
تعداد نشریات | 21 |
تعداد شمارهها | 301 |
تعداد مقالات | 3,173 |
تعداد مشاهده مقاله | 3,211,821 |
تعداد دریافت فایل اصل مقاله | 2,380,301 |
استفاده از فلورسانس کلروفیل در ارزیابی تنشهای محیطی در گیاهان زراعی | ||
تنشهای محیطی در علوم زراعی | ||
مقاله 4، دوره 17، شماره 3، مهر 1403، صفحه 473-490 اصل مقاله (1.93 M) | ||
نوع مقاله: مقاله مروری | ||
شناسه دیجیتال (DOI): 10.22077/escs.2023.6019.2189 | ||
نویسنده | ||
رامین لطفی* | ||
استادیار موسسه تحقیقات کشاورزی دیم کشور، سازمان تحقیقات آموزش و ترویج کشاورزی، مراغه، ایران | ||
چکیده | ||
گیاهان در محیط تحتتأثیر تنشهای مختلف زیستی و غیرزیستی قرار دارند که این تنشها بسته به مدت، شدت و مرحله رشدی گیاه میتوانند فرایند فتوسنتز را کاهش و رشد و نمو و عملکرد آنها را تحتتأثیر قرار دهند. مطالعه فتوسنتز با روشهایی همچون آنالیز تبادلات گازی شامل دیاکسیدکربن، بخار آب و اکسیژن زمانبر بوده و اطلاعات کاملی از تمام ساختار دستگاه فتوسنتزی در اختیار قرار نمیدهند. بااینوجود، اندازهگیری و کاربرد تکنیک فلورسانس کلروفیل روشی بسیار ساده، غیرتخریبی و سریع برای ارزیابی واکنشهای فتوسنتزی است. مطالعه فلورسانس کلروفیل امکان تحلیل وضعیت مراکز واکنشی فتوسیستم II و کمپلکسهای دریافت دریافتکننده نور را فراهم میآورد. این شاخص همبستگی بالایی با سایر پارامترهایی فیزیولوژیکی تحت تنشهای مختلف محیطی دارد. شاخص کارایی فتوسنتز بهعنوان شاخصی حساس برای ارزیابی تنش خشکی است بهطوریکه سطح مراکز واکنشی فعال در کلروفیل، واکنشهای فتوشیمیایی اولیه و انتقال الکترون تحتتأثیر تنش خشکی قرار میگیرد. تحت تنش شوری میزان فلورسانس متغیر، فلورسانس حداکثر، انرژی لازم برای بستهشدن مراکز واکنشی و شاخص کارایی فتوسنتزی کاهش و در مقابل زمان لازم برای رسیدن به فلورسانس حداکثر افزایش مییابد. تحت تنش سرما بیشترین میزان جریان انتقال الکترون بهازای مراکز واکنشی، عملکرد کوانتومی فتوسیستم II، و کارایی کمپلکس تجزیه آب در فتوسیستم II کاهش مییابد. عناصر غذایی بهویژه پتاسیم مراحل وابسته به نور همچون اندازه آنتنهای دریافتکننده و ارتباط الکترونی مراکز واکنشی فتوسیستم II را تحتتأثیر قرار میدهد. بخش گیرنده الکترون فتوسیستم II محل اصلی مهار انتقال الکترون فتوسنتزی تحت کاربرد علفکشها است. ازاینرو، فلورسانس کلروفیل یک شاخص معتبر برای ارزیابی واکنش فتوسیستم II در شرایط تنشهای محیطی است. | ||
کلیدواژهها | ||
تنش های محیطی؛ فتوسنتز؛ فتوسیستم II؛ فلورسانس | ||
مراجع | ||
Allen, D.J., Ort, D.R., 2001. Impacts of chilling temperatures on photosynthesis in warm climate plants. Trends in Plant Science, 6, 36-42. https://doi.org/10.1016/s1360-1385(00)01808-2 Ashraf, M., Bhatti, A.S., 2000. Effect of salinity on growth and chlorophyll content of rice. Pakistan Journal of Science and Industrial Research, 43, 130-141. Baker, N.R., 2008. Chlorophyll fluorescence: A probe of photosynthesis in vivo. Annual Review of Plant Biology, 59, 89–113. https://doi.org/10.1146/annurev.arplant.59.032607.092759 Baker, N.R., Rosenqvist, E., 2004. Applications of chlorophyll fluorescence can improve crop production strategies: an examination of future possibilities. Journal of Experimental Botany, 55, 1607–1621. https://doi.org/10.1093/jxb/erh196 Bissati, K. E., Delphin E., Murata N., Etienne A. L., Kirilovsky, D., 2000. Photosystem II fluorescence quenching in cyanobacterrium Synechocystis PCC6803: involvement of two different mechanisms. Biochimica et Biophysica Acta, 1457, 229-242. https://doi.org/10.1016/S0005-2728(00)00104-3 Chaves, M.M., Flexas, J., Pinheiro, C., 2009. Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Annals of Botany, 103, 551–560. https://doi.org/10.1093/aob/mcn125 Christensen, M.G., Teicher, H.B., Streibig, J.C., 2003. Linking fluorescence induction curve and biomass in herbicide screening. Pest Management Science, 59,1303–1310. https://doi.org/10.1002/ps.763 Dai, F., Zhou, M., Zhang, G., 2007. The changes of chlorophyll fluorescence parameters in winter barley during recovery after freezing shock and as affected by cold acclimation and irradiance. Plant Physiology and Biochemictry, 45, 915-921. https://doi.org/10.1016/j.plaphy.2007.09.006 Dayan, E., Zaccaro, M.L.M., 2012. Chlorophyll fluorescence as a marker for herbicide mechanisms of action. Pesticide Biochemistry and Physiolog, 102, 189–197. https://doi.org/10.1016/j.pestbp.2012.01.005 FAO. 2017. Agriculture and Consumer Protection Department (FAO), Rome, https://www.fao.org/ag/ca/ Farooq, M., Wahid, A., Kobayashi, N., Fujita, D., Basra, S.M.A., 2009. Plant drought stress: Effects, Mechanisims, and Management. Sustanable Agriculture, pp, 153-188. https://doi.org/10.1051/agro:2008021 Flexas, J., Badger, M., Chow, W.S., Medrano, H., Osmond, C.B., 1999. Analysis of the relative increase in photosynthetic O2 uptake when photosynthesis in grapevine leaves is inhibited following low night temperatures and/or water stress. Plant Physiology, 121, 675-684. https://doi.org/10.1104/pp.121.2.675 GhaSsemi-Masarmi, A., Solouki, M., Golkari, S., Mahdinezhad, N., Kalaji, M.H., Fakheri, B., Jabbari, M., 2022. Comparison of photosystem II yield in Iranian native wheat genotypes using chlorophyll fluorescence parameters under salinity stress. Plant Production and Genetics, 3, 67-84. [In Persian]. https://doi.org/10.34785/J020.2022.154 Ghassemi-Golezani, K., Khomari, S., Valizadeh, M., Alyari, H., 2008. Effects of seed vigour and the duration of cold acclimation on freezing tolerance of winter oilseed rape. Seed Science and Technology, 36, 767-775. https://doi.org/10.15258/sst.2008.36.3.26 Ghassemi-Golezani, K., Lotfi, R., 2012. Responses of soybean leaves and grain yield to water stress at reproductive stages. International Journal of Plant, Animal Environmental Sciences, 2, 63-68. Goncalves, J.F.C., Santos, U.M., 2005. Utilization of the chlorophyll a fluorescence technique as a tool for selecting tolerant species to environment of high irradiance. Brazilian Journal of Plant Physiology, 17, 307-313. https://doi.org/10.1590/S1677-04202005000300005 Govindjee, H., 1995. Sixtythree years since Kautsky: chlorophyll a fluorescence. Austoralian Journal of Plant Physiology, 22, 131-160. https://doi.org/10.1071/PP9950131 Hassannejad, S., Lotfi, R., Ghafarbi, SP., Oukarroum, A., Abbasi, A., Kalaji, H.M., Rastogi, A., 2020. Early identification of herbicide modes of action by the use of chlorophyll fluorescence measurements. Plants. 9, 529. https://doi.org/10.3390/plants9040529 Hawkesford, M., Horst, W., Kichey, T., Lambers, H., Schjoerring, J., Skrumsager- Moller, I., White, P., 2012. Function of macronutrients. In: Marschner, P. (Ed.), Marschner’s Mineral Nutrition of Higher Plants. Academic Press, London, pp, 135–189. https://doi.org/10.1016/B978-0-12-384905-2.00006-6 He, J.X., Wang J., Liang H.G., 1995. Effects of water stress on photochemical function and protein metabolism of photosystem II in wheat leaves. Physiologia Plantarum, 93, 771-777. https://doi.org/10.1111/j.1399-3054.1995.tb05130.x He, H., Khan, S., Deng, Y., Hu, H., Yin, L., Huang, J., 2022. Supplemental Foliar Applied Magnesium Reverted Photosynthetic Inhibition and Improved Biomass Partitioning in Magnesium Deficient Banana. Horticulturae, 8, 1050. https://doi.org/10.3390/horticulturae8111050 Hermans, C., Smeyers, M., Rodriguez, R.M., Eyletters, M., Strasser, R.J., Delhaye, J.P., 2003. Quality assessment of urban trees: A comparative study of physiological characterization, airborne imaging and on site fluorescence monitoring by the OJIP-test. Journal of Plant Physiology, 160, 81-90. https://doi.org/10.1078/0176-1617-00917 Hermans, C., Verbruggen, N., 2005. Physiological characterization of Mg deficiency in Arabidopsis thaliana. Journal of Experimental Botany, 56, 2153–2161. https://doi.org/10.1093/jxb/eri215 Hernandez, J.A., Jimenez, A., Mullineaux, P. Sevilla, F., 2000. Tolerance of pea to long-term salt stress is associated with induction of antioxidant defense. Plant Cell and Environment, 23, 853-862. https://doi.org/10.1046/j.1365-3040.2000.00602.x Homann, P., 1967. Studies on the Manganese of the Chloroplast. Plant Physiology, 42, 997–1007. https://doi.org/10.1104/pp.42.7.997 Iyengar, E.R.R., Reddy, M.P., 1996. Photosynthesis in Highly Salt-Tolerant Plants. In: Pessaraki, M., Ed., Handbook of Photosynthesis, Marcel Dekker, New York, 897-909. Jedmowski, C., Ashoub, A., Bru¨ggemann, W., 2013. Reactions of Egyptian landraces of Hordeum vulgare and Sorghum bicolor to drought stress, evaluated by the OJIP fluorescence transient analysis. Acta Physiologiae Plantarum 35, 345–354. https://doi.org/10.1007/s11738-012-1077-9 Jin, S.H., Huang, J.Q., Li, X.Q., Zheng, B.S., Wu, J.S., Wang, Z.J., Liu, G.H., Chen, M., 2011. Effects of potassium supply on limitations of photosynthesis by mesophyll diffusion conductance in Carya cathayensis. Tree Physiology, 31, 1142–1151. https://doi.org/10.1093/treephys/tpr095 Jin, X., Yang, G., Tan, C., Zhao, C., 2015. Effects of nitrogen stress on the photosynthetic CO2 assimilation, chlorophyll fluorescence, and sugar-nitrogen ratio in corn. Scientific Report, 2, 9311. https://doi.org/10.1038/srep09311 Kafi, M., Borzoei, A., Salehi, M., Kamandi, A., Masumi, A., Nabati, J., 2009. Physiology of environmental stress in plants. Publications University of Mashhad, Iran. [In Persian]. Kalaj, H.H., Govindjee. Bosa, K., Koscielniak, J., Zuk-Golaszewska, K., 2010. Effects of salt stress on photosystem II efficiency and CO2 assimilation of two Syrian barley landraces. Environmental and Experimental Botany, 64, 214-225. https://doi.org/10.1016/j.envexpbot.2010.10.009 Kalaji, H.M., Jajoo A., Oukarroum A., Brestic M., Zivcak M., Samborska I.A., Cetner, M.D., Łukasik, Goltsev I.V., Ladle R.J., 2016. Chlorophyll a fluorescence as a tool to monitor physiological status of plants under abiotic stress conditions. Acta Physiologia Plantarum, 38,102. https://doi.org/10.1007/s11738-016-2113-y Kalaji, H.M., Rastogi, A., Živčák, M., Brestic, M., Daszkowska Golec, A., Sitko, K., Alsharafa, K.Y., Lotfi, R., Stypiński, P., Samborska, I.A., Cetner, M.D., 2018. Prompt chlorophyll fluorescence as a tool for crop phenotyping: an example of barley landraces exposed to various abiotic stress factors. Photosynthetica, 56, 953–961. https://doi.org/10.1007/s11099-018-0766-z Kao, W., Tsai, T.T., Tsai, H.C., Shih, C.N., 2006. Response of three Glycine sepecies to salt stress. Environmental and Experimental Botany, 20, 120-125. https://doi.org/10.1016/j.envexpbot.2005.01.009 Kazan, H., Hobikoğlu, E.H., Karademir, H., Dalyancı, L., Turguter, Y., 2015. Economic Development of Ski Industry in Experimental Innovation: Example of Palandöken Turkey and ALP Switzerland. Procedia-Social and Behavioral Sciences, 195, 487-492. https://doi.org/10.1016/j.sbspro.2015.06.245 Khoshro, HH., Lotfi, R., 2021. Advanced Breeding Approaches for Cold-Tolerant Chickpea and Lentil in Dryland Areas. IntechOpen Book. https://doi.org/10.5772/intechopen.100516 Kocheva, K., Lambrev, P., Georgiev, G., Goltsev, V., Karabaliev, M., 2004. Evaluation of chlorophyll fluorescence and membrane injury in the leaves of barley cultivars under osmotic stress. Bioelectrochemistry, 63, 121-124. https://doi.org/10.1016/j.bioelechem.2003.09.020 Laing, W., Greer, D., Sun, O., Beets, P., Lowe, A., Payn, T., 2000. Physiological impacts of Mg deficiency in Pinusradiata: growth and photosynthesis. New Phytologist, 146, 47-57. https://doi.org/10.1046/j.1469-8137.2000.00616.x Lotfi, R., Abbasi, A., Valizadeh, G., Sadeghzadeh, B., Golkari, S., Eslami, R., Valizadeh, M., 2021. Evaluation of the physiological response of dryland wheat varieties to cold stress under conservation and conventional agricultural conditions. Final Report in DARI, N: 59660, pp: 1-28. Lotfi, R., Abbasi, A., Kalaji, HM., Eskandari, I., Sedghieh, V., Khorsandi, H., Sadeghian, N., Yadav, S., Rastogi, A., 2022. The role of potassium on drought resistance of winter wheat cultivars under cold dryland conditions: Probed by chlorophyll a fluorescence. Plant Physiology and Biochemistry, 182, 45-54. https://doi.org/10.1016/j.plaphy.2022.04.010 Lotfi, R., Ghassemi-Golezani, K., Pessarakli, M., 2020. Salicylic acid regulates photosynthetic electron transfer and stomatal conductance of mung bean (Vigna radiata L.) under salinity stress. Biocatalysis and Agricultural Biotechnology, 26, 101635. https://doi.org/10.1016/j.bcab.2020.101635 Lotfi, R., Kalaji, H.M., Valizaeh, G.R., Khalilvand, E., Hemmati, A., Gharavi, P., Ghassemi, A., Rastogi, A., 2018. Effects of humic acid on photosynthetic efficiency of rapeseed plants growing under different watering conditions. Photosynthetica, 56, 962-970. https://doi.org/10.1007/s11099-017-0745-9 Lotfi, R., Pessarakli, M., Gharavi-Kouchebagh, P., Khoshvaghti, H., 2015a. Physiological responses of Brassica napus to fulvic acid under water stress: Chlorophyll a fluorescence and antioxidant enzyme activity. The Crop Journal, 3, 434-439. https://doi.org/10.1016/j.cj.2015.05.006 Lotfi, R., Kouchebagh, G., Khoshvaghti, H., 2015b. Biochemical and physiological responses of Brassica napus plants to humic acid under water stress, Russian Journal of Plant Physiology, 62, 480–486. https://doi.org/10.1134/S1021443715040123 Marschner, H., 1995. Mineral nutrition of higher plants 2nd edition. Academic, Great Britain. eBook ISBN: 9780080571874. Mathur, S., Mehta, P., Jajoo, A., Bharti, S., 2011. Analysis of elevated temperature induced inhibition of Photosystem II using Chl A fluorescence induction kinetics. Plant Biology, 13,1–6. https://doi.org/10.1111/j.1438-8677.2009.00319.x Maxwell, K., Johnson, G.N., 2000. Chlorophyll fluorescence a practical guide. Journal of Experimental Botany, 51, 659–668. https://doi.org/10.1093/jexbot/51.345.659 Mehta, P., Allakhverdiev, S.I., Jajoo, A., 2010. Characterization of photosystem II heterogeneity in response to high salt stress in wheat leaves (Triticum aestivum). Photosynthesis Research, 105, 249–255. https://doi.org/10.1007/s11120-010-9588-y Mishra, A.N., Srivastava, A., Strasser, R.J., 2001. Utilization of fast chlorophyll a technique in assessing the salt/ion sensitivity of mung bean and brassica seedlings. Journal of Plant Physiology, 158, 1173-1181. https://doi.org/10.1078/S0176-1617(04)70144-3 Nafees, A., Shabina, S., Asim, M., Rahat, N., Noushina., 2010. Application of salicylic acid increases contents of nutrients and antioxidative metabolism in mung bean and alleviates adverse effects of salinity stress. International Journal of Plant Biology, 1, 1-12. https://doi.org/10.4081/pb.2010.e1 Netondo, G.W., Onyango, J.C., Beck, E., 2004. Sorghum and salinity: II. Gas exchange and chlorophyll fluorescence of sorghum under salt stress. Crop Science, 44, 806-811. https://doi.org/10.2135/cropsci2004.7970 Nielsen, L.W., Dahllöf, I., 2007. Direct and indirect effects of the herbicides Glyphosate, Bentazone and MCPA on eelgrass (Zostera marina). Aquatic Toxicology, 82, 47–54. https://doi.org/10.1016/j.aquatox.2007.01.004 Oukarroum, A., Schansker, G., Strasser, R.J., 2009. Drought stress effects on Photosystem I content and Photosystem II thermotolerance analyzed using Chl A fluorescence kinetics in barley varieties differing in their drought tolerance. Physiologia Plantarum, 137,188–199. https://doi.org/10.1111/j.1399-3054.2009.01273.x Partelli, F.L., Vieira, H.D., Viana, A.P., Batista-Santos, P., Rodrigues, A.P., Leitão, A.E., Ramalho, J.C., 2009. Low temperature impact on photosynthetic parameters of coffee genotypes. Pesquisa Agropecuária Brasileira, 44, 1404-1415. https:/doi.org/10.1590/S0100-204X2009001100006 Pei, W., Hui, L., Roland, G., 2016. Chlorophyll fluorescence response to herbicide stress in Alopecurus myosuroides. Deutsche Arbeitsbesprechung über Fragen der Unkrautbiologie und bekämpfung, 23-25. February in Braunschweig 452, 57-67. https://doi.org/10.5073/jka.2016.452.008 Pinior, A., Grunewaldt-Stöcker, G., Alten, H., Strasser, R.J., 2005. Mycorrhizal impact on drought stress tolerance of rose plants probed by chlorophyll a fluorescence, proline content and visual scoring. Mycorrhiza, 15, 596-605. https://doi.org/10.1007/s00572-005-0001-1 Ramalho, J.C., Quartin, V.L., Leitão, E., Campos, P.S., Carelli, M.L.C., Fahl, J.I., Nunes, M.A., 2003. Cold acclimation ability and photosynthesis among species of the tropical Coffea genus. Plant Biology, 5, 631-641. https://doi.org/10.1055/s-2003-44688 Ramzi, B., Morales, F., Abadia, A., Gomez, J., Abadia, J., 1994. Chlorophyll fluorescence as a possible tool for salinity tolerance screening in barley (Hordeum vulgare L.). Plant Physiology, 104, 667-673. https://doi.org/10.1104/pp.104.2.667 Reezi, S., Babalar, M., Kalantari, S., 2009. Silicon alleviates salt stress, decreases malondialdehyde content and affects petal color of salt-stressed cut rose. African Journal of Biotechnology, 8, 1502-1508. https://doi.org/10.5897/AJB09.180 Sai-Kachout, S., Ben-Mansour, A., Jaffel, K., Leclere, J.C., Rejeb, M.N., Ouerghi, Z., 2009. The effect of salinity on the growth of the halophyte Atriplex Hortensis. Applied Ecology and Environmental Research, 7, 319-332. https://doi.org/10.15666/aeer/0704_319332 Salomon, E., Keren, N., 2011. Manganese limitation induces changes in the activity and in the organization of photosynthetic complexes in the cyanobacterium Synechocystis sp. strain PCC 6803. Plant Physiology, 155, 571–9. https://doi.org/10.1104/pp.110.164269 Sayed, O.H., 2003. Chlorophyll fluorescence as a tool in cereal crop research. Photosynthetica 41, 321-330. https://doi.org/10.1023/B:PHOT.0000015454.36367.e2 Schansker, G., Srivastava, A., Govindjee, Strasse, R.J., 2003. Characterization of the 820 nm transmission signal paralleling the chlorophyll a fluorescence rise (OJIP) in pea leaves. Functional Plant Biology, 30,785–796. https://doi.org/10.1071/FP03032 Shu, S., Yuan, L. Y., Guo, S. R., Sun, J., Liu, C. J., 2012. Effects of exogenous spermidine on photosynthesis, xanthophyll cycle and endogenous polyamines in cucumber seedlings exposed to salinity. African Journal of Biotechnology, 11, 6064–6074. https://doi.org/10.5897/AJB11.1354 Silva, E.A., Damatta, F.M., Ducatti, C., Regazzi, A.J., Barros, R.S., 2004. Seasonal changes in vegetative growth and photosynthesis of Arabica coffee trees. Field Crops Research, 12, 25-34. https://doi.org/10.1016/j.fcr.2004.02.010 Singh-Tomar, R., Mathur, S., Allakhverdiev, S.I., Jajoo A., 2012. Changes in PS II heterogeneity in response to osmotic and ionic stress in wheat leaves (Triticum aestivum). Journal of Bioenergetics and Biomembranes, 44, 411-419. https://doi.org/10.1007/s10863-012-9444-1 Sowinski, P., Rudzinska-Langwald, A., Adamczyk, J., Kubica, I., Fronk, J., 2005. Recovery of maize seedling growth, development and photosynthetic efficiency after initial growth at low temperature. Journal of Plant Physiology, 162, 67-80. https://doi.org/10.1016/j.jplph.2004.03.006 Stirbet, A., Govindjee., 2012. Chlorophyll a fluorescence induction: a personal perspective of the thermal phase, the J–I–P rise. Photosynthesis Research, 113,15–61. https://doi.org/10.1007/s11120-012-9754-5 Strand, A., Foyer, C.H., Gustafsson, P., Hurry, V., 2003. Increased expression of sucrose phosphate synthase in transgenic Arabidopsis thaliana results in improved photosynthetic performance and increased freezing tolerance al low temperatures. Plant, Call and Environment, 26, 523-535. https://doi.org/10.1046/j.1365-3040.2003.00983.x Strasser, R.J., Srivastava, A., Govindjee, 1995. Polyphasic chlorophyll a fluorescence transient in plants and cyanobacteria. Photochemistry and Photobiology, 61, 32–42. https://doi.org/10.1111/j.1751-1097.1995.tb09240.x Strasser, R.J., Tsimilli-Michael, M., Srivastava, A., 2004. Analysis of the chlorophyll a fluorescence transient. In: Papageorgiou G, Govindjee (eds) Advances in photosynthesis and respiration. chlorophyll a fluorescence: a signature of photosynthesis. Springer, Dordrecht, pp 321–362. https://doi.org/10.1007/978-1-4020-3218-9_12 Taiz, L., Zeiger, E., 2010. Plant Physiology. 5th Edition, Sinauer Associates Inc., Sunderland, 782 p. Tränkner, M., Tavakol, E., Jákli, B., 2018. Functioning of potassium and magnesium in photosynthesis, photosynthate translocation and photoprotection. Physiologia Plantarum, 163, 414–431. https://doi.org/10.1111/ppl.12747 Tsimilli, M., Eggenberg, P., Biro, B., Köves, K., Vörös, I., Strasser R.J., 2000. Synergistuc and antagonistic effects of arbuscular mycorrhizal fungi and Azospirillum and Rhizobium nitrogen-fixers on the photosynthetic activity alfalfa, probed by the polyphasic chlorophyll a fluorescence transient OJIP. Applied Soil Ecology, 15, 169-182. https://doi.org/10.1016/S0929-1393(00)00093-7 Ventrella, A., Catucc, L., Agostiano, A., 2010. Herbicides affect fluorescence and electron transfer activity of spinach chloroplasts, thylakoid membranes and isolated Photosystem II. Bioelectrochemistry, 79, 43–49. https://doi.org/10.1016/j.bioelechem.2009.10.008 Verbruggen, N., Hermans, C., 2013. Physiological and molecular responses to magnesium nutritional imbalance in plants. Plant and Soil, 368, 87–99. https://doi.org/10.1007/s11104-013-1589-0 Vermaas, W.F., Steinback, K.E., Arntzen, C.J., 1984. Characterization of chloroplast thylakoid polypeptides in the 32-kDa region: polypeptide extraction and protein phosphorylation affect binding of Photosystem II-directed herbicides. Archives of Biochemistry and Biophysics, 231, 226–232. https://doi.org/10.1016/0003-9861(84)90382-5 Yamane, Y., Kashino, Y., Koike, H., Satoh, K., 1997. Increases in the fluorescence Fo level and reversible inhibition of Photosystem II reaction center by high temperature treatments in higher plants. Photosynthesis Research, 52, 57–64. https://doi.org/10.1023/A:1005884717655 Zivcak, M., Olsovska, K., Slamka, P., Galambosova, J., Rataj, V., Shao, H.B., Brestic, M., 2014. Application of chlorophyll fluorescence performance indices to assess the wheat photosynthetic functions influenced by nitrogen deficiency. Plant Soil and Environment, 60, 210–215. https://doi.org/10.17221/73/2014-PSE | ||
آمار تعداد مشاهده مقاله: 660 تعداد دریافت فایل اصل مقاله: 276 |