidaneh Sefid   | Marzijaran |
| 11  | Yaghoti       | Anjudan    | 39  | Asgari          | Khondab    | 67  | Bidaneh Sefid   | Anjudan    |
| 12  | Yaghoti       | Hazaveh    | 40  | Asgari          | Enaj       | 68  | Bidaneh Sefid   | Hazaveh    |
| 13  | Yaghoti       | Khondab    | 41  | Asgari          | Derman     | 69  | Bidaneh Sefid   | Khondab    |
| 14  | Yaghoti       | Enaj       | 42  | Asgari          | Aghbolagh  | 70  | Bidaneh Sefid   | Enaj       |
| 15  | Yaghoti       | Derman     | 43  | Asgari bi bazr  | Anjudan    | 71  | Bidaneh Sefid   | Derman     |
| 16  | Sahebi        | Aghbolagh  | 44  | Asgari Shahrodi | Hazaveh    | 72  | Bidaneh Ghermez | Aghbolagh  |
| 17  | Sahebi        | Marzijaran | 45  | Asgari gerd     | Enaj       | 73  | Bidaneh Ghermez | Marzijaran |
| 18  | Sahebi        | Anjudan    | 46  | Siah            | Marzijaran | 74  | Bidaneh Ghermez | Hazaveh    |
| 19  | Sahebi        | Hazaveh    | 47  | Siah            | Anjudan    | 75  | Bidaneh Ghermez | Khondab    |
| 20  | Sahebi        | Khondab    | 48  | Siah            | Hazaveh    | 76  | Bidaneh Ghermez | Enaj       |
| 21  | Sahebi        | Enaj       | 49  | Siah            | Khondab    | 77  | Bidaneh Ghermez | Derman     |
| 22  | Asgari        | Marzijaran | 50  | Siah            | Enaj       | 78  | Lal             | Aghbolagh  |
| 23  | Kharvand      | Hazaveh    | 51  | Kol Bache       | Anjudan    | 79  | Lal             | Marzijaran |
| 24  | Kharvand      | Derman     | 52  | Halvai          | Anjudan    | 80  | Lal             | Hazaveh    |
| 25  | Angor Sefid   | Aghbolagh  | 53  | Yek Tokhm       | Marzijaran | 81  | Lal             | Khondab    |
| 26  | Kerak         | Marzijaran | 54  | Lorkosh         | Hazaveh    | 82  | Lal             | Enaj       |
| 27  | Kole          | Aghbolagh  | 55  | Mehdikhani      | Hazaveh    | 83  | Lal             | Derman     |
| 28  | Ghazvini      | Anjudan    | 56  | Kondori         | Hazaveh    | 84  | Moamelan        | Derman     |

 Table 2. List of grapes cultivars and genotypes tested in Markazi province to investigate morphological diversity.

| 1   | r ar a | r In |      |
|-----|--------|------|------|
|     |        | IP   | יאוי |
| _ 1 | 1111   |      |      |
|     |        |      |      |

| Row | Trait                                                                                        | Unit   | Abbreviation | Measurement method                                                                                                    |
|-----|----------------------------------------------------------------------------------------------|--------|--------------|-----------------------------------------------------------------------------------------------------------------------|
| 1   | Flowering time                                                                               | Score  | FTI          | 1= Too early, 2= Very early, 3= Early, 4=Early to medium, 5=                                                          |
|     | -                                                                                            | C      |              | Medium, 6= Medium late, 7=Late, 8= Very late, 9= Too late                                                             |
| 2   | Leafing time                                                                                 | Score  | LTIM         | 1 = Early, 3 = Medium, 5 = Late                                                                                       |
| 3   | Growth vigour                                                                                | Score  | BGP          | 3= Weak, 5= Moderate, 7= Strong                                                                                       |
| 4   | Shoot attitude                                                                               | Score  | SATT         | 1=Erect 3= Semi-erect 5= Horizontal 7= Semi drooping9=Drooping                                                        |
| 5   | Size of blade                                                                                | Score  | LSI          | 1= Very small, 3= Small,<br>5- Medium, 7- Lenge, 0- Very lange                                                        |
| -   | Longth of togth                                                                              |        | TI           | 5= Medium, 7= Large, 9= Very large                                                                                    |
| 6   | Length of teeth                                                                              | mm     | TL           | Digital Caliper                                                                                                       |
| 7   | Petiole length                                                                               | mm     | PL           | Digital Caliper                                                                                                       |
| 3   | Leaf length                                                                                  | mm     | LL           | Digital Caliper                                                                                                       |
| )   | Tendril length                                                                               | mm     | TLE          | Digital Caliper                                                                                                       |
| 10  | Colour of upper surface                                                                      | Score  | CUSL         | 1=Green yellow 2=Green with bronze spots<br>3=Yellow 4=Yellow with bronze spots 5=Copper yellow 6=Copper<br>7=Reddish |
| 11  | Number of lobes                                                                              | Score  | NLO          | 1=Entire leaf (none) 2= Three<br>3= Five 4=Seven 5=. More than seven                                                  |
| 12  | Intensity of anthocyanin staining of buds                                                    | Score  | IASB         | 0=Absent 1= Very weak 3= Weak<br>5= Medium 7= Strong 9=Very strong                                                    |
| 13  | Anthocyanin intensity of<br>young leaves                                                     | Score  | AIYL         | 0=Absent 1= Very weak 3= Weak<br>5= Medium 7= Strong9=Very strong                                                     |
| 14  | Stomata density in the field<br>of view of forty microscopes<br>Stomata density in the field | number | SDF40        | Counting in the field of view                                                                                         |
| 15  | of view of Twenty-five<br>microscopes                                                        | number | SDF25        | Counting in the field of view                                                                                         |
| 6   | Internode diameter                                                                           | mm     | ID           | Digital Caliper                                                                                                       |
| 17  | Colour of Ventral Side of<br>Nodes                                                           | Score  | CVSN         | 1= Completely green 2= Green and red striped 3= Completely red                                                        |
| 18  | Colour of Dorsal Side of<br>Nodes                                                            | Score  | CDSN         | 1= Completely green 2= Green and red striped 3= Completely red                                                        |
| 19  | Colour of the ventral side of internodes)                                                    | Score  | CVSI         | 1= Completely green 2= Green and red striped 3= Completely red                                                        |
| 20  | Colour of the dorsal side of internode)                                                      | Score  | CDSI         | 1= Completely green 2= Green and red striped 3= Completely red                                                        |
| 21  | Form of Tip of Young Shoot                                                                   | Score  | FTYS         | 1=Closed 2= Slightly open 3= Half-open<br>4= Wide open 5= Fully open                                                  |
| 22  | Density of erect trichomes<br>on main veins on lower side<br>of blade                        | Score  | DETMB        | Absent (0) Very sparse (1) Sparse<br>(3) Medium (5) Dense (7) Very dense (9)                                          |
| 23  | Density of erect trichomes<br>on main veins on lower side<br>of blade                        | Score  | DETML        | Absent (0) Very sparse (1) Sparse<br>(3) Medium (5) Dense (7) Very dense (9)                                          |
| 24  | Density of prostrate<br>trichomes on main veins on<br>lower side of blade                    | Score  | DPTM         | Absent (0) Very sparse (1) Sparse<br>(3) Medium (5) Dense (7) Very dense (9)                                          |
| 25  | Density of prostrate trichomes between veins                                                 | Score  | DPTV         | Absent (0) Very sparse (1) Sparse<br>(3) Medium (5) Dense (7) Very dense (9)                                          |
| 26  | Density of erect trichomes between veins                                                     | Score  | DETBE        | Absent (0) Very sparse (1) Sparse<br>(3) Medium (5) Dense (7) Very dense (9)                                          |
| 27  | Density of prostrate<br>trichomes on main veins                                              | Score  | DPTM         | Absent (0) Very sparse (1) Sparse<br>(3) Medium (5) Dense (7) Very dense (9)                                          |
| 28  | Density of erect trichomes on main veins                                                     | Score  | DETMV        | Absent (0) Very sparse (1) Sparse<br>(3) Medium (5) Dense (7) Very dense (9)                                          |
| 29  | Density prostrate trichomes<br>of Young Shoot Tip                                            | Score  | PTDYS        | Absent (0) Very sparse (1) Sparse<br>(3) Medium (5) Dense (7) Very dense (9)                                          |
| 30  | Fruit ripening time                                                                          | Score  | FRT          | 1= Very early, 3= Early,<br>5= Medium, 7= Late, 9= Very late                                                          |
| 31  | Bunch size                                                                                   | Score  | BZI          | 3= Small, 5= Medium, 7= Large, 9= Very large                                                                          |

**Table 3.** Some evaluated traits and how to measure them in the investigated grape samples based on the OIV (2007), IPGRI and UPOV (2008) description<sup>†</sup>.



| Row      | Trait                                                     | Unit          | Abbreviation | Measurement method                                                                                          |
|----------|-----------------------------------------------------------|---------------|--------------|-------------------------------------------------------------------------------------------------------------|
| 32       | Bunch density                                             | Score         | BDE          | 3= Open, 5= Medium, 7= Tight, 9= Very tight                                                                 |
| 33       | Density of berry per bunch                                | Score         | DBPB         | 3 = Open, $5 = $ Medium, $7 = $ Compact                                                                     |
| 34       | Bunch number of bush                                      | Count         | BNB          | Count                                                                                                       |
| 5        | Brix%                                                     | Brix          | В            | Refractometer                                                                                               |
| 36       | Bunch length                                              | mm            | BL           | Digital Caliper                                                                                             |
| 37       | Bunch width                                               | mm            | BWII         | Caliper                                                                                                     |
|          |                                                           |               |              | -                                                                                                           |
| 38       | The length to width ratio of bunch                        | mm            | LWR          | Caliper                                                                                                     |
| 39       | Bunch weight                                              | g             | BWI          | Digital scale                                                                                               |
| 40       | Bunch shoulder weight                                     | g             | BSW          | Digital scale                                                                                               |
| 41       | Ratio of bunch weight bunch shoulder weight               | Ratio         | ROBWT        | Calculate the ratio of bunch weight to bunch shoulder weight                                                |
| 42       | Rachis weight                                             | g             | RW           | Digital scale                                                                                               |
| 13       | Peduncle weight                                           | g             | PW           | Digital scale                                                                                               |
|          | Ratio of the Rachis weight to                             |               |              | C                                                                                                           |
| 44       | Peduncle weight                                           | Ratio         | RRTP         | Calculate ratio of the rachis weight to peduncle weight                                                     |
| 45       | Ratio of bunch weight to Rachis weight                    | Ratio         | RBWR         | Calculate ratio of the bunch weight to rachis                                                               |
| 46       | Ratio of Rachis weight to the bunch weight                | Ratio         | RBWBS        | Calculate ratio of the bunch weight bunch shoulder weight                                                   |
| 47       | Ratio of the Peduncle weight to the Bunch shoulder weight | Ratio         | RRWWB        | Calculate ratio of the rachis weight to the weight of bunch shoulder                                        |
| 48       | Anthocyanin colouration of fresh                          | Score         | ACF          | 1=Very slightly coloured 3= Slightly coloured<br>5= Coloured 7= Strongly coloured 9=Very strongly coloured  |
| 49       | Skin thickness                                            | Score         | STH          | 3= Thin, 5= Medium, 7= Thick                                                                                |
| 50       | Being juicy                                               | Score         | BJ           | 1= Low water, 2= Slightly watery, 3= Very watery                                                            |
| 51       | Berry color                                               | Score         | BCO          | 1= Green-yellow, 2= Rose,<br>3= Red, 4= Red Gray, 5= Dark red-violet, 6= Blue-black                         |
| 52       | Berry hardness                                            | Score         | BHA          | 1=Soft, 2=Slightly hard, 3=Hard                                                                             |
| 53       | Berry shape                                               | Score         | BSH          | 1= Oblong 2= Narrow elliptic 3= Elliptic 4= Round 5= Oblat<br>6= Ovate 7= Obtuse-ovate 8= Obovate 9= Arched |
| 54       | Berry weight                                              | g             | BWE          | Digital scale                                                                                               |
| 55       | Berry length                                              | mm            | BLE          | Digital caliper                                                                                             |
| 56       | Berry width                                               | mm            | BWID         | Digital caliper                                                                                             |
| 57       | The length to width ratio of berry                        | Calcula<br>te | LWRB         | Calculate the ratio length to width of berry                                                                |
| 58       | Berry diameter                                            | mm            | BDI          | Digital caliper                                                                                             |
| 59       | Berry tail length(mm)                                     | mm            | BTLE         | Digital caliper                                                                                             |
| 50       | Berry weight                                              | g             | BWE          | Digital scale                                                                                               |
| 51       | Berry tail weight(g)                                      | g             | BTWE         | Digital scale                                                                                               |
| 52       | Seed weight                                               | g             | SW           | Digital scale                                                                                               |
| 53       | Seed length                                               | mm            | SL           | Digital caliper                                                                                             |
| 54       | Bunch tail Length                                         | mm            | BTL          | Digital caliper                                                                                             |
| 55       | Existence of seeds                                        | Score         | ES           | 1= None 2= Incomplete growth 3= Complete growth                                                             |
| 56       | Separating from the pedicel                               | Score         | SFP          | 1= Hard 2= Fairly easy 3= Very easy                                                                         |
| 57<br>50 | Fresh weight of bunch shoulder                            | g             | FWBS         | Digital scale                                                                                               |
| 58       | Dry weight of bunch shoulder                              | g             | DWBS         | Digital scale                                                                                               |
| 59       | Ratio the fresh weight to dry weight of bunch shoulder    | g             | RFWDW        | Calculate ratio the fresh weight to dry weight of bunch shoulder                                            |

**Table 3.** (*Continued*). Some evaluated traits and how to measure them in the investigated grape samples based on the OIV (2007), IPGRI and UPOV (2008) description.

<sup>+</sup> OVI: International Office of the Vine and Wine (<u>www.oiv.int</u>), IPGRI: International Plant Genetic Resources Institute

(www.Bioversityinternational.org), UPOV: International Union for the Protection of new Varieties of Plants (www.upov.int).



According to the Islamic Republic of Iran Meteorological Organization (IRIMO, 2023), the average rainfall is 311 millimeters, and the climate of the province is classified as semiarid according to the second De Martons classification system and dry-cold according to the Amberzhe classification (Asakereh et al., 2022; IRIMO, 2023). Some areas of the Markazi province have suitable climate for cultivation of grapevines, and there are old vineyards in some areas. The first phase of this research involved the investigation, evaluation, and screening of some cultivars and genotypes of grapevines in certain vineyards of Markazi province, which started in March 2019 and continued until December 2022. In this study, the morphological diversity of 84 grape cultivars and genotypes, 7 to 10 years old, in the regions (Tables 1 and 2) were evaluated using 69 morphological traits (34 quantitative and 36 qualitative traits) from March 2019 to December 2022 (Table 3). Three mature vines were selected for each variety and genotype to collect data from various growth stages, phenological stages, leaves, bunch, berry and some quantitative and qualitative traits (Table 3) were measured using different and appropriate methods for each trait. Additionally, some of OIV (OIV 2007), IPGRI (IPGRI 2008), and UPOV (UPOV 2008) as presented in Table 3. In the second phase, for the examination of cultivars, quantitative and qualitative traits were evaluated as described in the following table, using the descriptor of OIV (2007), IPGRI (2008), and UPOV (2008), as well as the number and density of tendrils and berries (Table 3). The genetic diversity was assessed based on morphological indices, with emphasis on phenological traits such as leafing time, flowering time, ripening time, and morphological traits (leaf and fruit characteristics). The measurement of quantitative and qualitative traits was conducted using the coding method based on the grape descriptor of OIV, IPGRI, and UPOV (Table 3).

### **Statistical analysis**

Frequency of traits, descriptive statistics, simple correlations between traits, and cluster analysis were performed using SPSS software (Version 21.0). The coefficient of variation was calculated by dividing the standard deviation of each trait by its mean to measure the variation. Pearson's correlation coefficient was used to determine the correlation between traits. Factor rotation technique and maximum variance method were used to extract factors and factor loadings of 0.4 or higher were considered significant. Cluster analysis and grouping of cultivars and genotypes were performed using the Ward's method or the minimum variance method based on the Euclidean distance and standardized data (Rasouli et al., 2014; Zahedi et al., 2023).

# **RESULTS AND DISCUSSION**

#### Descriptive statistics and frequency distribution of traits

The minimum, maximum, mean, standard deviation, variance, and coefficient of variation for some important measured traits in the grape cultivars and genotypes are presented in Table 3. Also, some important morphological characteristics measured in the examined grape cultivars and genotypes are mentioned in Table 4.



|                                | c                   | •, • • •                    | 1 , , 1                | 1                     |
|--------------------------------|---------------------|-----------------------------|------------------------|-----------------------|
| Table 4. Descriptive statistic | s of quantifative f | raits in grane cultivars    | s and genotypes studie | d in Markazi province |
|                                | o or quantitutite t | rands in Stupe calification | , and genotypes staate | a m manazi province.  |

| Row | Trait                                                      | Min    | Max     | Ave    | Std    | Var      | CV.%  |
|-----|------------------------------------------------------------|--------|---------|--------|--------|----------|-------|
| 1   | Internode diameter (mm)                                    | 7.15   | 14.56   | 11.67  | 1.80   | 3.24     | 15.43 |
| 2   | Leaf length (mm)                                           | 71.33  | 148.36  | 98.95  | 16.26  | 264.34   | 16.43 |
| 3   | Petiole Length (mm)                                        | 42.23  | 133.34  | 77.50  | 19.80  | 392.16   | 25.55 |
| 4   | Length of teeth (mm)                                       | 3.15   | 9.53    | 5.32   | 1.39   | 1.93     | 26.11 |
| 5   | Tendril length (mm)                                        | 8.22   | 221.33  | 93.88  | 37.13  | 1378.28  | 39.55 |
| 6   | Stomata density in the field of view of 40 microscopes     | 2.14   | 7.22    | 4.15   | 1.10   | 1.20     | 26.48 |
| 7   | Stomata density in the field of<br>view of 25 microscopes  | 35.32  | 91.51   | 56.90  | 12.53  | 156.88   | 22.01 |
| 8   | Bunch weight (g)                                           | 102.51 | 1000.71 | 354.40 | 205.97 | 42424.78 | 58.12 |
| 9   | Bunch shoulder weight (g)                                  | 9.53   | 89.93   | 34.97  | 16.66  | 277.52   | 47.64 |
| 10  | Ratio of bunch weight to bunch shoulder weight             | 6.01   | 16.82   | 10.13  | 2.56   | 6.54     | 25.26 |
| 11  | Rachis weight (g)                                          | 1.12   | 24.51   | 6.13   | 4.52   | 20.39    | 73.62 |
| 12  | Peduncle weight (g)                                        | 0.11   | 1.78    | 0.51   | 0.34   | 0.11     | 65.16 |
| 13  | Ratio of the rachis weight to peduncle weight              | 3.36   | 26.48   | 12.72  | 4.94   | 24.38    | 38.82 |
| 14  | Ratio of the bunch weight to rachis                        | 10.72  | 202.46  | 68.77  | 33.58  | 1127.64  | 48.83 |
| 15  | Ratio of the bunch weight bunch shoulder weight            | 0.00   | 0.09    | 0.02   | 0.01   | 0.00     | 58.37 |
| 16  | Ratio of the rachis weight to the of bunch shoulder weight | 0.00   | 0.06    | 0.02   | 0.01   | 0.00     | 66.00 |
| 17  | Fresh weight of bunch shoulder (mm)                        | 8.41   | 196.69  | 45.88  | 32.72  | 1070.79  | 71.3  |
| 18  | Dry weight of bunch shoulder (mm)                          | 2.86   | 58.10   | 11.96  | 8.30   | 68.91    | 69.39 |
| 19  | Ratio the fresh weight to dry weight of bunch shoulder     | 2.11   | 5.48    | 3.86   | 0.68   | 0.46     | 17.6  |
| 20  | Bunch number of bushes                                     | 20.50  | 81.20   | 47.43  | 15.55  | 241.92   | 32.79 |
| 21  | Bunch length (mm)                                          | 118.24 | 310.75  | 187.59 | 42.08  | 1770.98  | 22.43 |
| 22  | Bunch width (mm)                                           | 36.81  | 126.64  | 78.87  | 17.23  | 297.01   | 21.85 |
| 23  | The length to width ratio of bunch                         | 1.38   | 4.11    | 2.44   | 0.59   | 0.35     | 24.39 |
| 24  | Bunch tail length (mm)                                     | 10.12  | 74.94   | 29.08  | 12.74  | 162.19   | 43.79 |
| 25  | Berry weight (g)                                           | 0.83   | 6.99    | 2.79   | 1.40   | 1.97     | 50.29 |
| 26  | Berry length (mm)                                          | 9.54   | 32.21   | 18.45  | 4.47   | 19.98    | 24.23 |
| 27  | Berry width (mm)                                           | 9.27   | 21.12   | 14.44  | 2.53   | 6.42     | 17.54 |
| 28  | The length to width ratio of berry                         | 0.98   | 1.84    | 1.27   | 0.17   | 0.03     | 13.8  |
| 29  | Berry diameter (mm)                                        | 9.49   | 20.99   | 14.33  | 2.25   | 5.08     | 15.73 |
| 30  | Berry tail length (mm)                                     | 2.89   | 8.61    | 6.18   | 1.36   | 1.86     | 22.07 |
| 31  | Berry tail weight (g)                                      | 0.01   | 0.18    | 0.03   | 0.02   | 0.00     | 85.36 |
| 32  | Seed weight (g)                                            | 0.00   | 0.30    | 0.05   | 0.05   | 0.00     | 93.38 |
| 33  | Seed length (mm)                                           | 0.00   | 10.33   | 5.04   | 2.86   | 8.21     | 56.84 |
| 34  | Brix (%)                                                   | 14.21  | 26.96   | 20.14  | 2.84   | 8.06     | 14.09 |

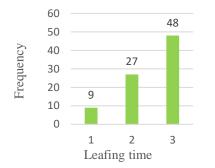
According to the results, traits such as bunch weight (58.12%), bunch shoulders weight (47.64%), rachis weight (73.62%), peduncle weight (65.15%), the ratio of bunch weight to peduncle weight (38.82%), bunch shoulders fresh weight (71.33%), dry weight of the bunch shoulders (69.39%), ratio the fresh weight to dry weight of bunch shoulder (17.61%) berry weight (50.29%), seed weight (93.38%), seed length (56.84%) showed high diversity in cultivars and genotypes and have relatively high coefficients of variation (Table 4). The highest bunch weight was observed in the variety "Sahebi Hazaveh" with an average weight of 1000.71 g (Tables 4 and 5). On the other hand, the lowest bunch weight was observed with

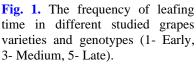


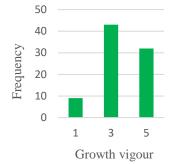
102.51g in "Khalili Anjudan" cultivar (Tables 4 and 5). Also, the maximum number of bunches per vine was found in the cultivar "Asgari Hazaveh" with an average of 81.20 bunches, while the minimum number of bunches per vine was observed in the "Kole Bache Anjudan" cultivar with an average of 20.50 bunches (Tables 4 and 5). In this experiment, the longest bunch length (310.75 mm) was attributed to the cultivar "Fakhri Enaj". In the event that the shortest bunch length (118.24 mm) was found in the variety "Khalili Enaj" (Tables 4 and 5). The "Kharvand Hazaveh", cultivar showed widest bunch width (126.64mm), however the smallest width bunch (36.81mm) was found in the cultivar "Khalili Anjudan". Moreover, the highest berry weight (6.99 g) was measured in "Kondori Hazaveh," cultivar, but the lowest weight of berry (0.83 g) measured in "Yaghoti Anjudan". The maximum sugar content (26.96 Brix) was reported from "Bidaneh Ghermez Derman" cultivar, whereas the minimum amount of sugar content (14.21 Brix) was measured in "Shirazi 2 Khandab" cultivar (Tables 4 and 5). Also, the average amount of Brix (sugar level) was 20.14%, which is close to the normal level of grape Brix. In this part, it can be compared that in terms of bunch weight, number of bunches per plant, maximum bunch width and berry weight, Hazaveh cultivars have a higher ratio compared to the rest of the tested regions, and the cultivars of Anjudan region are almost weaker than the other investigated cultivars and genotypes (Tables 4 and 5). The time of berry ripening was delayed in the cultivars "Sahebi Derman," "Shirazi Khondab," "Kol Bache Anjudan," and "Yek Bazr Marzijaran" compared to other cultivars and genotypes. Regarding flowering time, the cultivars "Kol Bache Anjudan," "Kolehe Aghbolagh,","Angur Sefid Aghbolagh," "Lal Derman," "Lal Hazaveh," "Lal Marzijaran," "Lal Aghbolagh," "Keshmishi Ghermez Enaj," "Keshmishi Sefid Enaj," "Fakhri Derman," "Fakhri Hazaveh," "Fakhri Marzijaran," "Shirazi Aghbolagh," "Sahebi Derman," "Sahebi Hazaveh," "Sahabi Anjudan," "Sahabi Marzijaran," and "Sahebi Aghbolagh" (Tables 4 and 5) had later flowering compared to other cultivars and genotypes, indicating that these cultivars may exhibit better tolerance to early spring frost. Therefore, traits with high diversity can be used for a more accurate evaluation of the studied cultivars and genotypes, considering the differences and variations in phenological and morphological traits. Rasouli et al. (2014) reported the average weight of bunch (85.46 g), bunch shoulder (13 g), rachis (2.57 g) and peduncle (0.3 grams), which was consistent with the findings in some cases of this research, so that the average weight of peduncle was obtained (0.51 g) (Tables 4 and 5). The difference in the values of some traits can be due to the genetic diversity, the age of the vines, different growing conditions of the vineyard and the geographical region. In the present study, seed weight varied from 0 in seedless cultivars to 0.3 g with an average of 0.05 g among cultivars and genotypes, which was consistent with the findings of Mouszadeh et al. (2015). Mousazadeh et al. (2015) reported, on the grape cultivars of the Khorasan Razavi Research Center collection, "Samarghandi Lotfabad" cultivar had the highest seed weight and "Dizmari Rezaieh" cultivar had the lowest seed weight, one of the reasons for the increased seed weight can be the genetic potential of this the figures show that this potential causes the rapid growth of the fruit and the increase of its constituents. Also, findings of this investigation, was consistent with the findings of various researchers (Bodor-Pesti et al., 2023) that the efforts of metric characterization of the grapevine leaf with the introduction of the scientific objectives and reviewing the studies showing the innovations in phenotyping during the last years (Bodor-Pesti et al., 2023). Kazemi et al. (2022) reported that there is a significant variation in the evaluated traits of cultivated cultivars and genotypes and its origin from Khuzestan province, southwest of Iran, which was somewhat in line with the results of the present research.



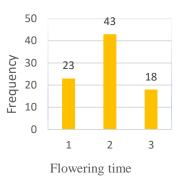
 Table 5. Some important morphological characteristics measured of grape cultivars and genotypes studied in Markazi province.


| Row      | Cultivar/Genotype                   | Berry<br>colour | Fruit<br>ripening<br>time | Density<br>of erect<br>trichome<br>between<br>veins | Density<br>of<br>prostrate<br>trichome<br>between<br>veins | Leaf<br>timing | Brix           | Berry<br>width | Berry<br>length | Bunch<br>shoulder<br>weight | Bunch<br>weight  | Stomata<br>density | Internode<br>diameter |
|----------|-------------------------------------|-----------------|---------------------------|-----------------------------------------------------|------------------------------------------------------------|----------------|----------------|----------------|-----------------|-----------------------------|------------------|--------------------|-----------------------|
|          |                                     | Score           | Score                     | Score                                               | Score                                                      | Score          | %              | (mm)           | (mm)            | (g)                         | (g)              | count              | (mm)                  |
| 1        | Khalili<br>Aghbolagh                | 1               | 1                         | 5                                                   | 3                                                          | 5              | 16.32          | 14.11          | 20.11           | 17.81                       | 190.55           | 3.85               | 10.91                 |
| 2        | Khalili Marzijaran                  | 1               | 1                         | 9                                                   | 1                                                          | 1              | 19.11          | 13.92          | 19.65           | 23.18                       | 219.81           | 3.42               | 13.21                 |
| 3        | Khalili Anjudan                     | 1               | 3                         | 9                                                   | 1                                                          | 3              | 17.13          | 11.12          | 13.92           | 11.23                       | 102.51           | 4.16               | 12.25                 |
| 4        | Khalili Hazaveh                     | 1               | 1                         | 9                                                   | 5                                                          | 5              | 16.77          | 13.71          | 19.34           | 22.58                       | 208.08           | 3.15               | 10.81                 |
| 5        | Khalili Khondab                     | 1               | 5                         | 9                                                   | 1                                                          | 5              | 19.82          | 15.12          | 16.52           | 54.07                       | 541.72           | 3.66               | 10.11                 |
| 6        | Khalili Enaj                        | 1               | 1                         | 9                                                   | 3                                                          | 5              | 16.83          | 13.91          | 21.61           | 13.23                       | 220.11           | 3.11               | 11.54                 |
| 7        | Khalili Derman                      | 1               | 1                         | 7                                                   | 5                                                          | 3              | 18.22          | 13.45          | 19.32           | 23.18                       | 215.81           | 4.17               | 7.89                  |
| 8        | Khalili Khani<br>Marzijaran         | 1               | 3                         | 9                                                   | 1                                                          | 1              | 18.37          | 13.95          | 19.91           | 36.12                       | 244.32           | 2.52               | 13.41                 |
| 9        | Yaghoti<br>Aghbolagh                | 3               | 1                         | 9                                                   | 7                                                          | 5              | 17.75          | 10.11          | 11.99           | 25.61                       | 211.09           | 3.81               | 10.47                 |
| 10       | Yaghoti<br>Marzijaran               | 5               | 3                         | 7                                                   | 1                                                          | 1              | 17.35          | 9.79           | 10.91           | 26.52                       | 261.31           | 4.33               | 10.11                 |
| 11       | Yaghoti Anjudan                     | 5               | 3                         | 3                                                   | 1                                                          | 3              | 17.87          | 9.27           | 9.54            | 9.53                        | 145.12           | 3.45               | 9.91                  |
| 12       | Yaghoti Hazaveh                     | 6               | 1                         | 7                                                   | 3                                                          | 5              | 23.78          | 10.42          | 11.23           | 57.34                       | 688.05           | 2.14               | 11.53                 |
| 13       | Yaghoti Khondab                     | 6               | 3                         | 1                                                   | 1                                                          | 5              | 19.64          | 9.83           | 12.61           | 20.13                       | 245.84           | 2.52               | 10.68                 |
| 14       | Yaghoti Enaj                        | 5               | 1                         | 9                                                   | 3                                                          | 5              | 17.35          | 10.12          | 12.42           | 17.18                       | 227.57           | 3.16               | 11.67                 |
| 15       | Yaghoti Derman                      | 6               | 1                         | 7                                                   | 5                                                          | 3              | 22.12          | 10.61          | 11.23           | 37.42                       | 487.01           | 3.48               | 7.15                  |
| 16       | Sahebi Aghbolagh                    | 5               | 5                         | 7                                                   | 3                                                          | 5              | 21.84          | 16.89          | 26.12           | 42.41                       | 597.06           | 2.75               | 13.32                 |
| 17       | Sahebi Marzijaran                   | 5               | 5                         | 3                                                   | 0                                                          | 5              | 19.51          | 14.11          | 15.98           | 18.61                       | 167.78           | 5.71               | 10.71                 |
| 18       | Sahebi Anjudan                      | 5               | 5                         | 7                                                   | 1                                                          | 5              | 20.83          | 16.92          | 21.14           | 36.55                       | 298.32           | 3.54               | 10.48                 |
| 19       | Sahebi Hazaveh                      | 6               | 5                         | 9                                                   | 3                                                          | 5              | 21.44          | 20.11          | 25.81           | 86.57                       | 1000.71          | 2.92               | 11.11                 |
| 20       | Sahebi Khondab                      | 3               | 5                         | 1                                                   | 1                                                          | 5              | 16.39          | 15.57          | 21.41           | 40.88                       | 367.66           | 3.32               | 12.22                 |
| 21       | Sahebi Enaj                         | 5               | 7                         | 3                                                   | 0                                                          | 3              | 19.47          | 21.12          | 24.62           | 39.12                       | 310.53           | 5.12               | 14.12                 |
| 22       | Sahebi Derman                       | 6               | 9                         | 7                                                   | 3                                                          | 3              | 19.18          | 18.31          | 23.99           | 32.31                       | 389.31           | 3.51               | 8.77                  |
| 23       | Shirazi<br>Aghbolagh                | 1               | 5                         | 9                                                   | 1                                                          | 5              | 15.72          | 16.02          | 22.98           | 20.91                       | 176.64           | 5.75               | 13.64                 |
| 24       | Shirazi<br>Marzijaran               | 1               | 7                         | 7                                                   | 1                                                          | 5              | 22.34          | 12.79          | 20.01           | 20.95                       | 194.31           | 4.51               | 13.31                 |
| 25       | Shirazi Hazaveh                     | 1               | 7                         | 9                                                   | 1                                                          | 5              | 17.45          | 19.23          | 32.21           | 36.02                       | 283.82           | 4.16               | 12.49                 |
| 26       | Shirazi Khondab                     | 1               | 3                         | 5                                                   | 0                                                          | 5              | 17.46          | 15.52          | 26.22           | 29.11                       | 175.21           | 5.16               | 12.68                 |
| 27       | Shirazi-2<br>Khondab                | 1               | 9                         | 7                                                   | 1                                                          | 5              | 14.21          | 17.22          | 22.35           | 21.42                       | 173.89           | 6.32               | 12.42                 |
| 28       | Shirazi Enaj                        | 1               | 5                         | 7                                                   | 1                                                          | 3              | 16.72          | 17.51          | 28.22           | 41.54                       | 351.49           | 3.31               | 13.99                 |
| 29       | Shirazi Derman                      | 1               | 9                         | 9                                                   | 1                                                          | 3              | 19.86          | 17.72          | 27.11           | 28.52                       | 226.76           | 4.55               | 7.56                  |
| 30       | Fakhri Aghbolagh                    | 1               | 5                         | 3                                                   | 1                                                          | 5              | 24.73          | 14.96          | 19.18           | 45.47                       | 401.02           | 5.76               | 12.56                 |
| 31       | Fakhri Marzijaran                   | 1               | 5                         | 0                                                   | 1                                                          | 5              | 23.52          | 14.95          | 20.71           | 89.93                       | 915.45           | 4.66               | 13.59                 |
| 32       | Fakhri Anjudan                      | 1               | 5                         | 1                                                   | 1                                                          | 5              | 26.10          | 13.51          | 22.20           | 39.07                       | 389.14           | 4.83               | 11.15                 |
| 33       | Fakhri Hazaveh                      | 1               | 5                         | 5                                                   | 1                                                          | 5              | 23.44          | 16.23          | 22.52           | 62.32                       | 901.55           | 3.32               | 12.23                 |
| 34       | Fakhri Khondab                      | 1               | 5                         | 0                                                   | 0                                                          | 5              | 22.11          | 15.24          | 21.31           | 33.12                       | 402.75           | 5.33               | 11.48                 |
| 35       | Fakhri Enaj                         | 1               | 7                         | 1                                                   | 1                                                          | 3              | 16.18          | 15.22          | 21.62           | 42.63                       | 476.72           | 3.11               | 13.41                 |
| 36       | Fakhri Derman                       | 1               | 7                         | 3                                                   | 1<br>0                                                     | 3              | 25.17          | 16.42          | 21.12           | 16.37                       | 212.67           | 4.11               | 8.82                  |
| 37<br>38 | Fakhri Asgari enaj<br>Bidaneh Sefid | 1<br>1          | 7<br>5                    | 1                                                   | 0                                                          | 3<br>5         | 21.85<br>23.23 | 13.55<br>10.99 | 16.83<br>12.24  | 34.18<br>25.01              | 253.32<br>215.62 | 3.82<br>2.76       | 12.71<br>13.71        |
| 39       | Aghbolagh<br>Bidaneh Sefid          | 1               | 5<br>7                    | 1                                                   | 1                                                          | 5              | 21.27          | 11.99          | 14.99           | 33.14                       | 368.93           | 3.25               | 13.12                 |
| 40       | Marzijaran<br>Bidaneh Sefid         | 1               | 5                         | 3                                                   | 1                                                          | 1              | 18.81          | 13.42          | 15.13           | 20.11                       | 160.13           | 3.65               | 9.11                  |
| 40       | Anjudan<br>Bidaneh Sefid            | 1               | 7                         | 3                                                   | 1                                                          | 5              | 23.98          | 12.25          | 14.86           | 38.72                       | 570.55           | 4.66               | 13.13                 |
| 42       | Hazaveh<br>Bidaneh Sefid            | 1               | 7                         | 1                                                   | 0                                                          | 5              | 21.76          | 13.16          | 14.00           | 53.87                       | 905.22           | 6.83               | 12.11                 |
|          | Khondab<br>Bidaneh Sefid            | 1               | 7                         | 1                                                   | 0                                                          | 5              |                |                |                 |                             |                  |                    |                       |
| 43       | Enaj                                | 1               | /                         | 1                                                   | 0                                                          | 3              | 21.77          | 11.58          | 13.57           | 34.17                       | 364.11           | 5.15               | 14.16                 |

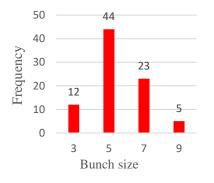




 Table 5. (Continued). Some important morphological characteristics measured of grape cultivars and genotypes studied in Markazi province.

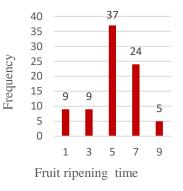
| Row | Cultivar/Genotype             | Berry<br>colour | Fruit<br>ripening<br>time | Density<br>of erect<br>trichome<br>between<br>veins | Density<br>of<br>prostrate<br>trichome<br>between<br>veins | Leaf<br>timing | Brix  | Berry<br>width | Berry<br>length | Bunch<br>shoulder<br>weight | Bunch<br>weight | Stomata<br>density | Internode<br>diameter |
|-----|-------------------------------|-----------------|---------------------------|-----------------------------------------------------|------------------------------------------------------------|----------------|-------|----------------|-----------------|-----------------------------|-----------------|--------------------|-----------------------|
|     |                               | Score           | Score                     | Score                                               | Score                                                      | Score          | %     | (mm)           | (mm)            | (g)                         | (g)             | count              | (mm)                  |
| 44  | Bidaneh Sefid<br>Derman       | 1               | 7                         | 1                                                   | 1                                                          | 1              | 24.38 | 15.32          | 17.12           | 20.72                       | 313.09          | 2.66               | 9.75                  |
| 45  | Bidaneh Ghermez<br>Aghbolagh  | 5               | 5                         | 7                                                   | 5                                                          | 5              | 24.94 | 12.06          | 13.98           | 20.23                       | 227.49          | 2.5                | 13.58                 |
| 46  | Bidaneh Ghermez<br>Marzijaran | 5               | 7                         | 1                                                   | 1                                                          | 5              | 20.23 | 11.96          | 13.97           | 25.42                       | 203.11          | 2.66               | 12.26                 |
| 47  | Bidaneh Ghermez<br>Hazaveh    | 3               | 5                         | 0                                                   | 5                                                          | 5              | 23.15 | 11.83          | 14.83           | 46.33                       | 498.81          | 4.32               | 13.52                 |
| 48  | Bidaneh Ghermez<br>Khondab    | 4               | 7                         | 1                                                   | 0                                                          | 5              | 24.89 | 12.83          | 14.63           | 48.31                       | 732.65          | 5.52               | 12.85                 |
| 49  | Bidaneh Ghermez<br>Enaj       | 3               | 7                         | 1                                                   | 0                                                          | 5              | 23.67 | 12.15          | 14.24           | 41.66                       | 340.58          | 4.66               | 14.56                 |
| 50  | Bidaneh Ghermez<br>Derman     | 3               | 7                         | 1                                                   | 3                                                          | 1              | 26.96 | 13.95          | 17.94           | 25.28                       | 288.66          | 4.51               | 8.49                  |
| 51  | Lal Aghbolagh                 | 1               | 3                         | 7                                                   | 3                                                          | 5              | 18.64 | 16.15          | 18.46           | 42.15                       | 305.32          | 3.75               | 10.34                 |
| 52  | Lal Marzijaran                | 1               | 5                         | 3                                                   | 1                                                          | 5              | 17.93 | 16.97          | 18.89           | 38.65                       | 289.86          | 5.31               | 12.12                 |
| 53  | Lal Hazaveh                   | 1               | 7                         | 3                                                   | 1                                                          | 5              | 18.27 | 17.25          | 22.84           | 86.64                       | 810.22          | 4.32               | 11.25                 |
| 54  | Lal Khondab                   | 3               | 5                         | 9                                                   | 1                                                          | 5              | 18.52 | 15.58          | 20.11           | 36.42                       | 409.22          | 5.32               | 10.99                 |
| 55  | Lal Enaj                      | 1               | 7                         | 1                                                   | 5                                                          | 3              | 18.16 | 15.58          | 20.67           | 38.66                       | 429.71          | 4.53               | 13.22                 |
| 56  | Lal Derman                    | 1               | 7                         | 9                                                   | 5                                                          | 5              | 21.37 | 18.21          | 24.21           | 42.35                       | 392.39          | 4.16               | 8.89                  |
| 57  | Asgari Aghbolagh              | 1               | 3                         | 7                                                   | 0                                                          | 1              | 21.15 | 14.87          | 17.52           | 23.51                       | 213.25          | 4.37               | 11.22                 |
| 58  | Asgari Marzijaran             | 1               | 5                         | 5                                                   | 0                                                          | 3              | 19.14 | 11.11          | 14.98           | 15.96                       | 165.87          | 5.14               | 14.11                 |
| 59  | Asgari Anjudan                | 1               | 5                         | 1                                                   | 0                                                          | 3              | 21.79 | 15.42          | 18.16           | 37.58                       | 352.51          | 5.11               | 10.97                 |
| 60  | Asgari Hazaveh                | 1               | 5                         | 7                                                   | 1                                                          | 3              | 18.48 | 13.66          | 17.53           | 58.71                       | 570.28          | 4.33               | 13.41                 |
| 61  | Asgari khondab                | 1               | 5                         | 1                                                   | 1                                                          | 1              | 18.33 | 14.71          | 17.16           | 32.86                       | 314.19          | 3.62               | 13.32                 |
| 62  | Asgari Enaj                   | 1               | 7                         | 1                                                   | 0                                                          | 3              | 19.97 | 14.22          | 17.41           | 46.11                       | 290.23          | 6.52               | 14.15                 |
| 63  | Asgari Derman                 | 1               | 5                         | 1                                                   | 1                                                          | 1              | 23.26 | 14.21          | 15.97           | 19.48                       | 209.26          | 4.12               | 8.43                  |
| 64  | Asgari bi bazr<br>Anjudan     | 1               | 5                         | 1                                                   | 1                                                          | 3              | 18.37 | 12.33          | 15.57           | 24.09                       | 210.04          | 3.42               | 12.12                 |
| 65  | Asgari Shahrodi<br>Hazaveh    | 1               | 5                         | 1                                                   | 1                                                          | 3              | 18.96 | 13.33          | 19.54           | 33.59                       | 381.92          | 3.13               | 12.57                 |
| 66  | Asgari gerd Enaj              | 1               | 7                         | 1                                                   | 5                                                          | 3              | 18.74 | 13.21          | 14.12           | 42.28                       | 262.12          | 3.75               | 12.92                 |
| 67  | Siah Marzijaran               | 6               | 7                         | 3                                                   | 0                                                          | 5              | 18.46 | 14.86          | 16.12           | 35.72                       | 245.22          | 2.42               | 12.91                 |
| 68  | Siah Anjudan                  | 6               | 7                         | 9                                                   | 1                                                          | 3              | 21.27 | 15.43          | 17.81           | 32.05                       | 229.76          | 3.11               | 12.21                 |
| 69  | Siah Hazaveh                  | 6               | 5                         | 1                                                   | 0                                                          | 3              | 24.13 | 16.53          | 19.42           | 50.44                       | 721.03          | 5.85               | 11.48                 |
| 70  | Siah Khondab                  | 5               | 5                         | 3                                                   | 0                                                          | 5              | 17.84 | 14.13          | 14.94           | 31.53                       | 239.15          | 5.23               | 10.99                 |
| 71  | Siah Enaj                     | 6               | 5                         | 1                                                   | 0                                                          | 3              | 17.88 | 14.82          | 17.11           | 57.33                       | 382.65          | 5.83               | 13.81                 |
| 72  | Kharvand<br>Hazaveh           | 1               | 7                         | 5                                                   | 1                                                          | 5              | 16.35 | 16.44          | 17.32           | 73.71                       | 897.51          | 2.95               | 10.21                 |
| 73  | Kharvand Derman               | 1               | 5                         | 7                                                   | 5                                                          | 3              | 17.37 | 18.92          | 19.89           | 17.62                       | 215.48          | 3.32               | 7.81                  |
| 74  | Angor Sefid<br>Aghbolagh      | 1               | 7                         | 9                                                   | 3                                                          | 5              | 22.25 | 14.08          | 18.13           | 27.96                       | 251.13          | 5.14               | 9.98                  |
| 75  | Kerak Marzijaran              | 1               | 5                         | 3                                                   | 0                                                          | 5              | 19.64 | 13.12          | 14.88           | 32.99                       | 430.76          | 4.75               | 12.42                 |
| 76  | Kole Aghbolagh                | 1               | 5                         | 0                                                   | 1                                                          | 3              | 23.43 | 14.88          | 17.26           | 16.97                       | 220.74          | 7.22               | 10.74                 |
| 77  | Ghazvini Anjudan              | 5               | 5                         | 3                                                   | 0                                                          | 3              | 24.96 | 13.62          | 16.23           | 22.41                       | 275.22          | 3.35               | 13.13                 |
| 78  | Kol Bache<br>Anjudan          | 1               | 9                         | 1                                                   | 1                                                          | 5              | 16.34 | 12.62          | 12.43           | 18.96                       | 163.04          | 3.11               | 9.98                  |
| 79  | Halvai Anjudan<br>Yek bazr    | 1               | 5                         | 5                                                   | 1                                                          | 5              | 19.72 | 17.28          | 24.11           | 20.39                       | 157.71          | 4.55               | 12.11                 |
| 80  | Marzijaran                    | 1               | 9                         | 5                                                   | 1                                                          | 5              | 18.34 | 11.99          | 17.95           | 33.92                       | 283.31          | 4.28               | 13.25                 |
| 81  | Lorkosh Hazaveh               | 1               | 7                         | 7                                                   | 1                                                          | 5              | 19.35 | 18.75          | 20.23           | 48.96                       | 344.82          | 4.15               | 12.45                 |
| 82  | Mehdikhani<br>Hazaveh         | 1               | 3                         | 9                                                   | 1                                                          | 5              | 23.24 | 13.66          | 25.23           | 32.33                       | 200.65          | 3.33               | 11.15                 |
| 83  | Kondori Hazaveh               | 6               | 5                         | 7                                                   | 1                                                          | 3              | 17.25 | 19.25          | 25.77           | 63.23                       | 652.11          | 5.32               | 12.81                 |
| 84  | Moamelan<br>Derman            | 1               | 5                         | 5                                                   | 3                                                          | 3              | 20.14 | 14.12          | 13.98           | 15.58                       | 188.92          | 3.81               | 7.99                  |



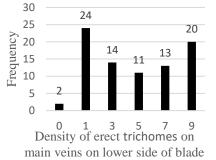






**Fig. 2.** The frequency of growth vigour in different studied grapes varieties and genotypes (3= Weak, 5= Moderate, 7= Strong)




**Fig. 3.** The frequency of flowering time in different cultivars and genotypes of studied grapes (1- Too early, 2- Very early, 3- Early, 4- Early to medium, 5-Medium, 6- Medium to late, 7- Late, 8-Very late, 9- Too late).



**Fig. 4.** The frequency of the bunch size in the different investigated cultivars and genotypes of studied grapes (3- Small, 5- Medium, 7-Large, 9- Very large).



**Fig. 5.** The frequency of fruit ripening time in different cultivars and genotypes of studied grapes (1= Very early, 3= Early, 5= Medium, 7= Late, 9= Very late).



**Fig. 6.** The frequency of density of erect trichome on main veins on lower side of blade in different cultivars and genotypes of studied grapes (Absent (0), Very sparse (1), Sparse (3), Medium (5), Dense (7), Very dense (9)).

In the study of grape cultivars and genotypes of Khuzestan province, it showed that the most descriptive statistics in the most important quantitative traits are related to fresh weight of bunch (2174.24 g), bunch length (279.68 mm), bunch width (157.03 mm), number of berries per bunch (1088.83 berry), berry fresh weight (6.85 mg), berry diameter (18.60 mm), berry length (30.89 mm) and berry width (22.79 mm) (Kazemi et al., 2022). The frequency distribution of traits such as leafing time, growth power, flowering time, bunch size, fruit ripening time, density of erect trichome on main veins on lower side of blade, density of prostrate trichome on main veins are shown in Figures 1 to 6. In terms of leafing time, most of the genotypes in the studied growth conditions had late leafing, although there were early leafing cultivars such as "Khalili", "Khalili Khani", "Yaghoti Marzijaran", "Bidaneh Sefid Anjudan", "Bidaneh Sefid Derman", "Bidaneh Ghermez Derman", "Asgari Aghbolagh", "Asgari Khondab", and "Asgari Derman" (Fig. 1). Among these cultivars ("Khalili Khani Marzijaran" (2.52), "Yaghoti Hazaveh" (2.92), "Bidaneh Sefid" (2.76) and "Bidaneh



Ghermez" (2.5) Aghbolagh, "Bidaneh Sefid Derman" (2.66), "Bidaneh Ghermez Marzijaran" (2.66), "Siyahe Marzijaran" (2.42), and "Kharvand Hazaveh" (2.95) had fewer open stomata in the field of view under a microscope at a magnification of 40. Additionally, the field evaluation for selecting drought-tolerant cultivars in this experiment showed that the cultivars ("Khalili Marzijaran", "Khalili Anjudan", "Khalili Hazaveh", "Khalili Khondab", "Khalili Derman", "Khalili Khani Marzijaran", "Yaghoti Marzijaran", "Yaghoti Hazaveh", "Yaghoti Derman", "Sahabi Anjudan", "Sahabi Hazaveh", "Shirazi Aghbolagh", "Shirazi Hazaveh", "Shirazi Derman", "Lal Derman", "Siyah Anjudan", "Kharvand Derman", "Angor Sefid Aghbolagh", "Lorkosh Hazaveh", "Mahdikhani Hazaveh") had the highest volume of standing trichome between the main leaf veins on the lower surface of the leaf (Tables 4 and 5) (Fig. 8 and Fig. 9). Moreover, there was a relatively high diversity among different cultivars and genotypes in terms of growth power, length, width, weight, shape, and color of the berry. Some important characteristics and average values of the important traits evaluated are mentioned in Table 5. The findings obtained were consistent with the results reported by (Alizadeh, 2004) and (Nejatian, 2006), who reported a wide diversity among the studied cultivars in terms of various traits related to vegetative and fruit parts.

#### Simple correlation coefficients of traits

Significant correlations existed among variables related to vegetative growth, fruit, and bunch traits in this experiment. The results showed a positive and significant correlation between bunch weight and leaf length (R= 0.31). Bunch shoulders weight also had a positive and significant correlation with bunch weight (R = 0.88). The rachis weight had a positive and significant correlation with bunch weight (R=0.68). But, the ratio of rachis weight to bunch weight had a significant negative correlation with the ratio of bunch weight to rachis weight (R = -0.67). Also, the ratio of rachis weight to bunch weight showed a positive and significant correlation with the ratio of rachis weight to bunch shoulders weight (R=0.71). The bunch shoulders dry weight had a positive and significant correlation with bunch shoulders fresh weight (R=0.96). Although, the number of bunches per vine had a positive and significant correlation with leaf length (R=0.25), bunch weight (R=0.24), and the ratio of bunch weight to rachis weight (R=0.33), its correlation value was not high. The traits of bunch length had a positive and significant correlation with bunch weight (R=0.67), bunch shoulders weight (R=0.60), and rachis weight (R=0.44). Also, the bunch width had a positive and significant correlation with bunch weight (R=0.84), bunch shoulders weight (R=0.77), and bunch length (R=0.44). Moreover, berry width had a positive and significant correlation with berry weight (R=0.80) and berry length (R=0.82). Also, berry diameter had a positive and significant correlation with berry weight (R=0.87), berry length (R=0.79), and berry width (R=0.90). Furthermore, seed length had a positive and significant correlation with berry weight (R=0.62), berry length (R =0.60), and berry width (R=0.60). In general, based on the results of simple correlation of traits in this research, significant correlations existed among some variables related to vegetative growth and fruit traits. These findings are consistent with the findings of Ekhvaia et al. (2009) who reported associations and correlations among various grape vegetative and fruit traits. The consistent with the results of traits correlations mentioned in Table 6 of this research, Leão and Oliveira (2023) reported that most of the phenotypic correlations between morpho-agronomic variables were significant (p<0.05), indicating that yield per vine was positively correlated with number of bunches, bunch length, soluble solids content and titratable acidity. Only berry length had a significant negative correlation with yield per vine. The significant negative correlation between berry length and yield per vine can be explained by the fact that in vines whose bunches had longer berries, the number of bunches per vine was reduced (R=-0.537), as well as the bunch length (R=-



0.466). On the other hand, these last two variables have a positive and significant correlation with the yield per vine. Also, Leão and Oliveira (2023) Shown phenotypic correlations showed that the trait number of bunches per vine is highly correlated with yield; however, berry weight, length and diameter were negatively correlated with soluble solids content, titratable acidity and SS/TA ratio. Furthermore, Cargnin (2019) in the study of "Cabernet Sauvignon" cultivar showed that fruit yield (weight) has a positive and significant phenotypic correlation with bunch weight (R=0.98) and berry weight (R=0.98), and selecting a plant with higher bunch and berry weight increases fruit yield, which was somewhat consistent with the present findings. There was also a positive and significant correlation between number of bunches (R=0.78) and pH (R=0.89). The phenotypic correlation between number of bunches with bunch weight (R= -0.83) and berry weight (R= -0.82) was negative and significant. The more bunches per plant, the lower the bunch weight and the lower the berry weight, resulting in lower fruit yield (Cargnin, 2019). Also, Cargnin (2019) obtained similar results in a study of "Cabernet Sauvignon" and showed that fruit yield (weight) had a positive and significant phenotypic correlation with bunch weight (R=0.91) and number of berries per bunch (R =0.88), and these traits indicated high fruit yield potential in the plant. There was a negative and significant correlation between pH and fruit yield traits (R = -0.95), bunch weight (R = -(0.99) and number of berries per bunch (R = -0.98).

As fruit yield, bunch weight and number of berries per bunch increase, pH decreases. The results obtained from this research are consistent with the results of other researchers and show that increasing yield components such as number of berries per bunch, berry weight and number of berries per bunch leads to an increase in fruit yield. Some results showed a negative correlation between the number of berries per bunch and berry weight. According to Silva et al. (2009), negative correlations between yield components probably occur mainly due to competition between them (sinks-sources) during plant development in each crop cycle. Positive or negative correlations occur due to genetic and environmental variations in the plant.

| Factor | Eigenvalues | Eigenvalues to percent variance | Percentage of variance cumulative |
|--------|-------------|---------------------------------|-----------------------------------|
| 1      | 6.142       | 18.065                          | 18.065                            |
| 2      | 4.804       | 14.128                          | 32.193                            |
| 3      | 3.872       | 11.387                          | 43.580                            |
| 4      | 2.618       | 7.701                           | 51.281                            |
| 5      | 2.186       | 6.430                           | 57.711                            |
| 6      | 1.628       | 4.787                           | 62.499                            |
| 7      | 1.508       | 4.434                           | 66.933                            |
| 8      | 1.462       | 4.299                           | 71.232                            |
| 9      | 1.350       | 3.971                           | 75.202                            |
| 10     | 1.080       | 3.177                           | 78.379                            |

**Table 6.** Eigenvalues, percentage of variance, and percentage of cumulative variance of the 10 main components in this research.



| Table 7. Coefficients related first to 10 main components of grapes cultivars and genotypes. |
|----------------------------------------------------------------------------------------------|
|----------------------------------------------------------------------------------------------|

| Trait                                      | F1          | F2   | F3         | F4           | F5         | F6   | F7   | F8          | F9   | F10        |
|--------------------------------------------|-------------|------|------------|--------------|------------|------|------|-------------|------|------------|
| Internode diameter                         | .250        | .014 | 255        | 152          | .296       | 650  | .131 | 031         | .004 | .211       |
| Leaf length                                | .250        | .318 | 233<br>284 | 132<br>.289  | 013        | 180  | 153  | 031<br>.294 | .602 | .005       |
| Petiole length                             |             |      | 284<br>299 |              |            |      | 133  |             | .002 | .003       |
|                                            | 050         | .143 |            | .585<br>.650 | 166        | 042  |      | 083         |      |            |
| Length of teeth<br>Tendril length          | 079<br>.079 | 052  | .066       |              | 107<br>385 | 036  | 469  | 043         | .038 | 004<br>253 |
|                                            | .079        | .260 | .155       | .185         | 363        | .193 | .036 | .345        | .112 | 235        |
| Stomata density in the field of view of 40 | .274        | 069  | 020        | 002          | 702        | 276  | 001  | 276         | 220  | 025        |
|                                            | .274        | 068  | 020        | 003          | .702       | .276 | .001 | 276         | .328 | 035        |
| microscopes<br>Stomata density in the      |             |      |            |              |            |      |      |             |      |            |
| field of view of 25                        | 251         | 076  | 002        | 042          | 670        | 252  | 110  | 222         | 211  | 120        |
| microscopes                                | .251        | 076  | .003       | .043         | .678       | .353 | .119 | 333         | .311 | 130        |
| Bunch weight                               | .464        | .793 | 194        | .019         | 077        | .001 | .027 | 214         | 094  | .072       |
| Bunch shoulder weight                      | .404        |      | 194<br>006 | .019<br>047  | 077        | 209  |      | 214<br>211  |      |            |
| Ratio of bunch weight                      | .002        | .666 | 000        | 047          | 051        | 209  | 047  | 211         | 156  | 080        |
|                                            | 185         | .475 | 320        | .121         | 123        | .433 | .161 | 059         | .083 | .333       |
| bunch shoulder weight                      | 150         | 961  | 227        | .004         | .025       | .099 | .007 | .047        | 024  | .055       |
| Rachis weight                              | .150        | .861 | .337       |              |            |      |      |             | 034  |            |
| Peduncle weight                            | .058        | .685 | .602       | 046          | 028        | 170  | .017 | 147         | .064 | 076        |
| Ratio of the rachis weight to peduncle     | .035        | .336 | 433        | 050          | .179       | .511 | .001 | .265        | 250  | .264       |
| weight                                     | .035        | .550 | 435        | 050          | .179       | .511 | .001 | .205        | 230  | .204       |
| Ratio of bunch weight                      |             |      |            |              |            |      |      |             |      |            |
| to Rachis weight                           | .362        | 317  | 569        | .118         | 226        | .026 | .084 | 201         | 020  | 155        |
|                                            |             |      |            |              |            |      |      |             |      |            |
| Ratio of rachis weight to the bunch weight | 308         | .352 | .626       | .047         | .155       | .184 | .122 | .369        | .110 | .010       |
| Ratio of the peduncle                      |             |      |            |              |            |      |      |             |      |            |
| weight to the Bunch                        | 445         | .251 | .699       | .052         | 047        | .035 | .172 | .054        | .244 | .020       |
| shoulder weight                            | 445         | .231 | .099       | .032         | 047        | .035 | .172 | .034        | .244 | .020       |
| Fresh weight of bunch                      |             |      |            |              |            |      |      |             |      |            |
| shoulder weight                            | .417        | .077 | 172        | 742          | .069       | 051  | 137  | .301        | .222 | 036        |
| Dry weight of bunch                        |             |      |            |              |            |      |      |             |      |            |
| shoulder weight                            | .341        | .169 | 124        | 747          | .084       | 071  | 276  | .293        | .209 | 009        |
| Fresh to dry weight                        |             |      |            |              |            |      |      |             |      |            |
| ratio of bunch shoulder                    | .511        | 371  | 198        | .006         | .026       | .113 | .516 | 023         | .010 | 096        |
| Bunch number of                            |             |      |            |              |            |      |      |             |      |            |
| bushes                                     | 185         | .372 | 400        | .052         | 166        | 110  | .532 | .094        | .213 | 050        |
| Bunch length                               | .384        | .582 | 227        | .291         | .322       | 170  | .122 | .209        | 269  | .062       |
| Bunch width                                | .389        | .738 | 176        | 137          | 262        | .019 | .041 | 290         | 021  | 108        |
| Length to width ratio                      |             |      |            |              |            |      |      |             |      |            |
| of bunch                                   | .011        | 103  | 016        | .441         | .556       | 176  | .079 | .474        | 267  | .164       |
| Bunch tail length                          | .139        | .244 | 029        | .380         | .370       | 277  | 097  | 006         | .115 | 323        |
| Berry weight                               | .886        | 177  | .158       | .125         | 105        | .029 | .044 | 005         | 149  | .002       |
| Berry length                               | .855        | 254  | .062       | .158         | 204        | .116 | .102 | .179        | .063 | 027        |
| Berry width                                | .810        | 062  | .258       | .185         | 040        | .228 | .043 | .148        | 086  | 160        |
| Length to width of                         |             |      |            |              |            |      |      |             |      |            |
| berry                                      | .162        | .232 | .154       | .105         | 090        | 286  | .081 | 178         | -345 | .476       |
| Berry diameter                             | 002         | 121  | .068       | 022          | .056       | .025 | .099 | .260        | 080  | .882       |
| Berry tail length                          | .626        | .247 | 134        | 057          | 058        | 080  | .090 | .013        | 127  | .407       |
| Berry tail weight                          | .312        | .039 | 198        | .178         | 076        | 066  | 024  | .536        | .075 | 055        |
| Seed weight                                | .130        | 159  | 119        | 262          | 071        | .085 | 092  | .519        | 161  | .439       |
| Seed length                                | .073        | .119 | .000       | 142          | .147       | 099  | 017  | .541        | 285  | .590       |
| Brix%                                      | 002         | 117  | .011       | 511          | .286       | .054 | 076  | 477         | .269 | 056        |
| F: Factor                                  |             |      |            |              |            |      |      |             |      |            |

F: Factor.

#### **Factor analysis**

Factor analysis was performed to determine the variations of each trait with each factor and ultimately the total (factor-extracted) and specific (residual) variances (Tables 6 and 7). The relative variance of each factor indicates the importance of that factor in explaining the total variance of the traits and is expressed as a percentage. In the factor analysis, a total of 10 independent and principal factors with eigenvalues greater than 1 were able to account for 78.37% of the total variance (Table 6). Table 8 presents the results of the factor analysis, indicating the placement of some important examined traits in different factors with their



positive and negative factor loadings (due to the high volume of data, only significant traits with factor loadings are mentioned in the table). According to Tables 7 and 8, cultivars and genotypes were grouped in the first factor (PC1) for traits such as weight, width and diameter of berry and seed length, which accounted for 18.06% of the variance (Table 6). Therefore, this factor can be named the "berry factor." In the second factor (PC2), cultivars were grouped based on traits such as bunch weight, bunch shoulder weight, rachis weight, bunch length and bunch width, which accounted for 14.12% of the variance. This factor can be referred to as the "bunch size factor." The factors PC1 and PC2, where most fruit-related traits were placed, had the most significant role in differentiating cultivars and genotypes from each other, accounting for a total of 32.19% of the total variance (Table 6). Traits such as seed weight, pedicel weight, the ratio of peduncle weight to bunch shoulder weight and the ratio of bunch shoulder weight to bunch weight were placed in the third factor, accounting for 11.38% of the total variance. Traits such as petiole length, Length of teeth, bunch shoulder fresh weight, and bunch shoulder dry weight were placed in the fourth factor, explaining 7.70% of the variance (Table 6). The fifth factor included traits such as the bunch length-to-width ratio and stomata density in the field of view at 25 and 40, which accounted for 6.43% of the total variance (Table 6). In the sixth factor, the internode diameter and the ratio of rachis weight to peduncle weight justified 4.78% of the variance (Table 6). The seventh factor justified 4.43% of the variance and included traits such as the ratio of bunch shoulder fresh weight to bunch shoulder dry weight and the number of bunches per vine (Table 6). The eighth factor, with a variance of 4.29%, included the trait of tendril length (Table 6). The ninth factor accounted for 3.97% of the variance and consisted of the leaf length trait (Table 6). The tenth factor included the trait of seed length and accounted for 3.17% of the variance (Table 6). In a study on the genetic diversity of 20 grape cultivars, morphological traits were analyzed using factor analysis (Hashemzehi., 2010). The results showed that the first three factors accounted for 79.34% of the existing variations among the traits. The first factor explained 31.86% of the variance between traits and played a significant role in justifying variables such as seed length, seed weight, and kernel length. Also, Haddadinejad et al. (2013), for the initial screening, 698 grape genotypes were analyzed based on drought tolerance using factor analysis. In this analysis, seven primary and independent factors with eigenvalues greater than one were able to account for 78.96% of the total variance. Some of their findings were consistent with the results obtained from this study. In the comparison of this research with other similar researches, it was shown that the first factor and the second factor in most of the conducted researches were related to berry and bunch factors (Haddadinejad et al., 2013; Rasouli et al., 2015; Razi et al., 2021; Rasouli & Kalvandi, 2022; Kazemi et al., 2022). Rasouli et al. (2015) results showed that the factor analysis justified 74.22% of the total variance. The investigated factors such as bunch size, bunch density, skin thickness, shape, size, weight, length and width of the berry, seed length were place on first factor. The first factor includes 20.74% of the variance and the berry factor is placed in this first factor. The bunch size factor with 11.79% was also the second factor of this research (Rasouli et al., 2015). Also, Hashemzehi et al. (2010) studied diversity of grape cultivars and they reported factor analysis justified 79.34% of total variance. The results of first and second factors analysis of Hashemzehi et al. (2010) were in line with the results of this research in the berry and bunch factors. Furthermore, Rafiei et al. (2016) reported the percentage of variance showed that the first 5 factors were related to fruit and leaf traits and the first factor with 22.63% of the variance was related to the berry factor and the second factor with 14.71% of the variance was related to most of the bunch traits.




#### **Cluster Analysis**

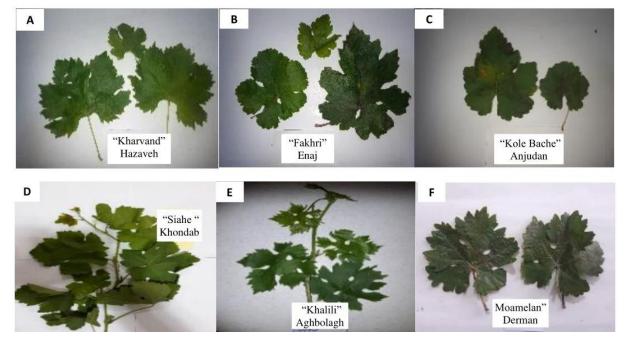
The cluster analysis was performed based on all measured traits (Table 2) using the Ward method for grouping and comparing 84 grape cultivars and genotypes (Fig. 7). At 5 Euclidean distances the cultivars and genotypes were grouped into four main clusters, which include:

Group 1: This group included 30 cultivars and genotypes out of 84 investigated grapes cultivars and genotypes such as "Lal Khondab", "Lal Enaj", "Siah Enaj", "Asgari Anjudan", "Lorkosh Hazaveh", "Lal Derman", "Sahebi Derman", "Fakhri Anjudan", "Kerak Marzijaran", "Bidaneh Sefid Marzijaran", "Bidaneh Ghermeze Enaj", "Asgari Shahroudi Hazaveh", "Fakhri Aghbolagh", "Fakhri Khondab", "Bidaneh Sefid Enaj", "Sahebi Khondab", "Lal Aghbolagh", "Angore Sefideh Aghbolagh", "Sahebi Anjudan", "Sahebi Enaj", "Bidaneh Ghermeze Derman", "Lal Marzijaran", "Asgari Enaj", "Shirazi Enaj", "Bidaneh Sefid Derman", "Asgari Khondab", "Ghazvini Anjudan", "Yek bazre Marzijaran", "Shirazi Hazaveh" and "Shirazi Derman". These genotypes are characterized by medium budburst time, moderate plant growth vigour and moderate bunch weight. The fruits of this group had mostly low to moderately juicy, and the anthocyanin pigments in their flesh were generally absent. They had thin to medium skin thickness and the color of the berries is mostly yellow-green. The berry shape in this group is usually broad-ovate, and the berries are generally slightly firm to firm with medium to large size. The berry density in the bunch ranges from average to compact and the bunch size was mostly medium to large. Overall, these cultivars showed similarity in most of the measured traits, particularly fruit-related characteristics. The highest amount of brix with 26.96 % in "Bidaneh Ghermeze Derman" cultivar that was included in this group. The cultivars and genotypes of this group were geographically from the same place or close (Fig. 9).

Group 2: This group included 37 cultivars out of 84 investigated cultivars and genotypes, covering; "Kharvand Darman", "Mahdikhani Hazaveh", "Fakhri Darman", "Asgari Darman", "Yaghoti Marzijaran", "Khalili Anjudan", "Yaghoti Anjudan", "Halvaii Anjudan", "Shirazi Khondab", "Shirazi 2 Khondab", "Shirazi Marzijaran", "Bidaneh Sefid Anjudan", "Sahebi Marzijaran", "Kool Bache Anjudan", "Asgari Marzijaran", "Fakhri", "Asgari Enaj", "Siah Khondab", "Yaghoti Khondab", "Siah Marzijaran", "Asgari Gerd Enaj", "Siah Anjudan", "Yaghoti Aghbolagh", "Yaghoti Enaj", "Khalili Enaj", "Moa'melan Darman", "Khalili Marijaran", "Khalili Darman", "Asgari Bi Bazr Anjudan", "Khalilkhani Marzijaran", "Bidaneh Sefid Aghbolagh", "Bidaneh Ghermeze Aghbolagh", "Asgari Aghbolagh", "Khalili Aghbolagh", "Khalili Hazaveh", "Bidaneh Ghermeze Marzijaran", "Koole Aghbolagh" and "Shirazi Aghbolagh". These genotypes have a medium density of trichomes on the main leaf veins. In this group, there are cultivars ranging from very early to late maturity cultivars such as "Khalili Khani", "Yaghoti Marzijaran", "Bidane Sefid Anjudan", "Bidaneh Sefid" and "Bidaneh Ghermez Derman", "Asgari Aghbolagh" and "Asgari Khondab" and "Asgari Derman" have earlier leaves than the rest of the investigated cultivars. Most of the cultivars in this group had seeds and seed separation in this group ranges from difficult to relatively easy. The fruits in this group were usually slightly juicy. The flesh of these fruits usually lacks color and the skin thickness ranges from thin to medium with a seed color predominantly yellow-green. The shape of the fruit in this group was usually oval to round and the texture of the fruits is often slightly firm, with small to medium-sized seeds. The seed density in bunches and the bunch density and size in most cultivars of this group were medium. Most cultivars in this group had complete seeds.



**Fig. 7.** Dendrogram showing relationship between 84 cultivars and genotypes of grapes, available in the vineyards of Markazi province located in central of Iran, based on studied traits using cluster analysis by Ward method.




Group 3: This group included 5 cultivars and genotypes out of 84 investigated cultivars, such as "Fakhri Marzijaran" and "Fakhri Hazaveh", "Kharvand Hazaveh", "Sahebi Hazaveh" and "Bidaneh Sefid Khondab". The highest bunch weight (1000.71 g) was found in the "Sahabi Hazaveh" cultivar within this group. The "Kharvand Hazaveh" cultivar has a maximum width of the bunch with 126.64 mm that was placed in this group. Also, "Sahebi Hazaveh" has highest average bunch weight with 1000.71 g was included in this group. Among the differences that probably caused the "Bidaneh Sefid" cultivar and "Bidaneh Ghermeze"cultivar of Khondab region to be placed in two separate groups, but one after the other, the difference in Length of teeth, amount of sugar, larger leaf size of the "Bidaneh Sefid" cultivar, amount of anthocyanin in "Bidaneh Ghermeze" cultivar, time the later ripening of "Bidaneh Sefid", slightly firmer berry in "Bidaneh Sefid" cultivar, average flesh anthocyanin "Bidaneh Ghermeze" cultivar and different peduncle separation of these two cultivars were the same. All genotypes in this group had late budburst and flowering times. The berry density in the bunch of these cultivars was compact to very compact and the bunch size was usually large to very large. The cultivars in this group were exhibited vigorous plant growth. The berry size ranges from small to very large and the berry firmness varies from slightly firm to firm. The berry shape in these cultivars ranges from rectangular to oval and broad-oval to round. The color of the berries was mostly yellow-green and the skin of these cultivars was thick.

Group 4: This group included 12 cultivars out of 84 investigated cultivars, such as "Bidaneh Ghermeze Khondab", "Siah Khondab", "Yaghoti Hazaveh", "Lal Hazaveh", "Bidaneh Sefid Hazaveh", "Asgari Hazaveh", "Khalili Khondab", "Sahebi Aqbolagh", "Yaghoti Derman", "Bidaneh Ghermeze Hazaveh" and "Fakhri Enaj". The cultivars "Kondori Hazaveh" with 6.99 g berry weight, "Asgari Hazaveh" with 81.20 bunches per vine, "Fakhri Enaj" with 310.75 mm bunch length were placed in this group (Fig. 9). Most of the cultivars in this group had higher bunch weight and length. They also had a high yield per unit area and larger leaves. Flowering in the cultivars of this group was early to moderate, and the leaf size was usually large. The berries in these cultivars were mostly soft. In this group, most of the cultivars had almost the same internode diameter, number of bunches in the plant was almost high and the length and width of the bunch were almost the same. Most cultivars of this group had seeds, round berry, medium to very large bunch size, medium to very compact bunch density, and slightly juicy berry. One important note that can be seen in these cluster analysis groups was the presence of seedless cultivars in the analysis groups, which was one of the reasons for this division, different recording locations with different altitudes, longitudes and latitudes, environmental effects regions, soil type and genetic potential were high among the cultivars and genotypes studied. The findings regarding the effect on some growth and fruit traits were consistent with the results reported by Zinanlou (1993), Alizadeh (2004), Nejatian (2006), Qobadi et al. (2007), and Rasouli et al. (2015) for cultivars from Kermanshah, West Azerbaijan, Qazvin, Isfahan, and Hamedan provinces in terms of various growth-related characteristics, bunch size and weight, berry density in the bunch, berry color, having seeds or being seedless, ripening time, consumption type and genetic relatedness. However, some cultivars in different geographical and soil conditions showed differences in plant growth vigour and sugar content percentage compared to the results of these researchers. In line with the cluster analysis results of this research, Rasouli et al. (2014) studied the morphological diversity of 32 grapes cultivars and genotypes in Hamedan province and reported the cluster analysis at 5 Euclidean distances has been divided cultivars into 7 groups and some cultivars were different from other cultivars in terms of late flowering, sugar percentage, freshness and shelf life. Also, Rafiei et al. (2015) on seeded and seedless cultivars in some regions of the Markazi central province, they concluded that in these cultivars, the groups were classified



into two main groups, seeded and seedless, at 25 Euclidean distances. They reported, the samples that were placed in the group of quince cultivars had prominent characteristics such as smaller seeds or seed remains. Also, the size of the berry was smaller and the percentage of soluble solids was higher than the in characteristics of "Bidaneh" cultivars. There were 29 samples in this group, which included the same group. The grapes were "Asgari", "Yaghoti", "Bidaneh Sefid", and, "Khalili". From these researches, it can be concluded that the results of this research are consistent with the researches done on the cultivar of grapes and are in line with the examined cases of this experiment. In a study conducted by Zahedi et al. (2020) on the morphological and pomological characteristics of 55 grape cultivars, significant differences were observed among the studied cultivars for the measured traits. The fruit length ranged from 12.32 to 31.85 millimeters. Additionally, 10 different skin colors were observed, with light green (14 cultivars) and greenish-yellow (15 cultivars) being the predominant colors. Moreover, 20 cultivars initially formed seeds, while seeds were absent in 34 cultivars, and one cultivar had seedless berries. The dendrogram of cluster analysis based on the obtained data revealed three main clusters with several sub-clusters, that their results were somewhat consistent with the cluster analysis results of the present research.



**Fig. 8.** The leaves of cultivars and genotypes available in vineyards of Markazi province located in central of Iran (A-"Kharvand" Hazaveh, B- "Fakhri", Enaj, C-"Kole Bache Anjudan", D-"Siahe Khondab", E-"Khalili Aghbolagh", F-"Moamelan Derman").



**Fig. 9.** The fruits of cultivars and genotypes available in vineyards of Markazi province located in central of Iran (A- "Khalili Khondab", B- "Asgari Derman", C- "Kharvand Derman", D- "Moamelan Derman", E- "Sefide Aghbolagh", F- "Kole" Aghbolagh, G- "Kondori" Hazaveh, H- "Lorkosh" Hazaveh, I- "Mehdikhani" Hazaveh, J- "Fakhri asgari" Enaj, K- "Halvaii" Anjudan L- "Kol Bache" Anjudan. M- "Yek bazr" Marzijaran, N- "Siahe" Marzijaran, O- "Kerak" Marzijaran.

#### **CONCLUSION**

The main objective of measuring these traits was to assess diversity and identify superior cultivars and genotypes for use in grape breeding programs. Based on the results, cultivars such as ("Yaghoti," Aghbolagh), ("Khalili," Hazaveh, Derman and Khondab), ("Khalilikhani" Marzijaran), ("Mehdikhani" Hazaveh) and ("Kharvand" Darman) exhibited lower density of stomata in the field (25 and 40), while they had higher density of trichome between the main veins and on the main veins. Most cultivars in the Hazaveh and Khondab regions had higher yield, bunch and bunch shoulder weight compared to other regions. The third and fourth groups, including "Khalili Khondab" and "Yaghoti," "Sahebi", "Fakhri", "Kharvand", "Kondori Hazaveh", and "Sahebi" Aghbolagh, were superior to other cultivars and genotypes in terms of yield, bunch length, bunch weight, late budbreak, late flowering, high sugar content, and fruit characteristics. Cultivars such as "Khalili," "Khalilikhani," "Yaghoti" Marzijaran, "Bidaneh Sefid Anjudan", "Bidaneh Sefid" and "Bidaneh Ghermeze" Darman, "Asgari Aghbolagh", "Asgari Khondab" and "Asgari Derman" had earlier budbreak compared to other cultivars and were susceptible to frost damage. The highest sugar content was found in the "Bidaneh Ghermeze" Darman cultivar, which could be attributed to cool night temperatures during the late ripening period in the Derman region. The highest bunch number was observed in the "Asgari Hazaveh" cultivar, which is extensively used for grape syrup production, properly pruned, and well-nourished, resulting in a high number of bunches. The highest bunch weight was found in the "Sahebi Hazaveh" cultivar, as the Hazaveh region followed proper pruning practices, provided timely and appropriate nutrition, and achieved successful stages of development. Most cultivars in this region had very high



bunch weights, with "Asgari" being the dominant cultivar. The remaining cultivars were planted minimally in the surrounding vineyards.

# **Conflict of interest**

The authors (S.M.M. Mirfatah, M. Rasouli, M. Gholami and A. Mirzakhani) declare that they have no competing interests.

# Acknowledgments

Authors are thankful Malayer University and Markazi Agricultural and Natural Resources Research and Education Center (MANRREC), Arak. The present study was supported by the Ph.D. thesis entitled "Screening, effect of drought stress, rootstock and scion on some morphological and physiological characteristics (*Vitis vinifera* L.) In climatic conditions of Markazi province", which was funded by the Vice Chancellor for Research, Malayer University.

### REFERENCES

- Akram, M. T., Qadri, R., Khan, M. A., Hafiz, I. A., Nisar, N., Khan, M. M., & Hussain, K. (2021). Morpho-phenological characterization of grape (*Vitis vinifera* L.) germplasm grown in northern zones of Punjab, Pakistan. *Pakistan Journal of Agricultural Sciences*, 58(4). https://doi.org/10.21162/PAKJAS/21.91
- Alizadeh, A. (2004). Collection and preliminary identification of local grapevine cultivars in West Azarbaijan. *Seed and Plant Journal*, 20(1), 1-21. https://doi.org/10.22092/spij.2017.110603
- Amiri, M. J., & Eslamian, S. S. (2010). Investigation of climate change in Iran. Journal of Environmental Science and Technology, 3(4), 208-216. https://doi.org/10.3923/jest.2010.208.216
- Antolin, M. C., Toledo, M., Pascual, I., Irigoyen, J. J., & Goicoechea, N. (2020). The exploitation of local *Vitis vinifera* L. biodiversity as a valuable tool to cope with climate change maintaining berry quality. *Plants*, 10(1), 71. https://doi.org/10.3390/plants10010071
- Asakereh, H., Masoodian, S. A., Tarkarani, F., & Zandkarimi, S. (2023). Tropospheric features associated with the onset and cessation of the rainy season in Iran. *Acta Geophysica*, 71(2), 1063-1084. https://doi.org/10.1007/s11600-022-00996-0
- Bodor-Pesti, P., Taranyi, D., Deák, T., Nyitrainé Sárdy, D. Á., & Varga, Z. (2023). A review of ampelometry: morphometric characterization of the grape (*Vitis* spp.) Leaf. *Plants*, 12(3), 452. https://doi.org/10.3390/plants12030452
- Cargnin, A. (2019). Canonical correlations among grapevine agronomic and processing characteristics. *Acta Scientiarum. Agronomy*, *41*(1), e42619. https://doi.org/10.4025/actasciagron.v41i1.42619
- Doulit Baneh, H. (2015). Grapes (comprehensive management of cultivation, breeding, production and processing). Kurdistan University Press. 674 pages.
- Ekhvaia, J., & Akhalkatsi, M. (2010). Morphological variation and relationships of Georgian populations of *Vitis vinifera* L. subsp. sylvestris (CC Gmel.) Hegi. Flora-Morphology, Distribution, *Functional Ecology of Plants*, 205(9), 608-617. https://doi.org/10.1016/j.flora.2009.08.002
- Elhami, B., Raini, M. G. N., & Soheili-Fard, F. (2019). Energy and environmental indices through life cycle assessment of raisin production: A case study (Kohgiluyeh and Boyer-Ahmad Province, Iran). *Renewable Energy*, 141, 507-515.https://doi.org/10.1016/j.renene.2019.04.034

FAO. (2017). FAOSTAT database results. http://faostat.Fao.org.faostat. Servlet

Gago, P., Santiago, J. L., Boso, S., Alonso-Villaverde, V., Grando, M. S., & Martínez, M. C. (2009). Biodiversity and characterization of twenty-two *Vitis vinifera* L. cultivars in the Northwestern Iberian Peninsula. *American Journal of Enology and Viticulture*, 60(3), 293-301. https://doi.org/10.5344/ajev.2009.60.3.293

- Haddadinejad, M., Ebadi, A., Moghaddam, M. R. F., & Nejatian, M. A. (2013). Primary morphological screening of 698 grapevine genotypes to select drought tolerant rootstocks. *Iranian Journal of Horticultural Science*, 44(2), 193-207. https://doi.org/10.22059/ijhs.2013.35052
- Hashemzehi, M., Muradgholi, A., & Kamali, M. (2010). Investigating genetic diversity and factor analysis for morphological traits of grape cultivars, 7th Iran Horticultural Science Congress, Isfahan, 14-17 Shahrivar, Isfahan University of Technology. https://civilica.com/doc/174451
- IPGRI. (International Plant Genetic Resources Institute) (2008) Description list for grape (*Vitis* L.). (www.bioversityinternational.org). Italy, 72pp.
- Iran Meteorological Organization (IRIMO). (2023). Report of Markazi weather. https://irandataportal.syr.edu/iran-meteorological-organization [Online] available from: http://www.markazimet.ir
- Jahnke, G., Nagy, Z. A., Koltai, G., Oláh, R., & Májer, J. (2021). Morphological, phenological and molecular diversity of woodland grape (*Vitis sylvestris* gmel.) genotypes from the Szigetköz, Hungary. Mitt. *Klosterneubg*, 71, 90-98. https://www.researchgate.net/publication/352212687
- Jalili Marandi. (2016). Small fruits. West Azarbaijan Academic Jihad Publications. 450 p.
- Kazemi, M., Rasouli, M., Maleki, M., Abdoli, M., & Rostami -Borujeni, M. (2022) Evaluation of phenotypic and genetic diversity of some native and foreign grapevine (*Vitis vinifera* L.) cultivars and genotypes based on morphological, phenological, biochemical and fruit characteristics (Case study: Khuzestan province, south-west of Iran). The 22nd National and 10th International Congress on Biology, Shahrekord University, Shahrekord, 31 August to 2 September 2022.
- Keller, M., & Tarara, J. M. (2010). Warm spring temperatures induce persistent season-long changes in shoot development in grapevines. *Annals of Botany*, 106(1), 131-141. https://doi.org/10.1093/aob/mcq091
- Khadivi-Khub, A., Salimpour, A., & Rasouli, M. (2014). Analysis of grape germplasm from Iran based on fruit characteristics. *Brazilian Journal of Botany*, 37, 105-113. https://doi.org/10.1007/s40415-014-0054-5
- Khan, N., Fahad, S., Naushad, M., & Faisal, S. (2020). Grape production critical review in the world. Available at SSRN 3595842.
- Kupe, M., Ercisli, S., Karatas, N., Skrovankova, S., Mlcek, J., Ondrasova, M., & Snopek, L. (2021). Some important food quality traits of Autochthonous grape cultivars. *Journal of Food Quality*, 16, 1-8. https://doi.org/10.1155/2021/9918529
- Leão, P. C. D. S., & Oliveira, C. R. S. D. (2023). Agronomic performance of table grape cultivars affected by rootstocks in semi-arid conditions. *Bragantia*, 82, e20220176. https://doi.org/10.1590/1678-4499.20220176
- Nejatian, M. A. (2006). Collection and preliminary evaluation of grapevine cultivars of Qazvin province. *Seed and Plant Journal*, 22(3), 319-338. https://doi.org/10.22092/spij.2017.110688
- OIV (Office International de la Vigne et du Vin) (2007) List of descriptors for grapevine cultivars and species (*Vitis* L.). http://news.reseau-concept.net/images/oiv/Client/2 Edition Caracteres mpelo graphiques OIV.pdf.
- Organization of Agriculture- Jihad Markazi province, Horticulture Management. (2021). [Online] available from: http://www.jkmserv.ir. (In Persian).
- Papademetriou, M. K., & Dent, F. J. (Eds.). (2001). Grape production in the Asia-Pacific region. Food and Agriculture Organization of the United Nations.
- Qobadi, S., Khoshkhovi, M., & Tabatabai, S.A. (2007). Diversity and genetic relationships of some grape genotypes (*Vitis vinifera* L.) in Isfahan province using RAPD markers. *Journal of Agricultural Sciences and Techniques and Natural Resources*, 45, 635-627. https://doi.org/20.1001.1.22518517.1387.12.45.52.4
- Rasouli, M., Gholami, M., & Alifar, M. (2015). Grape varieties with emphasis on classical and molecular methods. Malayer University Publications, Center for Scientific Publications, Second Edition, 624 Pages.
- Rasouli, M., & Kalvandi, Z. (2022). Investigating the morphological and pomological diversity of some grape cultivars and genotypes collected from different regions of Iran. The First National Conference on Production and PostHarvest Technology of Horticultural Plants, Birjand University 25-26 May, 2022. https://civilica.com/doc/1533228

- Rasouli, M., Mohammadparast, B., & Eyni, M. (2014). Study on phenotypic diversity of some grape (*Vitis vinifera* L.) cultivars and genotypes using morphological traits in Hamedan Provence. *Applied Crop Breeding*, 2(2), 241-260.
- Razi, M., Darvishzadeh, R., Doulati Baneh, H., Amiri, M. E., & Martinez-Gomez, P. (2021). Estimating breeding value of pomological traits in grape cultivars based on REMAP molecular markers. *Plant Productions*, 44(4), 515-530. https://doi.org/10.22055/ppd.2020.34003.1925
- Salehnia, M., & Rafati, M. (2023). Dynamic analysis of economic, environmental and social dimensions of agricultural sustainability in Iranian provinces with the approach of indicators. *Journal of Agricultural Economics and Development*, 37(1), 17-34. https://doi.org/10.22067/jead.2022.74534.1110
- da Silva, M. J. R., Paiva, A. P. M., Junior, A. P., Sánchez, C. A. P. C., Callili, D., Moura, M. F., & Tecchio, M. A. (2018). Yield performance of new juice grape varieties grafted onto different rootstocks under tropical conditions. *Scientia Horticulturae*, 241, 194-200. https://doi.org/10.1016/j.scienta.2018.06.085
- UPOV. (International Union for the Protection of New Varieties of Plants). (2008). Descriptor List for Grapevine (*Vitis* L.). (www.upov.int). Genova, 52pp.
- Zahedi, M., Rasouli, M., Imani, A., Khademi, O., & Jari, S. K. (2023). Evaluation of quantitative, qualitative, and biochemical traits of almond offspring from controlled reciprocal crosses between 'Mamaei' and 'Marcona' Cultivars. *Erwerbs-Obstbau*, 65(5)1525-1543. https://doi.org/10.1007/s10341-023-00900-0

