1. Sun H, Saeedi P, Karuranga S, Pinkepank M, Ogurtsova K, Duncan B, et al. IDF Diabetes Atlas: Global, Regional and Country-Level Diabetes Prevalence Estimates for 2021 and Projections for 2045. Diabetes Research and Clinical Practice, 183, Article ID: 109119. 2021. https://doi.org/10.1016/j.diabres.2021.109119
2. Huang H, Luo Y, Wang Q, Zhang Y, Li Z, He R, et al. Vaccinium as a potential therapy for diabetes and microvascular complications. Nutrients. 2023;15(9):2031. https://doi.org/10.3390/nu15092031
3. Update A. Heart disease and stroke statistics–2017 update. Circulation. 2017;135:e146–e603.
4. Miki T, Yuda S, Kouzu H, Miura T. Diabetic cardiomyopathy: pathophysiology and clinical features. Heart Failure Reviews. 2013;18:149–66. https://doi.org/10.1007/s10741-012-9313-3
5. Ward M-L, Crossman DJ. Mechanisms underlying the impaired contractility of diabetic cardiomyopathy. World Journal of Cardiology. 2014;6(7):577. https://doi.org/10.4330/wjc.v6.i7.577
6. Palazzuoli A, Iacoviello M. Diabetes leading to heart failure and heart failure leading to diabetes: epidemiological and clinical evidence. Heart Failure Reviews. 2023;28(3):585–96. https://doi.org/10.1007/s10741-022-10238-6
7. Shantikumar S, Caporali A, Emanueli C. Role of microRNAs in diabetes and its cardiovascular complications. Cardiovascular Research. 2012;93(4):583–93. https://doi.org/10.1093/cvr/cvr300
8. Ceman S, Saugstad J. MicroRNAs: Meta-controllers of gene expression in synaptic activity emerge as genetic and diagnostic markers of human disease. Pharmacology & Therapeutics. 2011;130(1):26–37. https://doi.org/10.1016/j.pharmthera.2011.01.004
9. Aval SF, Lotfi H, Sheervalilou R, Zarghami N. Tuning of major signaling networks (TGF-β, Wnt, Notch, and Hedgehog) by miRNAs in human stem cells commitment to different lineages: Possible clinical application. Biomedicine & Pharmacotherapy. 2017;91:849–60. https://doi.org/10.1016/j.biopha.2017.05.020
10. Guay C, Roggli E, Nesca V, Jacovetti C, Regazzi R. Diabetes mellitus, a microRNA-related disease? Translational Research. 2011;157(4):253–64. https://doi.org/10.1016/j.trsl.2011.01.009
11. Matsuyama H, Suzuki HI. Systems and synthetic microRNA biology: from biogenesis to disease pathogenesis. International Journal of Molecular Sciences. 2019;21(1):132. https://doi.org/10.3390/ijms21010132
12. Hammond SM. An overview of microRNAs. Advanced Drug Delivery Reviews. 2015;87:3–14. https://doi.org/10.1016/j.addr.2015.05.001
13. Navarro F, Lieberman J. miR-34 and p53: new insights into a complex functional relationship. PLOS One. 2015;10(7):e0132767. https://doi.org/10.1371/journal.pone.0132767
14. Li L. Regulatory mechanisms and clinical perspectives of miR-34a in cancer. Journal of Cancer Research and Therapeutics. 2014;10(4):805–10. https://doi.org/10.4103/0973-1482.146084
15. Chang T-C, Wentzel EA, Kent OA, Ramachandran K, Mullendore M, Lee KH, et al. Transactivation of miR-34a by p53 broadly influences gene expression and promotes apoptosis. Molecular Cell. 2007;26(5):745–52. https://doi.org/10.1016/j.molcel.2007.05.010
16. Seyhan AA, Nunez Lopez YO, Xie H, Yi F, Mathews C, Pasarica M, et al. Pancreas-enriched miRNAs are altered in the circulation of subjects with diabetes: a pilot cross-sectional study. Scientific Reports. 2016;6(1):31479. https://doi.org/10.1038/srep31479
17. Lin X, Guan H, Huang Z, Liu J, Li H, Wei G, et al. Downregulation of Bcl‐2 expression by miR‐34a mediates palmitate‐induced Min6 cells. Journal of Diabetes Research. 2014;2014(1):258695. https://doi.org/10.1155/2014/258695
18. Ni T, Lin N, Lu W, Sun Z, Lin H, Chi J, et al. Dihydromyricetin prevents diabetic cardiomyopathy via miR-34a suppression by activating autophagy. Cardiovascular Drugs and Therapy. 2020;34:291–301. https://doi.org/10.1007/s10557-020-06968-0
19. Jiao D, Zhang H, Jiang Z, Huang W, Liu Z, Wang Z, et al. MicroRNA-34a targets sirtuin 1 and leads to diabetes-induced testicular apoptotic cell death. Journal of Molecular Medicine. 2018;96:939–49. https://doi.org/10.1007/s00109-018-1667-0
20. Backe MB, Novotny GW, Christensen DP, Grunnet LG, Mandrup-Poulsen T. Altering β-cell number through stable alteration of miR-21 and miR-34a expression. Islets. 2014;6(1):e27754. https://doi.org/10.4161/isl.27754
21. Ghorbanalizadeh M, Gholami F. Effect of 12-week aerobic training on cardiac p53 and AIF gene expression in male rats. Medical Journal of Tabriz University of Medical Sciences. 2020;42(3):310–8. [In Persian]. https://doi.org/10.34172/mj.2020.050
22. Kung C-P, Murphy ME. The role of the p53 tumor suppressor in metabolism and diabetes. The Journal of Endocrinology. 2016;231(2):R61. https://doi.org/10.1530/JOE-16-0324
23. Jokar M, Moghadam MS. Effect of 4 weeks of high-intensity interval training on P53 and caspase-3 protein content in the heart muscle tissue of rats with type 1 diabetes. Journal of Shahid Sadoughi University of Medical Sciences. 2021. [In Persian]. https://doi.org/10.18502/ssu.v29i11.8502
24. Sharafi H, Rahimi R. The effect of resistance exercise on p53, caspase-9, and caspase-3 in trained and untrained men. The Journal of Strength & Conditioning Research. 2012;26(4):1142–8. https://doi.org/10.1519/JSC.0b013e31822e58e5
25. Flores-López LA, Díaz-Flores M, García-Macedo R, Ávalos-Rodríguez A, Vergara-Onofre M, Cruz M, et al. High glucose induces mitochondrial p53 phosphorylation by p38 MAPK in pancreatic RINm5F cells. Molecular Biology Reports. 2013;40:4947–58. https://doi.org/10.1007/s11033-013-2595-2
26. Tavana O, Gu W. Modulation of the p53/MDM2 interplay by HAUSP inhibitors. Journal of Molecular Cell Biology. 2017;9(1):45–52. https://doi.org/10.1093/jmcb/mjw049
27. Lee J, Kang Y, Khare V, Jin Z, Kang M, Yoon Y, et al. The p53-inducible gene 3 (PIG3) contributes to early cellular response to DNA damage. Oncogene. 2010;29(10):1431–50. https://doi.org/10.1038/onc.2009.438
28. Schwingshackl L, Missbach B, Dias S, König J, Hoffmann G. Impact of different training modalities on glycaemic control and blood lipids in patients with type 2 diabetes: a systematic review and network meta-analysis. Diabetologia. 2014;57(9):1789–97. https://doi.org/10.1007/s00125-014-3303-z
29. Cassidy S, Thoma C, Hallsworth K, Parikh J, Hollingsworth KG, Taylor R, et al. High intensity intermittent exercise improves cardiac structure and function and reduces liver fat in patients with type 2 diabetes: a randomised controlled trial. Diabetologia. 2016;59:56 66. https://doi.org/10.1007/s00125-015-3741-2
30. Wilson GA, Wilkins GT, Cotter JD, Lamberts RR, Lal S, Baldi JC. HIIT Improves Left Ventricular Exercise Response in Adults with Type 2 Diabetes. Medicine and Science in Sports and Exercise. 2019;51(6):1099–105. https://doi.org/10.1249/MSS.0000000000001897
31. Improta Caria AC, Nonaka CKV, Pereira CS, Soares MBP, Macambira SG, Souza BSdF. Exercise training-induced changes in microRNAs: beneficial regulatory effects in hypertension, type 2 diabetes, and obesity. International Journal of Molecular Sciences. 2018;19(11):3608. https://doi.org/10.3390/ijms19113608
32. da Silva FC, da Rosa Iop R, Andrade A, Costa VP, Gutierres Filho PJB, da Silva R. Effects of physical exercise on the expression of microRNAs: a systematic review. The Journal of Strength & Conditioning Research. 2020;34(1):270–80. https://doi.org/10.1519/JSC.0000000000003103
33. Al-Jarrah M, Ahmad MB, Maayah M, Al-Khatib A. Effect of exercise training on the expression of p53 and iNOS in the cardiac muscle of type I diabetic rats. Journal of Endocrinology and Metabolism. 2012;2(4-5):176–80. https://doi.org/10.4021/jem123e
34. Rahbarghazi A, Alamdari KA, Rahbarghazi R, Salehi-Pourmehr H. Co-administration of exercise training and melatonin on the function of diabetic heart tissue: a systematic review and meta-analysis of rodent models. Diabetology & Metabolic Syndrome. 2023;15(1):67. https://doi.org/10.1186/s13098-023-01045-6
35. Qi Z, He J, Zhang Y, Shao Y, Ding S. Exercise training attenuates oxidative stress and decreases p53 protein content in skeletal muscle of type 2 diabetic Goto-Kakizaki rats. Free Radical Biology and Medicine. 2011;50(7):794–800. https://doi.org/10.1016/j.freeradbiomed.2010.12.022
36. Gaderpour S, Ghiasi R, Hamidian G, Heydari H, Keyhanmanesh R. Voluntary exercise improves spermatogenesis and testicular apoptosis in type 2 diabetic rats through alteration in oxidative stress and mir-34a/SIRT1/p53 pathway. Iranian Journal of Basic Medical Sciences. 2021;24(1):58. [In Persian]. https://doi.org/10.22038/ijbms.2020.49498
37. Shu-fang H, Jia-ying L, Min Y, Jie F, Bin L, Zheng W, et al. Effect of endurance training on the expression profile of circRNAlncRNA-miRNA-mRNA in myocardial tissues of mice after exhaustive exercise. Journal of Hainan Medical University. 2023;29(3). Accession Number: 162709665
38. Akbari J, Shirvani H, Shamsoddini A, Bazgir B, Samadi M. Investigation of expression of myocardial miR-126, miR-29a, and miR-222 as a potential marker in STZ-induced diabetic rats following interval and continuous exercise training. Journal of Diabetes & Metabolic Disorders. 2022:1 7. https://doi.org/10.1007/s40200-021-00957-2
39. Ashrafi, Bolboli, Lotfa Ali, Khazani, Asadi, Asadollah. The effect of 12 weeks of resistance training with elastic bands on the expression level of mir-34a and cardiovascular risk factors in obese elderly women. Journal of Applied Exercise Physiology. 2020;16(31):15–29. [In Persian]. https://doi.org/10.22080/JAEP.2019.16103.1867
40. Abdollahi-Diba M, Bashiri J, Pourmanaf H, Fekri-Kourabbaslou V. The effect of endurance exercise and rosehip extract supplementation on the expression of P53 and cytochrome C genes in male rat heart. Journal of Cardiovascular and Thoracic Research. 2022;14(4):246. https://doi.org/10.34172/jcvtr.2022.31599
41. Kim H, Bae Y-U, Lee H, Kim H, Jeon JS, Noh H, et al. Effect of diabetes on exosomal miRNA profile in patients with obesity. BMJ Open Diabetes Research & Care. 2020;8(1). https://doi.org/10.1136/bmjdrc-2020-001403
42. Sasidharan SR, Joseph JA, Anandakumar S, Venkatesan V, Ariyattu Madhavan CN, Agarwal A. An experimental approach for selecting appropriate rodent diets for research studies on metabolic disorders. BioMed Research International. 2013;2013(1):752870. https://doi.org/10.1155/2013/752870
43. Srinivasan K, Viswanad B, Asrat L, Kaul CL, Ramarao P. Combination of high-fat diet-fed and low-dose streptozotocin-treated rat: a model for type 2 diabetes and pharmacological screening. Pharmacological Research. 2005;52(4):313–20. https://doi.org/10.1016/j.phrs.2005.05.004
44. Rashwan Ismael B, Piralaiy E, D. Nikoukheslat S, Hamidiyan G. The effect of eight weeks of aerobic training on miR-30c gene expression and glycemic Indices in heart tissue of type 2 diabetic Rats. Journal of Sport Biosciences. 2024;16(3):21–38. [In Persian]. https://doi.org/10.22059/jsb.2024.370737.1624
45. Waring CD, Vicinanza C, Papalamprou A, Smith AJ, Purushothaman S, Goldspink DF, Nadal-Ginard B, Torella D, Ellison GM. The adult heart responds to increased workload with physiologic hypertrophy, cardiac stem cell activation, and new myocyte formation. European Heart Journal. 2014 Oct 14;35(39):2722-31. https://doi.org/10.1093/eurheartj/ehs338
46. Tabatabaeipanah S, Akbarzadeh R, Khodayi Z, Ghaderian S. Increased oxidative stress and expression of p53, bax, and bcl2 genes in patients with acute myocardial infarction. Daneshvar Pezeshki. 2020;23(5):1–10. [In Persian].
47. Nguyen T, Nioi P, Pickett CB. The Nrf2-antioxidant response element signaling pathway and its activation by oxidative stress. Journal of Biological Chemistry. 2009;284(20):13291–5. https://doi.org/10.1074/jbc.R900010200
48. Wan Y, Cui R, Gu J, Zhang X, Xiang X, Liu C, et al. Identification of Four Oxidative Stress-Responsive MicroRNAs, miR-34a-5p, miR-1915-3p, miR-638, and miR-150-3p, in Hepatocellular Carcinoma. Oxidative Medicine and Cellular Longevity. 2017;2017:5189138. https://doi.org/10.1155/2017/5189138
49. Moradpour P, Daryanoosh F, Dashtiyan A, Taghi M, Jamhiri I. Impact of 6 weeks of intensive intermittent training with taking vitamin E on P53 changes in blood serum levels and visceral adipose tissue in Sprague-Dawley rats. Sport Science. 2017;10(Suppl. 1):98–103. [In Persian]. https://doi.org/10.5555/20183110814
50. Marzetti E, Lawler JM, Hiona A, Manini T, Seo AY, Leeuwenburgh C. Modulation of age-induced apoptotic signaling and cellular remodeling by exercise and calorie restriction in skeletal muscle. Free Radical Biology and Medicine. 2008;44(2):160–8. https://doi.org/10.1016/j.freeradbiomed.2007.05.028
51. Alipour MR, Naderi R, Alihemmati A, Sheervalilou R, Ghiasi R. Swimming training attenuates pancreatic apoptosis through miR-34a/Sirtu1 in1/P53 Axis in high-fat diet and Streptozotocin-induced Type-2 diabetic rats. Journal of Diabetes & Metabolic Disorders. 2020;19(2):1439–46. https://doi.org/10.1007/s40200-020-00670-6