
تعداد نشریات | 21 |
تعداد شمارهها | 301 |
تعداد مقالات | 3,173 |
تعداد مشاهده مقاله | 3,211,773 |
تعداد دریافت فایل اصل مقاله | 2,380,294 |
بررسی بیان برخی ژنهای کاندید مرتبط با بهارهسازی در گندم زمستانه | ||
تنشهای محیطی در علوم زراعی | ||
مقاله 1، دوره 17، شماره 4، دی 1403، صفحه 653-665 اصل مقاله (1.16 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22077/escs.2024.6359.2207 | ||
نویسندگان | ||
مریم لطفی سرابی1؛ رضا فتوت2؛ احسان محسنی فرد* 2 | ||
1دانشآموخته کارشناسی ارشد بیوتکنولوژی کشاورزی، گروه مهندسی تولید و ژنتیک گیاهی، دانشکده کشاورزی، دانشگاه زنجان، زنجان | ||
2دانشیار، گروه مهندسی تولید و ژنتیک گیاهی، دانشکده کشاورزی، دانشگاه زنجان، زنجان | ||
چکیده | ||
عملکرد گندم نان (Triticum aestivum L.)، تحت تنشهای محیطی و همچنین با کاهش دما بهشدت کاهش مییابد. از سازوکارهای منجر به سازگاری غلات پاییزه به شرایط محیطی، بهارهسازی است که طی آن، گیاه پس از گذراندن یک دوره سرمای طولانیمدت، قادر به گلدهی و یا تسریع فرآیند گلدهی میشود که سازوکارهای مولکولی مربوط به آن همچنان تا حد زیادی ناشناخته هستند. آزمایشی در قالب فاکتوریل با طرح پایه کاملاً تصادفی در سه تکرار و دو فاکتور شامل دو رقم نورستار و باز و تعداد روزهای بهارهسازی 14 و 21 روز در دمای 4 درجه سانتیگراد همراه با گیاهان شاهد انجام شد. تغییرات بیان ژنهای NAC، ERF و TCP مرتبط با بهارهسازی با استفاده از روش Real-Time PCR موردبررسی قرار گرفت. همچنین برای درک بهتر پاسخ ژنها به سرما، پروموتور این سه ژن مورد تجزیهوتحلیل قرار گرفت. بیان هر سه ژن تحت تیمار بهارهسازی رفتار کاهشی نشان داده و فقط بیان ژن TCP تحت 14 روز تیمار بهارهسازی در رقم نورستار و نیز ژن NAC تحت 21 روز تیمار در رقم باز افزایش بیان را نشان دادند. بهطورکلی با افزایش تعداد روزهای بهارهسازی میزان بیان ژنها کاهش یافت. همچنین با تجزیهوتحلیل پروموتورهای ژنهای موردمطالعه، 28 نوع عنصر تنظیمی شناسایی شد که تعداد زیادی از آنها محل اتصال فاکتورهای رونویسی پاسخدهنده به تنشهای زیستی و غیرزیستی هستند. علیرغم تشابه الگوی تغییرات بیانی هر سه ژن در دو رقم موردبررسی، شدت تغییرات در دو رقم یکسان نبوده که میتواند ناشی از عکسالعمل متفاوت به تنش سرمایی باشد. نتایج نشاندهنده پیچیده بودن تنظیم بیان ژنها در بهارهسازی گندم بوده که تعدد محل اتصال فاکتورهای رونویسی پاسخدهنده به تنشها در ناحیه پروموتوری این ژنها میتوانند توجیهی بر پیچیدگی تنظیم بیان آنها در طول دوره بهارهسازی و پاسخ به تنش سرمایی باشند. | ||
کلیدواژهها | ||
بهارهسازی؛ بیان ژن؛ پروموتور؛ فاکتورهای رونویسی | ||
مراجع | ||
Abdullah, S.N.A., Azzeme, A.M., Yousefi, K., 2022. Fine-Tuning cold stress response through regulated cellular abundance and mechanistic actions of transcription factors. Frontiers in Plant Science. 13. https://doi.org/10.3389/fpls.2022.850216 Agrawal, P., Jha, B., 2010. Transcription factors in plants and ABA dependent and independent abiotic stress signalling. Biologia Plantarum. 54, 201–212. https://doi.org/10.1007/s10535-010-0038-7 Ait Barka, E., Audran, J., 1997. Response of champenoise grapevine to low temperatures: changes of shoot and bud proline concentrations in response to low temperatures and correlations with freezing tolerance. Journal of Horticultural Science. 72, 577-582. https://doi.org/10.1080/14620316.1997.11515546 Amasino, R.M., 2005. Vernalization and flowering time. Current opinion in biotechnology. 16, 154-158. https://doi.org/10.1016/j.copbio.2005.02.004 An, J.-P., Li, R., Qu, F.-J., You, C.-X., Wang, X.-F., Hao, Y.-J., 2018. An apple NAC transcription factor negatively regulates cold tolerance via CBF-dependent pathway. Journal of Plant Physiology. 221, 74-80. https://doi.org/10.1016/j.jplph.2017.12.009 Biłas, R., Szafran, K., Hnatuszko-Konka, K., Kononowicz, A.K., 2016. Cis-regulatory elements used to control gene expression in plants. Plant Cell, Tissue and Organ Culture (PCTOC). 127, 269-287. https://doi.org/10.1007/s11240-016-1057-7 Danisman, S. 2016. TCP transcription factors at the interface between environmental challenges and the plant’s growth responses. Frontiers in Plant Science. 7, 1930. https://doi.org/10.3389/fpls.2016.01930 Dong, W., Ai, X., Xu, F., Quan, T., Liu, S., Xia, G., 2012. Isolation and characterization of a bread wheat salinity responsive ERF transcription factor. Gene. 511, 38-45. https://doi.org/10.1016/j.gene.2012.09.039 Dowla, M. N. U., Edwards, I., O'Hara, G., Islam, S., Ma, W., 2018. Developing wheat for improved yield and adaptation under a changing climate: optimization of a few key genes. Engineering. 4, 514-522. https://doi.org/10.1016/j.eng.2018.06.005 Fang, Y., Zheng, Y., Lu, W., Li, J., Duan, Y., Zhang, S., Wang, Y., 2021. Roles of miR319-regulated TCPs in plant development and response to abiotic stress. The Crop Journal. 9, 17-28. https://doi.org/10.1016/j.cj.2020.07.007 Farokhpour, B., Ismaili, A., Eisvand, H.R., Sohrabi, S.M., 2019. Analysis of gene expression pattern of some members of NAC gene family in lentil (Lens culinaris M.) under cold stress. Agricultural Biotechnology Journal. 10, 111-131. [In Persian with English Summary] Feng, Z.-J., Xu, S.-C., Liu, N., Zhang, G.-W., Hu, Q.-Z., Gong, Y.-M., 2018. Soybean TCP transcription factors: Evolution, classification, protein interaction and stress and hormone responsiveness. Plant Physiology and Biochemistry. 127, 129-142. https://doi.org/10.1016/j.plaphy.2018.03.020 Gahlaut, V., Jaiswal, V., Kumar, A., Gupta, P. K., 2016. Transcription factors involved in drought tolerance and their possible role in developing drought tolerant cultivars with emphasis on wheat (Triticum aestivum L.). Theoretical and Applied Genetics. 129, 2019-2042. https://doi.org/10.1007/s00122-016-2794-z Giraud, E., Ng, S., Carrie, C., Duncan, O., Low, J., Lee, C. P., Van Aken, O., Millar, A. H., Murcha, M., Whelan, J., 2010. TCP transcription factors link the regulation of genes encoding mitochondrial proteins with the circadian clock in Arabidopsis thaliana. The Plant Cell. 22, 3921-3934. https://doi.org/10.1105/tpc.110.074518 Griffith, M., Yaish, M. W., 2004. Antifreeze proteins in overwintering plants: a tale of two activities. Trends in Plant Science. 9, 399-405. https://doi.org/10.1016/j.tplants.2004.06.007 Guo, J., Sun, B., He, H., Zhang, Y., Tian, H., Wang, B., 2021. Current understanding of bHLH transcription factors in plant abiotic stress tolerance. International Journal of Molecular Sciences. 22, 4921. https://doi.org/10.3390/ijms22094921 Hao, Y.J., Wei, W., Song, Q.X., Chen, H.W., Zhang, Y.Q., Wang, F., Zou, H.F., Lei, G., Tian, A.G., Zhang, W.K., 2011. Soybean NAC transcription factors promote abiotic stress tolerance and lateral root formation in transgenic plants. The Plant Journal. 68, 302-313. https://doi.org/10.1111/j.1365-313X.2011.04687.x He, F., Zhang, L., Zhao, G., Kang, J., Long, R., Li, M., Yang, Q., Chen, L., 2022. Genome-wide identification and expression analysis of the NAC gene family in Alfalfa revealed its potential roles in response to multiple abiotic stresses. International Journal of Molecular Sciences. 23, 10015. https://doi.org/10.3390/ijms231710015 Jan, N., Andrabi, K. I., 2009. Cold resistance in plants: A mystery unresolved. Electronic Journal of Biotechnology. 12, 14-15. http://doi.org/10.2225/vol12-issue3-fulltext-3 Jin, H., Huang, F., Cheng, H., Song, H., Yu, D., 2013. Overexpression of the GmNAC2 gene, an NAC transcription factor, reduces abiotic stress tolerance in tobacco. Plant Molecular Biology Reporter. 31, 435-442. https://doi.org/10.1007/s11105-012-0514-7 Kakei, Y., Masuda, H., Nishizawa, N. K., Hattori, H., Aung, M. S., 2021. Elucidation of novel cis-regulatory elements and promoter structures involved in iron excess response mechanisms in rice using a bioinformatics approach. Frontiers in Plant Science. 12, 660303. https://doi.org/10.3389/fpls.2021.660303 Kidokoro, S., Shinozaki, K., Yamaguchi-Shinozaki, K., 2022. Transcriptional regulatory network of plant cold-stress responses. Trends in Plant Science. https://doi.org/10.1016/j.tplants.2022.01.008 Kosugi, S., Ohashi, Y., 2002. DNA binding and dimerization specificity and potential targets for the TCP protein family. The Plant Journal. 30, 337-348. https://doi.org/10.1046/j.1365-313X.2002.01294.x Laudencia-Chingcuanco, D., Ganeshan, S., You, F., Fowler, B., Chibbar, R., Anderson, O., 2011. Genome-wide gene expression analysis supports a developmental model of low temperature tolerance gene regulation in wheat (Triticum aestivum L.). BMC genomics. 12, 1-20. https://doi.org/10.1186/1471-2164-12-299 Lawlor, D. W., Paul, M. J., 2014. Source/sink interactions underpin crop yield: the case for trehalose 6-phosphate/SnRK1 in improvement of wheat. Frontiers in Plant Science. 5, 418. https://doi.org/10.3389/fpls.2014.00418 Lee, D.-K., Jung, H., Jang, G., Jeong, J. S., Kim, Y. S., Ha, S.-H., Do Choi, Y., Kim, J.-K., 2016. Overexpression of the OsERF71 transcription factor alters rice root structure and drought resistance. Plant physiology. 172, 575-588. https://doi.org/10.1104/pp.16.00379 Lei, N., Yu, X., Li, S., Zeng, C., Zou, L., Liao, W., Peng, M., 2017. Phylogeny and expression pattern analysis of TCP transcription factors in cassava seedlings exposed to cold and/or drought stress. Scientific reports. 7, 1-13. http://dx.doi.org/10.1038/s41598-017-09398-5 Li, W.-y., Wang, C., Shi, H.-h., Wang, B., Wang, J.-x., Liu, Y.-s., Ma, J.-y., Tian, S.-y., Zhang, Y.-w., 2020. Genome-wide analysis of ethylene-response factor family in adzuki bean and functional determination of VaERF3 under saline-alkaline stress. Plant Physiology and Biochemistry. 147, 215-222. https://doi.org/10.1016/j.plaphy.2019.12.019 Li, X., Zhang, D., Li, H., Wang, Y., Zhang, Y., Wood, A.J., 2014. EsDREB2B, a novel truncated DREB2-type transcription factor in the desert legume Eremosparton songoricum, enhances tolerance to multiple abiotic stresses in yeast and transgenic tobacco. BMC Plant Biology. 14, 1-16. https://doi.org/10.1186/1471-2229-14-44 Liu, M.-M., Wang, M.-M., Yang, J., Wen, J., Guo, P.-C., Wu, Y.-W., Ke, Y.-Z., Li, P.-F., Li, J.-N., Du, H., 2019. Evolutionary and comparative expression analyses of TCP transcription factor gene family in land plants. International Journal of Molecular Sciences. 20, 3591. https://doi.org/10.3390/ijms20143591 Mao, H., Li, S., Chen, B., Jian, C., Mei, F., Zhang, Y., Li, F., Chen, N., Li, T., Du, L., 2022. Variation in cis-regulation of a NAC transcription factor contributes to drought tolerance in wheat. Molecular Plant. 15, 276-292. https://doi.org/10.1016/j.molp.2021.11.007 Marques, D. N., dos Reis, S. P., de Souza, C. R., 2017. Plant NAC transcription factors responsive to abiotic stresses. Plant Gene. 11, 170-179. https://doi.org/10.1016/j.plgene.2017.06.003 Marques, D. N., Reis, S. P. d., de Souza, C. R. B., 2017. Plant NAC transcription factors responsive to abiotic stresses. Plant Gene. 11, 170-179. https://doi.org/10.1016/j.plgene.2017.06.003 Mishra, P.K., Bisht, S.C., Ruwari, P., Selvakumar, G., Joshi, G.K., Bisht, J.K., Bhatt, J.C., Gupta, H.S., 2011. Alleviation of cold stress in inoculated wheat (Triticum aestivum L.) seedlings with psychrotolerant Pseudomonads from NW Himalayas. Archives of microbiology. 193, 497-513. https://doi.org/10.1007/s00203-011-0693-x Mizoi, J., Shinozaki, K., Yamaguchi-Shinozaki, K., 2012. AP2/ERF family transcription factors in plant abiotic stress responses. Biochimica et Biophysica Acta (BBA)-Gene Regulatory Mechanisms., 1819, 86-96. https://doi.org/10.1016/j.bbagrm.2011.08.004 Mukhopadhyay, P., Tyagi, A.K., 2015. OsTCP19 influences developmental and abiotic stress signaling by modulatingABI4-mediated pathways. Scientific reports. 5, 1-12. https://doi.org/10.1038/srep09998 Nakano, T., Suzuki, K., Fujimura, T., Shinshi, H., 2006. Genome-wide analysis of the ERF gene family in Arabidopsis and rice. Plant physiology. 140, 411-432. https://doi.org/10.1104/pp.105.073783 Ohama, N., Sato, H., Shinozaki, K., Yamaguchi-Shinozaki, K., 2017. Transcriptional regulatory network of plant heat stress response. Trends in Plant Science. 22, 53-65. https://doi.org/10.1016/j.tplants.2016.08.015 Paolacci, A.R., Tanzarella, O.A., Porceddu, E., Ciaffi, M., 2009. Identification and validation of reference genes for quantitative RT-PCR normalization in wheat. BMC molecular biology. 10, 1-27. https://doi.org/10.1186/1471-2199-10-11 Rawson, H. M., Zajac, M., Penrose, L.D.J., 1998. Effect of seedling temperature and its duration on development of wheat cultivars differing in vernalization response. Field Crops Research. 57, 289-300. https://doi.org/10.1016/S0378-4290(98)00073-2 Rosenzweig, C., Tubiello, F. N., 1996. Effects of changes in minimum and maximum temperature on wheat yields in the central US A simulation study. Agricultural and Forest Meteorology. 80, 215-230. https://doi.org/10.1016/0168-1923(95)02299-6 Rushton, P.J., Somssich, I.E., Ringler, P., Shen, Q.J., 2010. WRKY transcription factors. Trends in Plant Science. 15, 247-258. https://doi.org/10.1016/j.tplants.2010.02.006 Sablowski, R.W., Meyerowitz, E.M., 1998. A homolog of NO APICAL MERISTEM is an immediate target of the floral homeotic genes APETALA3/PISTILLATA. Cell. 92, 93-103. https://doi.org/10.1016/S0092-8674(00)80902-2 Sarvepalli, K., Nath, U., 2011. Hyper‐activation of the TCP4 transcription factor in Arabidopsis thaliana accelerates multiple aspects of plant maturation. The Plant Journal. 67, 595-607. https://doi.org/10.1111/j.1365-313X.2011.04616.x Seki, M., Kamei, A., Yamaguchi-Shinozaki, K., Shinozaki, K., 2003. Molecular responses to drought, salinity and frost: common and different paths for plant protection. Current opinion in biotechnology. 14, 194-199. https://doi.org/10.1016/S0958-1669(03)00030-2 Tran, L.-S.P., Nakashima, K., Sakuma, Y., Simpson, S.D., Fujita, Y., Maruyama, K., Fujita, M., Seki, M., Shinozaki, K., Yamaguchi-Shinozaki, K., 2004. Isolation and functional analysis of Arabidopsis stress-inducible NAC transcription factors that bind to a drought-responsive cis-element in the early responsive to dehydration stress 1 promoter. The Plant Cell. 16, 2481-2498. https://doi.org/10.1105/tpc.104.022699 Trupiano, D., Yordanov, Y., Regan, S., Meilan, R., Tschaplinski, T., Scippa, G. S., Busov, V. 2013. Identification, characterization of an AP2/ERF transcription factor that promotes adventitious, lateral root formation in Populus. Planta. 238, 271-282. https://doi.org/10.1007/s00425-013-1890-4 Verma, S., Bhatia, S., 2019. A comprehensive analysis of the B3 superfamily identifies tissue-specific and stress-responsive genes in chickpea (Cicer arietinum L.). 3 Biotechnology. 9, 1-17. https://doi.org/10.1007/s13205-019-1875-5 Wang, G., Zhang, S., Ma, X., Wang, Y., Kong, F., Meng, Q., 2016. A stress-associated NAC transcription factor (SlNAC35) from tomato plays a positive role in biotic and abiotic stresses. Physiologia Plantarum. 158, 45-64. https://doi.org/10.1111/ppl.12444 Wang, H., Wang, H., Shao, H., Tang, X., 2016. Recent advances in utilizing transcription factors to improve plant abiotic stress tolerance by transgenic technology. Frontiers in Plant Science. 7, 67. https://doi.org/10.3389/fpls.2016.00067 Wang, S.-t., Sun, X.-l., Hoshino, Y., Yu, Y., Jia, B., Sun, Z.-w., Sun, M.-z., Duan, X.-b., Zhu, Y.-m., 2014. MicroRNA319 positively regulates cold tolerance by targeting OsPCF6 and OsTCP21 in rice (Oryza sativa L.). PLoS One. 9, e91357. https://doi.org/10.1371/journal.pone.0091357 Winfield, M. O., Lu, C., Wilson, I. D., Coghill, J. A., Edwards, K. J., 2010. Plant responses to cold: transcriptome analysis of wheat. Plant biotechnology journal. 8, 749-771. https://doi.org/10.1111/j.1467-7652.2010.00536.x Xu, Z.-S., Chen, M., Li, L.-C., Ma, Y.-Z. 2008. Functions of the ERF transcription factor family in plants. Botany. 86, 969-977. Zhang, T., Zhao, Y., Wang, Y., Liu, Z., Gao, C., 2018. Comprehensive analysis of MYB gene family and their expressions under abiotic stresses and hormone treatments in Tamarix hispida. Frontiers in Plant Science. 9, 1303. https://doi.org/10.3389/fpls.2018.01303 | ||
آمار تعداد مشاهده مقاله: 321 تعداد دریافت فایل اصل مقاله: 329 |