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Abstract 
Drought begins with a lack of rainfall and depending on its duration and severity, Drought can affect 
parameters such as soil moisture, volume of surface and subsurface water, and human and ecosystem 
activities. For this purpose, in this research, by using the estimated soil moisture data by the SWAP 
model and the data of the fifth climate change report, agricultural drought was determined by using 
of the soil moisture deficit index for the future period (2020-2039) and then they compared with the 
base period (1992-2011). The results showed that the climatic parameters such as minimum 
temperature, maximum temperature and precipitation have increased in the future period compared 
to the base period. The RCP8.5 scenario has estimated the temperature is higher and the precipitation 
is lower compared to the RCP4.5 scenario. Moisture changes at a soil depth (30 cm) showed that the 
percentage of soil moisture increases slightly for each scenario in the future period (2020-2039) 
compared to the base period (1992-2011). The presence of error values of R2=0.81, NS=0.79 and 
RMSE=0.02 showed that there is a high correlation between the measured and observed results of 
soil moisture obtained from calibration and validation of the SWAP model. The results show that 
calculated SMDI drought index values in the future period (2020-2039) for RCP4.5 scenario has 
higher than the RCP8.5 scenario, and the predicted SMDI value for the future period is higher than 
the base period. The results of SMDI drought index uncertainty under RCP4.5 and RCP8.5 scenarios 
showed that CanEsm2 model has the most certainty and IPSL models have the least certainty 
compared to other models. The results of this research determined that drought can be estimated in 
the future by using the vegetation model. 
Keywords: GCM model, LARS-WG model, Moisture deficit index, SWAP model, Uncertainty. 

 
 

1. Introduction
It is very necessary to carry out research 

related to climate change in order to prepare as 
much as possible to adapt to this phenomenon 
and also to reduce the damage costs caused by 
climate change (Mohammadi and Taghavi, 
2005). The most important difference between 
drought and other natural disasters is that, 
firstly, drought starts slowly, and secondly, in 
addition to the area where the drought 
occurred, neighboring areas are also affected. 
The adverse effects of this phenomenon in all 

sectors such as water resources, agriculture, 
environment and society are gradually 
revealed (Jalali et al., 2013). The lack or 
decrease of soil moisture and 
evapotranspiration can in the fields indicate 
drought better than precipitation. In examining 
climate change over the coming decades, the 
fourth report of the Intergovernmental Panel 
on Climate Change shows that summer 
dryness intensified in the late 20th century, 
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which is expected to continue into the 21st 
century (IPCC, 2007). 

There are many definitions of ̀ drought. One 
of the comprehensive definitions of with 
global acceptance has grouped droughts into 
four meteorological, agricultural, hydrological 
and socio-economic categories (Moasaedi et 
al., 2016). Meteorological and agricultural 
droughts are more important than the other. 
Meteorological drought which in many sources 
is named as climatic drought as occurs due to 
the lack or decrease of rainfall over a time 
period. Agricultural droughts are the result of 
a lack of soil moisture, which occurs due to the 
disruption of the balance between water supply 
and its loss through evapotranspiration 
(Yaghoobzadeh, 2015). 

Drought indicators, as one of the most 
important parts of the drought monitoring 
system, are a determining factor in monitoring 
the drought situation and helping the decision-
making process in drought management 
(Sohrabi et al., 2008). The SMDI index was 
first introduced by Narasimhan and Srinivasan 
(2005). They used to indicate the agricultural 
drought of soil moisture deficit index and 
evapotranspiration deficit index. The input 
data was obtained with the SWAP model by 
simulating soil moisture during growth season 
and the necessary data to calculate 
evapotranspiration. Due to the lack of soil 
moisture data, they used the vegetation index 
to calibrate the model results. The coefficient 
of explanation equal 0.75 between the results 
of the soil moisture deficit index and the 
evapotranspiration deficit index with the yield 
of sorghum and wheat crops during the critical 
weeks of the crop growth seasons shows the 
high accuracy of these two indices in showing 
drought. Guo et al. (2023), Watson et al. 
(2022), and Fang et al. (2021) calculated the 
pattern of spatial and temporal distribution of 
agricultural drought with the SMDI index. 

Chen et al. (2023) investigated the effect of 
agricultural drought on the yield of winter 
wheat and Yao et al. (2022) investigated the 
effect of agricultural drought on the yield of 
spring wheat, spring and summer corn. They 
used the Standardized Precipitation 
Evapotranspiration Index (SPEI) and Soil 
Moisture Deficit Index (SMDI) at time scales 
of 1 to 9 months at 108 and 98 sites in China, 
respectively. They also used DSSAT-CERES-

Wheat/Maize models to simulate crop yield 
and soil moisture. These researchers found the 
SMDI index for determining agricultural 
drought to be more effective than the SPEI 
index. Also Hu et al. (2022) compared two 
drought indices in determine the impact of 
drought on spring wheat. They determined that 
the SMDI index can show drought changes 
better than SPEI index. 

In the context of investigating the effect of 
climate change on drought, Delghandi et al. 
(2023) investigated the effect of climate 
change on the intensity, duration and amount 
of drought in Semnan region using SPI and 
RDI indices, and Helmi and Shahidi (2023) 
evaluated the impact of drought on the quality 
of surface water resources, in Kashfroud River, 
Iran using SPI and SPEI indices. In the context 
of the effect of climate change on soil 
moisture, Hauser et al. (2016) evaluated the 
mutual effect of soil moisture and climate 
change by using of the CESM model and fifth 
report data. Their results indicate the 
importance of moisture change and its effect 
on soil temperature. Ramazani Etedali et al. 
(2011) in order to determine the drought index 
of soil moisture deficit and compare this index 
with other drought indices such as percentage 
of normal index, deciles index, standard 
precipitation index and Chinese Z index 
simulated soil moisture by using the AquaCrop 
model during 1982-2008 at Qazvin station, 
Iran. Their results showed that the highest 
value of soil moisture deficit index occurred in 
1994 with a value equal 2.7 and the lowest 
value occurred in 1997, 1999 and 2008 with a 
value equal -1.5. 

In a research, Dubrovsky et al. (2009) two 
drought indices, Palmer's relative drought 
severity index and relative standard 
precipitation index were introduced, which 
were obtained by recalibrating Palmer's 
drought severity indices and standard 
precipitation with measurement data. They 
used these two indicators to assess the effects 
of climate change on future drought in the 
Czech Republic. Their results showed that 
Palmer's drought severity index shows drought 
better because it is not solely dependent on 
rainfall. Also, the scenarios of global climate 
models (GCM) in the standard precipitation 
index predict an increase in precipitation and 
in the Palmer drought severity index, an 
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increase in precipitation and temperature in the 
future. Chan et al. (2021) assessed the impact 
of climate change on drought events in a 
Danish agricultural catchment under the 
RCP8.5 emission scenario by three different 
drought indices covering soil moisture, 
groundwater and river flow deficit. They used 
SMDI index to determine soil moisture 
drought, SGDI index for groundwater drought, 
and SDI index for river flow drought. These 
indices are based on the results of a 
hydrological model that is fed by the outputs 
of fine-scale climate models from 16 Euro-
CORDEX climate models (GCM-RCMs), 
while taking into account the uncertainties 
among the climate model predictions. The 
hydrological model showed satisfactory ability 
in modeling historical drought characteristics. 
The results of future forecasts showed that the 
intensity and frequency of droughts have 
increased until the end of the century. 

Shin and Jung (2014) developed the IWMM 
irrigation water management model based on 
the genetic algorithm in order to reduce the 
severity of drought in irrigated lands. In their 
study, the SWAP model simulates the soil 
moisture and the degree of dryness in two 
states of irrigation and rain is determined by 
the drought index of soil moisture deficit. 
Based on the results of the agricultural drought 
index of soil moisture deficit, the IWMM 
model was determined water management at 
the right time and amount of water for 
irrigation. Wondie and Terefe (2016) showed 
that during the study period (1901-2014) in the 
north and northwest part of Ethiopia a trend of 
decreasing rainfall and increasing temperature 
compared to other parts of the country and 
drought was observed by using the calibrated 
Palmer drought severity index in the three 
times during 1941-1950, four times in 1951-
1960, five times in 1980-1990, twice in 1991-
2000 and three times in 2001-2010. 

Considering that few research has been 
done regarding the estimation of agricultural 
drought in the future, therefore in this research 
has been tried by using the simulated soil 
moisture data by the SWAP model and climate 
change data, agricultural drought determined 
using of the drought index of soil moisture 
deficit for the future period and compared with 
the base period. Also in this research the 

uncertainty of climate change models and 
scenario were determined. 

 
2. Materials and Methods 

2.1. Case study 
The study area in this research include the 

Neyshabur plain which located in between 58º-
13´ to 59º-30´ east longitude and 35º-40´ to 
36º-39´ north latitude and the total area equal 
7300 square kilometers. The climate of the 
region is semi-arid and dry and the mean 
temperature is 12 oC, and the annual rainfall in 
the plain is 292 mm. In order to evaluate the 
methods of determining evapotranspiration, 
the corn field data of Faroub village has been 
used (Fig1). 

 
Fig. 1. Location of study area in Iran 

 
In this research Faroob farm located in 

Neishabur Plain used to simulate the soil 
moisture in the base period (1992-2011) and 
future (2020-2039). The characteristics of corn 
planting and harvesting are shown in table 1. 
Also, the physical and chemical properties of 
the soil and the chemical properties of the farm 
water are shown in tables 2 and 3, respectively. 

 
Table 1. Planting and planting specification used 

in the experimental farm 
Planting date Harvest data 

AD data Julius Day AD data Julius Day 
2008/6/28 180 2008/10/15 289 

 
2.2. Research method 
In this research the SWAP model and the 

soil, agricultural and meteorological data were 
used to simulate the soil moisture data in soil 
depth of 0-30 cm. In the next step, to ensure of 
moisture simulation results, the results of the 
SWAP model were calibrated and validated 
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with the measured moisture data of the crop for 
2008 and 2009. The crop studied in this 
research is corn which was planted in July and 
harvested crop in October. After ensuring the 
accuracy of SWAP model results, soil moisture 
was simulated by SWAP model for the base 
period of 1992-2011. Daily meteorological 
scenarios for the future period were predicted 

by using of six models of AOGCM model and 
the RCP4.5 and RCP8.5 scenarios. The ratio of 
the monthly values of the meteorological 
parameters of the 2020-2039 period compared 
to the base period was estimated to determine 
the amount of soil moisture in the future period 
by using of climate change scenarios and GCM 
models. 

 
Table 2. Soil physical and chemical characteristics of experimental farm 

depth (cm) EC of saturation 
extract (dS/m) pH PWP FC Bulk density 

(gr/cm3) 
Soil 

texture 
Clay 
(%) 

Silt 
(%) 

Sand 
(%) 

0-30 1.06 8 7.3 20.1 1.51 Silt-
Loam 18 52 30 

 
Table 3. Water chemical characteristics used in experimental farm 

 
2.3. SWAP model 
The SWAP model is a physically based 

one-dimensional model to simulate vertical 
transport of water flow, solute transport, heat 
flow and crop growth at the field scale level 
(Van Dam et al., 2013). It requires inputs 
including management practices and 
environmental conditions to compute a daily 
soil water balance and crop growth. The major 
processes taken into account are phonological 
development, assimilation, respiration and ET. 
SWAP uses Richard’s equation to simulate 
vertical soil water movement in variably 
saturated soils. 

 
(1) 

where θ is volumetric soil moisture 
(cm3/cm3), t is time (hr), z is soil depth to the 
ground surface (cm), K(θ) is hydraulic 
conductivity (cm/h) and h is hydraulic load 
(cm). In SWAP model, the analytical functions 
provided by Van-Gnochten and Moalem are 
used to define the soil hydraulic functions with 
the following equation. 
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where θsat is saturated volumetric moisture 
(cm3/cm3). θres is residual volumetric moisture 
(cm3/cm3), α is air inlet suction (cm/1), and m 
and n are experimental factors, respectively. 
By having the amount of moisture in each 
suction, the unsaturated hydraulic conductivity 

of the soil can be obtained by using Mueller's 
equation. 

2
11(1)( 



 −−= −n

n

eesat SSkk λθ
 

(3) 

)(
)(

ressat

res
eS

θθ
θθ

−
−

=
 

(4) 

where Ksat is hydraulic conductivity of soil 
saturation (cm/d), λ is dependent factor of 
hydraulic conductivity changes to suction 
changes, and Se is saturation ratio. 

To evaluate the accuracy of methods, root 
mean square error (RMSE, Eq.5), R2(Eq.6), 
and Nash–Sutcliffe (NS, Eq.7) were used as 
follow (Yaghoobzadeh, 2022). 
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where in these equations,  i is the predicted 
values,  m is the measured values, n is number 
of used samples and mx is average value of 
observed parameter. The R2 index shows the 
dispersion ratio between the predicted and 
measured values (Yaghoobzadeh, 2022). 

 
 

( ) ( )







−






 +

∂
∂

∂
∂

=
∂
∂ hS

z
hK

zt
1θθ

EC (dS/m) pH SAR 
Cations (meq/lit) Anions (meq/lit) 

Ca++ Mg++ Na+ K+ Cl- Hco3- Co32- So42- 

0.6 7.9 3.5 3.5 1 3.5 1.1 2.5 2.8 0 1 



                                                                               113 
Evaluation of SMDI Drought Index Changes …   
 

2.4. Scenarios and models 
Currently, GCM models are the important 

tools for generating data for climate change 
scenarios. The Intergovernmental Panel on 
Climate Change (IPCC) has used scenarios 
called RCP in compiling its fifth report. The 
RCP scenarios include a strict reduction 

scenario (RCP 2.6), two intermediate scenarios 
(RCP 4.5, RCP 8.5) and a pessimistic scenario 
(RCP 8.5) with very high greenhouse gas 
production (IPCC, 2013). The characteristics 
of the models and scenarios used in this 
research are presented in Table 4. 

 
Table 4. Models and scenarios characteristics used in this research 

Emission scenarios Model name Founder country Horizontal resolution 
(latitude×longitude, degree)  

RCP 4.5 
& 

RCP 8.5 

Canesm2 Canada 1.25×1.875 
GFDL America 2.5×2 

MIROC Japan 1.77×2.81 
IPSL France 1.875×3.75 

Csiromk-3.6 Australia 1.8×1.8 
GISS-ES-R America 2×2 

 
It is not possible to directly use from the 

output climate predictors of GCM models in 
connection with some simulation models such 
as the SWAP model which used in this 
research. The output of these predictors are 
monthly data, while the SWAP model requires 
daily weather time series. For this reason, the 
output of GCM models need different 
downscaling techniques. To generate daily and 
downscaling climate data, LARS-WG random 
weather generator was used for precipitation 
and temperature variables. The LARS-WG 
downscale model is one of the most up-to-date 
and challenging scientific topics in the world 
in the topics of climate change. Investigating 
GCM models, scenarios presented in scientific 
assemblies and predicting the future changes 
based on climate change scenarios are among 
the basic needs of climate change related 
research. LARS-WG model is one of the 
models that can investigate these changes and 
perform simulations for the future (Semenov, 
2009) 

 
2.5. Soil Moisture Deficit Index (SMDI) 
SMDI is based on the daily soil moisture for 

one year, and soil moisture data is the only 
climatic factor used and necessary. These soil 
moisture data are calculated with the use of the 
moisture simulator model for the base period 
and SMDI index is obtained. Also with use of 
table 5, the status of agricultural drought can 
be evaluated by this index (Narasimhan and 
Srinivasan, 2005). 

Table 5. Classification of drought severity by 
soil moisture deficiency index (Yaghoobzadeh, 

2015). 
SMDI amounts   Drought classification  

< 4 Extremely Wet 
3 - 3.99 Very wet 
2 - 2.99 Moderate humidity 
1 - 1.99 Mild humidity 

0.5 - 0.99 Early wet period 
-0.49 - 0.49 Normal 

-0.5 – (-0.99) Early dry period 
-1 – (-1.99) Mild drought 
-2 – (-2.99) Moderate drought 
-3 – (-3.99) Severe drought 

-4 > Very severe drought 

 
In order to simulate the soil moisture for the 

future and base period, the SWAP model 
should be calibrated and validated with using 
the measured data of soil moisture. The 
calibration process was done using the data of 
the first year of cultivation and validation 
process was done using the data of the second 
year of cultivation during the growth period. 

 
3. Results and Discussion 

3.1. Verification of SWAP model  
The results of validation of the simulated 

values of soil moisture during the corn growth 
period are shown in Figure 2. The correlation 
coefficient equal 80% between the 
measurement and simulation values of soil 
moisture at a soil depth of 30 cm indicated the 
good accuracy of the SWAP model in 
simulating soil moisture (Table 6). Nepal et al. 
(2021) in their research pointed to the good 
performance of the SMDI index in drought 
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determination. Leper et al. (2021) also found 
the importance of determining soil moisture as 
a determining factor of drought in their 
research. The results of Chen et al. (2023) also 
showed that the DSSAT-CERES model 
performed well in simulating winter wheat 
pollination date, maturity date and yield and 

soil moisture (R2 coefficient between 0.64 and 
0.97). 

 
Table 6. Evaluation of simulated and measured 

soil moisture values 
Soil depth 

(cm) NS RMSE  R2  

0-30 0.79 0.02 0.81 

 
Fig. 2. Comparison of simulated and measured soil moisture data during maize growth 

 
3.2. Climatic data under future climate 

change conditions 
Six GCM models were used in combination 

with two emission scenarios RCP4.5 and 
RCP8.5 to generate climate data and determine 
their changes in the future period. Climatic 
parameters used in this research are minimum, 
maximum temperature and precipitation, 
which are one of the most important factors 
affecting soil moisture. Table 7 shows the 
mean daily values of climate parameters in the 
base and future periods for GCM models in the 
RCP4.5 scenario. This table shows that the 
minimum temperature, maximum temperature 
and precipitation for most GCM models will 
increase in the future period compared to the 
base period. In order to compare the models in 
estimating of climatic parameters of the future 
period compared to the base period, the highest 
and lowest increase in minimum temperature is 

related to IPSL and GFDL models, 
respectively, and the highest and lowest 
increase in maximum temperature and 
precipitation is related to CanEsm2 and 
Csiromk-3.6 models, respectively. Also, the 
GFDL and GISS-ES-R models have estimated 
the maximum temperature values in the future 
period to be lower than the base period, and the 
MIROC model has estimated the amount of 
precipitation in the future period to be equal to 
the base period. In the research os Sayari et al. 
(2013), similar to the results of this section, a 
slight increase in precipitation, maximum and 
minimum temperature is evaluated for the 
future years. Yaghoobzadeh (2015) also found 
a higher correlation between the SMDI index 
and the SPI index than the ETDI index in their 
results for the basic and future periods. 

 
Table 7. Daily average values of climate parameters in the base and future periods for GCM models under 

two scenario of RCP4.5 
Models Minimum temperature Maximum temperature Precipitation 
baseline 6.80 22.08 0.63 
Canesm2 8.31 23.39 0.79 

GFDL 7.92 21.37 0.75 
MIROC 8.73 22.27 0.63 

IPSL 8.78 22.57 0.71 
Csiromk-3.6 8.45 22.21 0.65 
GISS-ES-R 8.19 21.54 0.74 

 
Table 8 shows the mean daily values of 

climate parameters in the base and future 
periods for GCM models in the RCP8.5 
scenario. According to this table, the 

minimum, maximum temperature and 
precipitation for most GCM models will 
increase in the future period compared to the 
base period. In order to compare the models in 
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estimating the climatic parameters of the future 
period compared to the base period, the highest 
and lowest increase in minimum temperature 
respectively related to MIROC and GISS-ES-
R models, the highest and lowest increase in 
maximum temperature respectively related to 
CanEsm2 and GFDL models and the highest 

and lowest increase in precipitation 
respectively related to GISS-ES-R and IPSL 
models were considered. Also, the GISS-ES-R 
model and the Csiromk-3.6 model have 
estimated the amount of precipitation in the 
future period to be lower than the base period. 

 
Table 8. Daily average values of climate parameters in the base and future periods for GCM models under 

two scenario of RCP8.5 
Models Minimum 

temperature 
Maximum 

temperature Precipitation 

baseline 6.80 22.08 0.63 
Canesm2 8.55 23.70 0.74 

GFDL 8.49 22.15 0.66 
MIROC 8.95 22.57 0.71 

IPSL 8.83 22.56 0.64 
Csiromk-3.6 8.63 22.54 0.62 
GISS-ES-R 8.41 21.82 0.78 

 
3.3. The effect of climate change on the 

SMDI index in the base and future 
periods 

In order to simulate and estimate of 
agricultural drought by using of SMDI index, 
the results shows the trend of soil moisture 
deficiency during the crop growth period from 
the first week after growth to the week in 
which the plant is harvested. Therefore, the 
severe lack of soil moisture in one week may 
be compensated or adjusted by the week in 
which irrigation took place or rainfall 
occurred. Table 9 shows the minimum, 

maximum and mean values of annual SMDI in 
the base and future period for six GCM models 
and two scenarios RCP4.5 and RCP8.5. Based 
on this table, for both RCP4.5 and RCP8.5 
scenarios, the mean annual SMDI values 
estimated by all six models are within the 
range of the normal state to the early wet 
period state. Also, the highest and lowest mean 
annual SMDI values are respectively related to 
IPSL and GFDL models for RCP4.5 scenario 
and Csiromk-3.6 and CanEsm2 models for 
RCP8.5 scenario. 

 
Table 9. Mean values of annual SMDI for six GSM models in the base and future periods under two 

scenarios of RCP4.5 and RCP8.5 
Emission scenarios 

Models RCP 4.5 RCP 8.5 
Minimum Maximum Mean Minimum Maximum Mean 

-3.824 3.704 -0.017 -3.70 3.99 -0.408 Canesm2 
-3.521 3.998 -0.397 -3.410 3.091 0.060 GFDL 
-3.708 3.108 -0.086 -3.428 2.904 -0.206 MIROC 
-3.995 3.893 0.811 -3.139 2.876 -0.186 IPSL 
-3.998 3.233 0.703 -3.450 3.759 0.063 Csiromk-3.6 
-3.998 2.840 0.376 -3.384 3.186 -0.257 GISS-ES-R 
-3.598 3.546 -0679 -3.598 3.546 -0.679 Baseline 

 
3.4. Investigating the uncertainty of 

GCM models in estimating of soil 
moisture 

To investigation the uncertainty of GCM 
models in soil moisture estimation, the range 
of annual soil moisture changes for six GCM 
models under two scenarios RCP4.5 and 
RCP8.5 is shown as Figure 3. In order to 
compare the models in the RCP4.5 scenario, 

due to the low thickness of the band, most of 
the models have good and acceptable certainty, 
except for the GISS-ES-R model which has 
less certainty with a large thickness of the 
band. In the RCP8.5 scenario, all models have 
good and acceptable certainty. However, the 
IPSL model has the highest certainty due to the 
lower thickness of the band, and the GFDL and 
GISS-ES-R models have the lowest certainty 
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compared to other models due to the greater 
thickness of the band. On the other hand, the 
soil moisture values in the future period 

compared to the base period are estimated to 
be lower for all models and under both RCP4.5 
and RCP8.5 scenarios. 

 

 
Fig. 3. Box plot of mean values of annual soil moisture in the base and future periods under two scenarios 

of RCP4.5 (top) and RCP8.5 (bottom) 
 
3.5. Investigating the uncertainty of 

GCM models in estimating the SMDI 
drought index 

In assessing the certainty of GCM models 
in estimating the weekly SMDI index, the 
range of weekly SMDI changes for six GCM 

models under the two scenarios of RCP4.5 and 
RCP8.5 is shown as Figure 4. According to the 
bandwidth of the models in the figure, the 
higher the bandwidth have the less certainty. In 
order to compare the models in the weekly 
SMDI estimation, the IPSL and GFDL models 
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under the RCP4.5 scenario and the CanEsm2 
and IPSL models under the RCP8.5 scenario 
have the highest and lowest certainty 
respectively. The changes range of annual 

SMDI index values for six GCM models under 
two RCP4.5 and RCP8.5 scenarios is shown as 
Figure 5. 

 

 
Fig. 4. Box plot of mean values of weekly SMDI in the base and future periods under two scenarios of 

RCP4.5 (top) and RCP8.5 (bottom) 
 
In order to compare the models, the 

CanEsm2 and IPSL models has the most and 
least certainty respectively under the RCP4.5 
scenario, but the MIROC and GISS-ES-R 

models has the most and least certainty 
respectively under the RCP8.5 scenario in 
estimating the annual SMD index. 
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Fig. 5. Box plot of mean values of annual SMDI in the base and future periods under two scenarios of 

RCP4.5 (top) and RCP8.5 (bottom) 
 
3.6. Uncertainty analysis of emission 

scenarios 
In the following the uncertainty of emission 

scenarios in the estimation of the SMDI index 
was investigated. Six GCM models were used 
to show the changes range in RCP4.5 and 
RCP8.5 emission scenarios in SMDI index 
estimation. Figure 6 shows the range of weekly 

and annual SMDI changes under two RCP4.5 
and RCP8.5 scenarios.  

According to the figure 6 for the weekly 
SMDI index, the certainty of the RCP8.5 
scenario is higher than the RCP4.5 scenario 
and the base period. On the other hand, the 
RCP8.5 scenario estimates the weekly SMDI 
index values less than the base period and the 
RCP4.5 scenario. For the changes range of 
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annual SMDI index values, the two RCP4.5 
and RCP8.5 scenarios have equal certainty 
with the base period due to the same thickness 
of the band.  

Also the RCP4.5 scenario estimates the 
annual SMDI index values less than the base 
period and the RCP8.5 scenario. 
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Fig. 6. Box plot of average values of weekly (right) and yearly (left) SMDI in the base and future periods 

under two scenarios of RCP4.5 and RCP8.5 
 

4. Conclusion 
In this research, to generate soil moisture 

data in the future period (2020-2039) 
compared to the base period (1992-2011), six 
GCM models were used under the influence of 
two emission scenarios of RCP4.5 and 
RCP8.5. In order to downscaling the daily 
climate data, the LARS-WG model was used 
and the climate parameters for the future 
period were predicted. Then, by using of the 
SWAP model, the soil moisture values at the 
soil depth of 30 cm were determined. The soil 
moisture changes at the soil depth of 30 cm 
showed that the percentage of soil moisture in 
the future periods of 2020-2039 will increase 
slightly compared to the base period for two 
scenario. Then SMDI values were obtained. 
The results of the calculated SMDI values for 
the future period (2020-2039) shows a higher 
average of SMDI index for RCP4.5 scenario 
than the RCP8.5 scenario which shows that the 
average soil moisture is higher. However, the 
highest and lowest SMDI values are in the 
RCP4.5 scenario and both scenarios show the 
normal moisture condition for the future period 
(2020-2039) and the amount of SMDI index 
predicted for the future period is higher than 
the base period. Certainty results of SMDI 
drought index showed that under RCP4.5 
scenario have the highest and lowest certainty 
for CanEsm2 models and IPSL and GFDL 
models respectively, but under RCP8.5 

scenario, CanEsm2 and MIROC models have 
the highest certainty and IPSL and GISS-ES-R 
models has the least certainty compared to 
other models. Uncertainty can be done with 
other methods of uncertainty that in this 
research was used of the simple box plot 
method due to the small number of climate 
change models.  
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