
                
  University of Birjand  
 

 

  

Water Harvesting Research Vol. 6, No. 2, Autumn & Winter 2023, Case Study p. 213-225 

 

Implementation of a Machine-Learning-Based Approach for Forecasting 

Watershed Stream Flow (Case Study: Chehel Chai Watershed, Iran) 
  

Hamed Sahranavarda, Mahdi Naserib*, Abolfazl Akbarpourc, Farshad Ahmadid 

 
aMSc Student of Water Resources Management, Department of Civil Engineering, University of Birjand, Birjand, Iran.  
bAssistant Professor, Department of Civil Engineering, University of Birjand, Birjand, Iran.  
cProfessor, Department of Civil Engineering, University of Birjand, Birjand, Iran. 
dAssistant Professor, Department of Hydrology & Water Resources Engineering, Shahid Chamran University of Ahvaz, Ahvaz, Iran.  

 

*Corresponding Author, E-mail address: mnaseri@birjand.ac.ir 

Received: 19 November 2023/ Revised: 25 February 2024/ Accepted: 03 March 2024 

 

Abstract 

The importance of the optimal and efficient use of all available water resources becomes noticeable 

when today due to successive droughts and a decrease in rainfall, the surface water resources are 

running out. Runoff and surface water resources are some of the primary and vital available water 

resources, and hence, modeling and predicting their behavior are especially critical. In the current 

research, the aim was to model the stream flow of the Chehel Chai watershed in Golestan province, 

Iran, using the data of the stream flow and precipitation for a period of 45 years. For this reason, 4 

machine learning algorithms namely, Extreme Learning Machine (ELM), Random Forest (RF), 

Gaussian Process Regression (GPR), and Gene Expression Programming (GEP) were used. The data 

were entered into the modeling in the form of different scenarios consisting of the stream flow and 

precipitation with varying lags of time. The results showed that scenario M2 (using only stream flow 

data with two time lags) in the ELM (extreme learning machine) model with the values of RMSE 

(root mean square error) =0.984 (m3/s) and R2=0.613 had the most accurate performance and 

predictions among all the models and scenarios. 

Keywords: Forecasting, Machine learning, Modeling, Stream flow. 

 

1. Introduction 

Global warming, climate changes, 

consecutive droughts, and inefficient 

management are among the factors that 

jeopardized the survival of water resources 

(Sahranavard and Naseri, 2022). Surface water 

resources are among the most important water 

resources. So, the modeling and forecasting of 

these resources can help in efficient 

exploitation, reducing losses and wastage of 

water, and preventing floods. Therefore, today 

modeling and simulation of surface water 

resources have attracted the attention of 

experts and researchers all over the world 

(Sahranavard and Naseri, 2022). 

She and Basketfield (2005) compared 

support vector machine (SVM), linear 

discriminant analysis, and multinomial logistic 

regression for forecasting the stream flow of 

Cascade mountain range, United States and the 

projections showed the best performance was 

belonged to the SVM method. A FIR neural 

network and a fuzzy clustering-based were 

implemented by Luna et al. (2005) to forecast 

a case study stream flow and they showed that 

the FIR neural network had the most accurate 

predictions. Asefa et al. (2006) applied 

Support Vector Machines for modeling and 

forecasting the stream flow and compared the 

results with physical-based models. Various 

artificial neural networks were used by Kisi 

(2007) for forecasting the short-term daily 

stream flow. Hong (2008) combined three 

algorithms, namely recurrent artificial neural 

network, support vector machine, and chaotic 

particle swarm optimization algorithm for 

forecasting the stream flow. The results 

showed that the hybrid model performed 

satisfactorily than the other algorithms. Kalra 

and Ahmadi (2009) applied the SVM model 
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for modeling and forecasting the stream flow 

of the Colorado River catchment, United 

States. The predictions illustrated that the 

SVM algorithm overcame the linear regression 

and feedforward back propagation artificial 

neural network. The performances of statistical 

methods, namely autoregressive integrated 

moving average and seasonal ARIMA 

compared to the artificial intelligence 

approach, and Jordan-Elman artificial neural 

networks, for forecasting the flow rate of Kizil 

River were investigated by Abudu et al. 

(2010). They concluded that the statistical 

methods presented a more justifiable 

performance. Li et al. (2010) implemented a 

modified version of the SVM algorithm to 

simulate and forecast the input flow of the 

Shihmen reservoir, Taiwan. They compared 

the projections with the results of two versions 

of multiple linear regression and deduced that 

the modified SVM approach presented the 

most accurate results. Kernel SVM approach 

was used for modeling and forecasting the 

stream flow of the Mahanadi River, India. The 

projections compared with the results of the 

Box-Jenkins method illustrated that the SVR 

outperformed the ARIMA model. Rasouli et 

al. (2010) used climatic data for forecasting the 

daily stream flow of a coastal watershed in 

Canada. The methods they applied were 

support vector regression, Bayesian neural 

network, and Gaussian process and they 

compared the predictions with the MLR 

(multiple linear regression) method. 

According to their results, the three machine 

learning algorithms worked more satisfactorily 

than the MLR model.  

A hybrid model consisting of a wavelet 

function, neuro, and fuzzy algorithms was used 

by Shiri and Kisi (2010) to model and forecast 

the Stream flow of the Filyos River, Turkey. 

They concluded that the hybrid approach 

increased the accuracy of single methods. 

Three approaches, including modified SVM, 

basic SVM, and ANN (artificial neural 

network), were applied by Guo et al. (2011) for 

modeling and forecasting the stream flow. 

Based on the results, the modified SVM had 

the most precise performance. Rasouli et al. 

(2012) used climatic parameters as input data 

for modeling and forecasting the stream flow 

of a small watershed in Canada by four various 

algorithms, namely Bayesian neural network 

(BNN), support vector regression (SVR), 

Gaussian process (GP), and multiple linear 

regression. They showed that the machine 

learning approaches were more reliable. The 

accuracy and efficiency of SVM and MLR 

algorithms were compared for forecasting the 

annual maximum stream flow in Malaysia by 

Zakaria and Shabri (2012). They deduced that 

the SVM model performed more precisely than 

the MLR method.  

Sun et al. (2014) applied the GPR algorithm 

for simulating and forecasting the watershed 

stream flow and compared the projections with 

the linear regression and ANN methods. 

According to their achievements, the GPR had 

the best performance. Garsole and Rajurkar 

(2015) used the SVR algorithm to forecast the 

stream flow of the catchment area upstream of 

the Jayakwadi dam in India and claimed that 

the SVR method is a trustable model for 

reliability and prediction. Tongal and Booij 

(2018) implemented SVR, ANN, and random 

forest (RF) algorithms to evaluate the 

performance of a simulation framework and 

concluded that the use of this simulation 

framework has increased the prediction 

accuracy of the models. Tyralis et al. (2021) 

applied 10 machine learning methods to model 

the watershed stream flow and compared the 

projections with the linear regression model 

and concluded that all 10 machine learning 

algorithms improved the results compared to 

the linear regression.  

The algorithms, namely RF, KNN, 

AdaBoost, and SVM were applied by 

Tosunoğlu et al. (2020) to model and forecast 

the stream flow of the Coruh river catchment, 

Turkey. According to their evaluation indexes, 

the RF approach produced the most accurate 

projections. Adnan et al. (2020) investigated 

the precision of three algorithms, including the 

artificial neural network, genetic algorithm, 

and the adaptive neuro-fuzzy inference system 

in modeling and forecasting the stream flow of 

Neelum and Kunhar Rivers, Pakistan, and 

compared the projections with the M5 

regression tree algorithm. Based on the results, 

the performances of the first two models were 

more satisfying than the M5RT technique.  

Cheng et al. (2020) applied artificial neural 

network (ANN) and long short-term memory 

(LSTM) for modeling and forecasting stream 

flow of the Nan and Ping Rivers catchments, 
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Thailand. They concluded that the LSTM 

model produced more accurate projections.  

Ikram et al. (2022) applied various 

machine-learning approaches such as extreme 

learning machine (ELM), Gaussian processes 

regression (GPR), support vector regression 

(SVR), least square SVR (LSSVR), radial 

basis function neural network (RBFNN) in 

predicting stream flow and based on six 

evaluation criteria, among all methods, the 

SVR model presented the most precise results. 

Singh et al. (2022) used four models, namely 

multiple linear regression (MLR), multiple 

adaptive regression splines (MARS), support 

vector machine (SVM), and random forest 

(RF) to model the stream flow of the Gola 

watershed, Uttarakhand based on rainfall-

runoff models. According to the results of 

modeling and calculated evaluation criteria, 

the random forest algorithm has the most 

accurate performance.  

Support vector machine (SVM), artificial 

neural network (ANN), and long short-term 

memory (LSTM) were used in the form of 3 

scenarios to model the flow of 11 rivers across 

Malaysia by Essam et al. (2022). The findings 

indicated that the performance of model AAN 

was more acceptable than other algorithms in 

all 11 rivers and 3 scenarios. Adnan et al. 

(2023) combined the ELM method with a 

variety of optimization algorithms and showed 

that the combined models showed more 

justifiable projections and performance than 

the independent model in predicting stream 

flow. Kumar et al. (2023) compared a large 

number of machine learning algorithms such 

as CatBoost, ElasticNet, k-Nearest Neighbors 

(KNN), etc, to check the accuracy of stream 

flow prediction and claimed that the CatBoost 

algorithm performed best. The performance of 

Random Forest Regression (RFR) and the soil 

and water assessment tool (SWAT) models for 

predicting the stream flow of the Rio Grande 

Headwaters near Del Norte was evaluated and 

analyzed by Islam et al. (2023) and based on 

the results of the evaluation criteria, the RFR 

model Introduced as the top model.  

In this research, the modeling and 

forecasting of the stream flow of the Chehel 

Chai watershed located in the Golestan 

province, Iran were done. For this purpose, 

four machine learning approaches, including 

the extreme learning machine (ELM), random 

forest (RF), gene expression programming 

(GEP), and Gaussian process regression (GPR) 

were used. The purpose of this research was to 

compare and evaluate the accuracy and 

efficiency of these algorithms in forecasting 

the stream flow in the climatic conditions of 

the studied watershed. The innovation and 

originality of this research are that it uses four 

well-known machine learning models on a 

case study with unique physical and 

geographical characteristics in six different 

scenarios as independent models and hybrid 

rainfall-runoff models and the superior and 

more efficient model has been determined.  

 

2. Materials and Methods 

2.1.  Study area 

In this research, the stream flow data of the 

Chehel Chai watershed, which were recorded 

monthly from 1971 to 2017 (a 46-year period) 

were used. Moreover, the precipitation data of 

the Chehel Chai watershed were collected at 

the same period, which was recorded monthly 

and used as input data in this research. The 

Chehel Chai watershed is located in the 

Golestan province, situated in the north of Iran. 

The area of this watershed is 470 square 

kilometers. According to the received 

statistics, the long-term average rainfall of this 

catchment area is 460 mm, and in terms of 

temperature, the average temperature of this 

catchment area is reported to be 18.2 degrees 

Celsius. Fig. 1 presents the location of the 

Chehel Chai watershed. Due to the proximity 

of the Chehel Chai watershed to the sea level, 

this altitude watershed experiences a severe 

height difference, so its highest peak has 2,900 

meters above the sea level and its lowest area 

reaches 22 meters. Fig. 1 shows the elevation 

of the studied watershed. Figures 2 and 3, 

present the time series plots of the stream flow 

and precipitation for the Chehel Chai 

watershed. 

 

2.2. Extreme Learning Machine (ELM) 

A new algorithm that has been proposed in 

recent years and used and applied in many 

researches is called the ELM, which was first 

introduced by Huang et al. (2006). This 

algorithm is very similar to feed-forward 

neural networks in the implementation process 

and the only difference is that the ELM 

determines the weight of hidden neurons and 
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as a result, it can be said to be among the 

simplest artificial neural networks. One of the 

most important advantages of this simple 

method, which makes the implementation 

easier for processing, is to reduce the 

computational time required in calculations 

and reduce the number of structures (Miche et 

al. 2008). 

   

  
a) Location of Golestan Province b) Location of the studied area 

 
c) Situation of Elevation in the studies watershed 

Fig. 1. Location of the Chehel Chai Watershed 
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Fig. 2. Time series plot of the stream flow 

 

 
Fig. 3. Time series plot of the precipitation 

In general, this algorithm has two main 

equations: 

XW=H  (1) 

Hβ= Υ  (2) 

In these equations, X is a complete set of 

input data, Y is the target vector, β represents 

the vector of output weights between the 

hidden layer and the output node, H is the 

hidden layer, and finally, W is the random 

weight matrix and play the role of connecting 

the output layer to the hidden layer (Huang et 

al. 2006). 

 

2.3. Random Forest (RF) 

Random Forest, a method that was first 

proposed by Breiman (2001) and later was 

implemented in many researches in different 

fields due to its good advantages such as high 

accuracy, efficiency, and convenience (Were 

et al. 2015). In general, there are many trees in 

this method, which each of them has a random 

vector that has been sampled separately and 

the values of each tree depend on this vector as 

well. Finally, the random forest is the result of 

the collection of all these tree predictors. The 

main task of the random vectors that each tree 

has separately is to monitor the growth of each 

tree that is produced in this collection (Ahmadi 

et al. 2022). In this method, the random vector 

Xi for the nth tree is generated separately and is 

not dependent on the vectors generated for 

550495440385330275220165110551

20

15

10

5

0

Month

Q
 (

m
^

3
/s

)

550495440385330275220165110551

35

30

25

20

15

10

5

0

Month

R
 (

m
m

)



218                                                                         Sahranavard et al. /Water Harvesting Research, 2023, 6(2):213-225 

     

other trees. The construction of the random 

vector for each tree is as follows: 
𝑥𝑛 = {ℎ1(𝑥), ℎ2(𝑥), … , ℎ𝑛(𝑥)} (3) 

ℎ𝑛 = ℎ(𝑥, 𝑋𝑛), 𝑥 = {𝑥1, 𝑥2, … , 𝑥𝑝} (4) 

where x and h are the feature and the 

threshold of each tree, respectively. In 

equation 4, the next forest is formed by the 

next p vector, and finally, the results of each 

tree are stated below: 

𝑦1 = ℎ1(𝑥), 𝑦2

= ℎ2(𝑥), … , 𝑦𝑛 = ℎ𝑛(𝑥) 
 (5) 

In equation 5, the obtained output 

corresponds to tree i, in which yi represents 

this. Ultimately, all the obtained results are 

compared and the best result is selected 

(Orellana-Alvear et al. 2020). 

 

2.4. Gaussian Process Regression (GRP) 

Through the combination of Bayesian and 

statistical theory and developing them, the 

GPR method was created, which is very well 

known and popular until now and has been 

used in extensive researches (Schulz et al. 

2018). One of the important applications of 

this method is to solve complex non-linear 

problems where the samples have large 

dimensions and small numbers. Another 

advantage of this algorithm is the ability of 

flexible deductive reasoning, which is also 

present in the Bayesian method. Self-

organization, adaptation, parallel processing, 

and self-learning are among the other 

privileges of this approach (Pustokhina et al. 

2021). In general, the GPR algorithm consists 

of two parts: regression and Gaussian process. 

The regression section is in charge of 

forecasting. Gaussian process is a Gaussian 

distribution between functions, which is 

defined as follows: 

𝑔(𝑋)~ 𝐺𝑃(𝐸(𝑋), 𝐾(𝑋, 𝑋))  (6) 

where K(X,X) is the covariance function 

matrix and E(X) indicates the mean function. If 

we consider the set 𝑆𝑛
𝑡𝑒𝑠𝑡 =

{ (𝑥𝑡𝑒𝑠𝑡  , 𝑦𝑡𝑒𝑠𝑡)|𝑥𝑡𝑒𝑠𝑡 ∈  𝑅𝑚 , 𝑦𝑡𝑒𝑠𝑡  ∈ 𝑅} as the 

input test data set to the model, the Gaussian 

process distribution is defined as follows: 
2( , ) ( , )

~ (0,
( , ) ( , )

test

y
n n test

y test test test

K X X I K X x
N

K x X K x x

    
  

     
(7) 

where in the above equation, K(X,xtest) is the 

covariance of the test data set xtest and the 

variables of the learning input data X. 

 

2.5. Gene Expression Programming 

(GEP) 

Gene Expression Programming (GEP) is a 

machine learning algorithm that was first 

introduced by Ferreira (2001), which was 

developed from the development of Genetic 

Algorithm (GA) and Genetic Programming 

(GP) methods (Ferreira 2001). In general, this 

method works on the chromosomes of the 

population and evaluates them according to the 

criteria of fitness conditions, and performs 

genetic changes using one or more genetic 

operators (Khan et al. 2021). One of the 

important differences of this method compared 

to classical regression is that some pre-defined 

functions are used in classical regression, but 

in this method, without using these functions, 

it reflects the primary non-linear equations 

(Khan et al. 2021). ET (Expression Tree) in the 

GEP algorithm represents various 

complexities, including constants, functions, 

operators, and variables. A single ET consists 

of a root node, a functional node, and an end 

node. The mathematical expression of ET has 

two genes with multiplication as the link 

function and can be written as the following 

equations: 

 (8) Gene 1 =  √
a

b
+ a

3
 

 (9) Gene 2 = log(a × b ) 

 (10) Prediction = Gene 1 × Gene 2 

 In general, this algorithm has five main 

steps as follows: 

The first step is to choose a fitness function, 

which can be said to be one of the features of 

this function that gives this algorithm the 

ability to reach an optimal solution. In the 

second step, to forecast the target, a set of 

terminals consisting of explanatory variables 

should be selected. In the third step, some 

functions should be selected in such a way that 

they have the ability to solve the simple 

equation of this algorithm. In the fourth step, 

the size of the vertex, the function and the 

gene, that generally called the chromosome 

architecture, have to be chosen. In the last step, 

the genetic operator must be determined, 

which is done by choosing a set of genetic 

operators that consists of transposition, 

crossover, and mutation (Khan et al. 2021). 
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3. Results and Discussion 

As mentioned above, the stream flow data 

of the Chehel Chai watershed, which was 

recorded monthly for a period of 46 years, 

were used in this research. The correct 

selection of influential hydrological 

parameters is one of the most important actions 

in modeling hydrological phenomena. Since in 

the current research, the modeled parameter 

was stream flow, the most important 

hydrological parameters are precipitation, 

evaporation, transpiration, and temperature. 

 Ahmadi et al. (2022) proved that the most 

influential hydrological parameter in stream 

flow modeling is the precipitation statistics of 

the studied area. Therefore, in this research, 

only the precipitation parameter was selected 

as the influential hydrological parameter. 

Based on autocorrelation and partial 

autocorrelation plots, which are presented in 

Fig.4, six scenarios were determined for 

entering data into the selected algorithms so 

that in the first three scenarios, the input data 

entered into the models were only the stream 

flow data, and in the next three scenarios, a 

combination of the recorded stream flow and 

precipitation data were entered into the 

algorithms.  

In scenario M1, the data were entered into 

the modeling process with a time correlation 

lag. The M2 scenario was defined in such a 

way that the stream flow data entered into the 

models should be accompanied by two time 

correlation lags and this time correlation lag 

was considered equal to 3 in the M3 scenario. 

Moreover, MM1 to MM3 scenarios are the 

combination of the stream flow and 

precipitation data for inputting into the models. 

For each of the scenarios, different patterns of 

data combination were considered, which are 

shown in Table 1. 

In this research, the collected stream flow 

and precipitation data were divided into two 

parts: the training data and the test data. 80% 

of the data were included in the training data 

section and 20% of the data were selected as 

the test data. Fig.5 shows this division in the 

stream flow data completely. 

After entering the data into the models and 

based on all the planned scenarios, as well as 

the considered error and performance criteria, 

the best model was selected. Table 2 shows the 

values of the calculated evaluation criteria. 

If we pay attention to the values of the 

evaluation criteria calculated for the Chehel 

Chai catchment area, it can be seen that in the 

ELM model, the M3 scenario with RMSE = 

0.984 and MAE = 0.668 has the best results 

compared to other models. In relation to the 

GEP model, the MM2 scenario has the best 

predictions with RMSE = 1.017 and MAE = 

0.685. Regarding to the GPR model, the MM3 

scenario has more satisfactory results than the 

other scenarios with values of RMSE = 1.336 

and MAE = 1.072. 

In the RF algorithm, the MM3 scenario has 

a more acceptable performance with values of 

RMSE = 1.139 and MAE = 0.813. In general, 

since the M3 scenario is a model without the 

involvement of the precipitation parameter, it 

can be concluded that for modeling and 

forecasting the flow rate in the watershed with 

similar climatic conditions to the Chehel Chai 

watershed using the ELM algorithm, the flow 

parameter should be used as the only input 

parameter of the model and it will provide the 

most accurate results. But if the goal is to 

model with GPR, GEP and RF algorithms, 

according to the structure of MM2 and MM3 

models, the use of flow rate and precipitation 

parameters with longer time delays provides 

more accurate and reliable results. 

Figures 6 to 9 show the time series related 

to the best scenario in each model. Generally, 

as shown in Fig.10, the ELM algorithm has the 

highest value of R2. Therefore, in the stream 

flow modeling of the Chehel Chai watershed 

using the stream flow and precipitation data, 

the ELM algorithm has shown the best 

performance among other methods. 
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a) ACF plot 

 
b) PACF plot 

Fig. 4. The autocorrelation function and partial autocorrelation 

function plots 

 
Table 1. The chosen patterns for entering data to the algorithms 

Watershed Row Scenario Pattern 
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4 MM1 Qt = f ( Qt−1 , Rt−1 ) 

5 MM2 Qt = f ( Qt−1 , Qt−2 , Rt−1 , Rt−2 ) 

6 MM3 Qt = f ( Qt−1 , Qt−2 , Qt−3 , Rt−1 , Rt−2 , Rt−3 ) 
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Fig. 5. The situation of the train and test data of the stream flow 

 
Table 2. The calculated evaluation criteria for each algorithm 

MAE RMSE Scenario Model 

0.771 1.132 M1 

ELM 

0.675 1.002 M2 
0.668 0.984 M3 

0.754 1.061 MM1 
0.699 1.016 MM2 
0.689 1.005 MM3 

0.811 1.138 M1 

GEP 

0.883 1.191 M2 
0.737 1.067 M3 
0.857 1.146 MM1 

0.685 1.017 MM2 
0.942 1.315 MM3 

1.254 1.482 M1 

GPR 

1.241 1.474 M2 
1.247 1.467 M3 
1.159 1.396 MM1 
1.111 1.362 MM2 
1.072 1.336 MM3 

0.910 1.462 M1 

RF 

0.806 1.194 M2 

0.790 1.170 M3 

0.851 1.264 MM1 

0.818 1.155 MM2 

0.813 1.139 MM3 
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Fig. 6. Time series plot of forecasted and real data for the ELM model 

 

 
Fig. 7. Time series plot of forecasted and real data for the GEP model 

 

 
Fig. 8. Time series plot of forecasted and real data for the RF model 
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Fig. 9. Time series plot of forecasted and real data for the GPR model 

 

 
Fig. 10. The R2 values for the best scenario in each model 

 

4. Conclusion 

In this article, 4 machine learning 

algorithms, namely the ELM, GEP, GPR, and 

RF were used. The studied area was the Chehel 

Chai watershed located in Golestan province, 

Iran. The stream flow and precipitation data of 

this watershed were collected during a 46-year 

period and the modeling process was done on 

the data. In order to model each algorithm, 6 

scenarios were examined. The first 3 scenarios, 

the stream flow data were entered into the 

model with time lags 1, 2, and 3, and in the 

next three scenarios, the data were a 

combination of the stream flow and 

precipitation with 1, 2, and 3 time lags that 

were included in the modeling process. 

Finally, scenario M3 in the ELM algorithm 

with the value of RMSE=0.984 had the best 

performance. In the GEP method, the MM2 

scenario with the value of RMSE=1.017 has 

provided the most accurate performance. In 

algorithms GPR and RF, scenario MM3 with 

values of RMSE equal to 1.336 and 1.139 have 

had the strongest performance, respectively. In 

general, scenario M3 in the ELM model with 

value of R2=0.613 had the most accurate 

performance among all models and scenarios, 

and in the next place, scenario MM2 in the 

GEP algorithm with value of R2=0.581 had 

better results than the other algorithms and 

scenarios. For future work, the use of hybrid 

models such as the use of decomposition 

functions such as CEEMD (complete 

empirical mode decomposition) or 

dimensionality reduction functions such as 

PCA (principle component analysis) are 

suggested to investigate the ability to increase 

the accuracy of modeling. 
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5. List of Acronyms 
RMSE:     Root Mean Square Error 
MAE:       Mean Absolute Error 

GPR:        Gaussian Process Regression 

GEP:        Gene Expression Programming 
ELM:       Extreme Learning Machine 
ACF:        Auto Correlation Function 
PACF:      Partial Auto Correlation Function 
MLR:       Multiple Linear Regression 
SVR:         Support Vector Machine 
ARIMA:   Autoregressive Moving Average  

SVM:     Support Vector Machine 

BNN:      Bayesian Neural Networks 

KNN:      Kernel Nearest Neighborhood 

M5RT:    M5 Regression Tree 

ANN:       Artificial Neural Networks 

GA:         Genetic Algorithm 

RF:          Random Forest 
GP:          Gaussian Process 

LSTM:    Long Short-Term Memory 
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