Adlard, P.A., Perreau, V.M., Pop, V., & Cotman, C.W. (2005). Voluntary exercise decreases amyloid load in a transgenic model of Alzheimer’s disease. Journal of Neuroscience, 25(17), 4217-4221. https://doi.org/10.1523/JNEUROSCI.0496-05.2005
Amiri, H., Shabkhiz, F., Pournemati, P., Quchan, A.H.S.K., & Fard, R.Z. (2023). Swimming exercise reduces oxidative stress and liver damage indices of male rats exposed to electromagnetic radiation. Life Sciences, 317, 121461. https://doi.org/10.1016/j.lfs.2023.121461
Barton, S.M., To, E., Rogers, B.P., Whitmore, C., Uppal, M., Matsubara, J.A., & Pham, W. (2021). Inhalable thioflavin S for the detection of amyloid beta deposits in the retina. Molecules, 26(4), 835. https://doi.org/10.3390/molecules26040835
Baynes, H.W. (2015). Classification, pathophysiology, diagnosis and management of diabetes mellitus. Journal of Diabetes Metabolism 6(5), 1-9. https://doi.org/10.4172/2155-6156.1000541
Bromley-Brits, K., Deng, Y., & Song, W. (2011). Morris water maze test for learning and memory deficits in Alzheimer’s disease model mice. Journal of Visualized Experiments, (53), e2920. https://dx.doi.org/10.3791/2920
Callisaya, M., & Nosaka, K. (2017). Effects of exercise on type 2 diabetes mellitus-related cognitive impairment and dementia. Journal of Alzheimer’s Disease, 59(2), 503-513. https://dx.doi.org/10.3233/JAD-161154
Chang, A.Y., Skirbekk, V.F., Tyrovolas, S., Kassebaum, N.J., & Dieleman, J.L. (2019). Measuring population ageing: an analysis of the global burden of disease study 2017. The Lancet Public Health, 4(3), e159-e167. https://doi.org/10.1016/S2468-2667(19)30019-2
Chen, X.Q., & Mobley, W.C. (2019). Alzheimer disease pathogenesis: insights from molecular and cellular biology studies of oligomeric Aβ and tau species. Frontiers in Neuroscience, 13, 659. https://doi.org/10.3389/fnins.2019.00659
Clemenson, G.D., Gage, F.H., & Stark, C.E. (2018). Environmental enrichment and neuronal plasticity. The Oxford Handbook of Developmental Neural Plasticity, 85, 283-284. https://doi.org/10.1093/oxfordhb/9780190635374.013.13
de la Monte, S.M. (2019). The full spectrum of Alzheimer’s disease is rooted in metabolic derangements that drive type 3 diabetes. Diabetes Mellitus: A Risk Factor for Alzheimer’s Disease, 45-83. https://doi.org/10.1007/978-981-13-3540-2_4
de Sousa Fernandes, M.S., Ordônio, T.F., Santos, G.C.J., Santos, L.E.R., Calazans, C.T., Gomes, D.A., & Santos, T.M. (2020). Effects of physical exercise on neuroplasticity and brain function: a systematic review in human and animal studies. Neural Plasticity, 2020. https://doi.org/10.1155/2020/8856621
Gold, C.A., & Budson, A.E. (2008). Memory loss in Alzheimer’s disease: implications for development of therapeutics. Expert Review of Neurotherapeutics, 8(12), 1879-1891. https://doi.org/10.1586/14737175.8.12.1879
Heneka, M.T., Carson, M.J., El Khoury, J., Landreth, G.E., Brosseron, F., Feinstein, D.L., ... & Kummer, M.P. (2015). Neuroinflammation in Alzheimer’s disease. The Lancet Neurology, 14(4), 388-405. https://doi.org/10.1016/S1474-4422(15)70016-5
Herring, A., Yasin, H., Ambrée, O., Sachser, N., Paulus, W., & Keyvani, K. (2008). Environmental enrichment counteracts Alzheimer’s neurovascular dysfunction in TgCRND8 mice. Brain Pathology, 18(1), 32-39. https://doi.org/10.1111/j.1750-3639.2007.00094.x
Kandimalla, R., Thirumala, V., & Reddy, P.H. (2017). Is Alzheimer’s disease a type 3 diabetes? A critical appraisal. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease, 1863(5), 1078-1089. https://doi.org/10.1016/j.bbadis.2016.08.018
Kaplan, M.A., & Inguanzo, M.M. (2017). The social, economic, and public health consequences of global population aging: Implications for social work practice and public policy. Journal of Social Work in the Global Community, 2(1), 1. https://doi.org/10.5590/JSWGC.2017.02.1.01
Li, X.H., Lv, B.L., Xie, J.Z., Liu, J., Zhou, X.W., & Wang, J.Z. (2012). AGEs induce Alzheimer-like tau pathology and memory deficit via RAGE-mediated GSK-3 activation. Neurobiology of Aging, 33(7), 1400-1410. https://doi.org/10.1016/j.neurobiolaging.2011.02.003
Naderi, S., Habibi, A., Kesmati, M., Rezaie, A., & Ghanbarzadeh, M. (2018). The effects of six weeks high intensity interval training on Amyloid beta1-42 peptide in hippocampus of rat model of Alzheimer’s disease induced with STZ. Journal of Clinical Research in Paramedical Sciences, 7(2). [In Persian]. https://doi.org/10.5812/jcrps.86866
Nakano, M., Kubota, K., Hashizume, S., Kobayashi, E., Chikenji, T.S., Saito, Y., & Fujimiya, M. (2020). An enriched environment prevents cognitive impairment in an Alzheimer’s disease model by enhancing the secretion of exosomal microRNA-146a from the choroid plexus. Brain, Behavior & Immunity-Health, 9, 100149. https://doi.org/10.1016/j.bbih.2020.100149
Pamidi, N., Yap, C.G., & Nayak, S. (2019). Protective effect of environmental enrichment on the morphology of neurons in the motor cortex of diabetic and stressed rats. Archives of Biochemistry and Molecular Biology, 10(4), 52-70. https://doi.org/10.26502/abmb.008
Prado Lima, M.G., Schimidt, H.L., Garcia, A., Daré, L.R., Carpes, F.P., Izquierdo, I., & Mello-Carpes, P.B. (2018). Environmental enrichment and exercise are better than social enrichment to reduce memory deficits in amyloid beta neurotoxicity. Proceedings of the National Academy of Sciences, 115(10), E2403-E2409. https://doi.org/10.1073/pnas.1718435115
Pugazhenthi, S., Qin, L., & Reddy, P.H. (2017). Common neurodegenerative pathways in obesity, diabetes, and Alzheimer’s disease. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease, 1863(5), 1037-1045. https://doi.org/10.1016/j.bbadis.2016.04.017
Selkoe, D.J., & Hardy, J. (2016). The amyloid hypothesis of Alzheimer’s disease at 25 years. EMBO Molecular Medicine, 8(6), 595-608. https://doi.org/10.15252/emmm.201606210
Singhal, G., Morgan, J., Jawahar, M.C., Corrigan, F., Jaehne, E.J., Toben, C., ... & Baune, B.T. (2019). Short-term environmental enrichment, and not physical exercise, alleviate cognitive decline and anxiety from middle age onwards without affecting hippocampal gene expression. Cognitive, Affective, & Behavioral Neuroscience, 19(5), 1143-1169. https://doi.org/10.3758/s13415-019-00743-x
Todorova, V., & Blokland, A. (2017). Mitochondria and synaptic plasticity in the mature and aging nervous system. Current Neuropharmacology, 15(1), 166-173. https://doi.org/10.2174/1570159X14666160414111821
Vorhees, C.V., & Williams, M.T. (2006). Morris water maze: procedures for assessing spatial and related forms of learning and memory. Nature Protocols, 1(2), 848-858. https://doi.org/10.1038/nprot.2006.116
Voss, M.W., Prakash, R.S., Erickson, K.I., Basak, C., Chaddock, L., Kim, J.S., ... & Kramer, A.F. (2010). Plasticity of brain networks in a randomized intervention trial of exercise training in older adults. Frontiers in Aging Neuroscience, 2, 32. https://doi.org/10.3389/fnagi.2010.00032
Wolf, S.A., Kronenberg, G., Lehmann, K., Blankenship, A., Overall, R., Staufenbiel, M., & Kempermann, G. (2006). Cognitive and physical activity differently modulate disease progression in the amyloid precursor protein (APP)-23 model of Alzheimer’s disease. Biological Psychiatry, 60(12), 1314-1323. https://doi.org/10.1016/j.biopsych.2006.04.004