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Purpose: Berberis integerrima Bunge and Berberis vulgaris L. are 
traditional plants known for their many health benefits. The aim of 
this study was to investigate the antifungal potential of B. vulgaris 
and B. integerrima fruit extracts against Fusarium spp. pathogens as 
an environmentally compatible natural antifungal compound. 
Research methods: The antifungal activity of methanolic fruit 
extracts of B. vulgaris and B. integerrima against Fusarium solani, 
and Fusarium graminearum was investigated using the 
microdilution method, growth area measurement, and 
morphological Changes were studied using scanning electron 
microscopy analysis. Findings: The methanolic fruit extracts of B. 
vulgaris and B. integerrima had significant antifungal activity against 
the studied plant pathogens, with B. integerrima exhibiting a 
stronger effect. The MIC values of B. vulgaris fruit extract against F. 
graminearum and F. solani were 150 and 75 mg mL-1, and B. 
integerrima fruit extract had 100 and 75mg mL-1, respectively. F. 
graminearum was the most resistant fungal species. Scanning 
electron microscopy analysis showed that the extracts of both 
medicinal plants changed the structure and morphology of mycelia 
and, dose-dependently, inhibited conidia formation. Research 
limitations: There were no limitations. Originality/Value: The study 
showed that fruit extracts of B. vulgaris and B. integerrima have the 
potential to be used as natural and environmentally friendly agents 
against Fusarium species. 

mailto:aomidi@shirazu.ac.ir
http://creativecommons.org/licenses/by/4.0/
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INTRODUCTION 

 

Fusarium spp., a widespread filamentous fungus found in soil, plants, and organic substrates, 

is a significant plant pathogen responsible for various diseases, economic losses on crops, and 

food spoilage (Nehra et al., 2021), with over 300 species in 22 species complexes 

(Nosratabadi et al., 2022), and 24 toxic species that have a significant impact on both human 

and animal health (Adeyeye, 2016). Among the most important ones, which are more 

destructive, can be pointed out: the F. graminearum species complex, responsible for 

Fusarium head blight in wheat and barley; and the F. solani species complex, the cause of 

destructive foot and root rot (Aoki et al., 2014). Heavy reliance on synthetic pesticides to 

manage plant pathogens has become an important concern due to their negative effects on 

human health, the environment, and the emergence of resistant pests and disease-causing 

species (Lengai et al., 2020). Therefore, new antifungal strategies aim to create fungicides 

with low production costs, high efficacy, and safe for people, animals, host plants and 

ecosystems. Biological control is one of the strategies that, due to its effectiveness on target 

organisms and its biodegradability, has gained global popularity (Pârvu & Pârvu, 2011). Plant 

extracts and plant-derived compounds have received much attention as a potential alternative 

to synthetic fungicides for biological control. Plant tissues produce secondary metabolites that 

are highly active against pathogens and have been tested against various fungal pathogens 

(Bhandari et al., 2021). Berberis is a genus of plants with 650 species and 15 genera, found in 

Asia, North Africa, and Europe (Goodarzi et al., 2018). Barberry species, including B. 

vulgaris, are produced worldwide for medicinal purposes. In addition to the pharmaceutical 

industry, they are also used in the food sector, and ornamental species are used for decoration 

in different places (Rahimi-Madiseh et al., 2017). The diverse and contentious nature of 

barberry species identification has prompted numerous studies (Ghahramanlu et al., 2023; 

Rezaei et al., 2011). Species including B. vulgaris, B. orthobotrys, B. khorasanica, B. 

integerrima, B. crataegina, B. lycium, and B. aristata are frequently utilized in traditional 

medicine in Iran and other regions (Rahimi-Madiseh et al., 2017; Rezaei et al., 2011). 

Berberis vulgaris L., a variety in Khorasan Province, Iran, is a special fruit with high 

economic value for farmers and a rich history in folk medicine. Its high antioxidant capacity 

may increase its popularity. In vitro and in vivo studies have shown barberry's 

pharmacological activities, making it a valuable addition to the country's diet (Goodarzi et al., 

2018). It is known for its health benefits, including fat reduction, anti-cancer, anti-diabetes, 

liver protection, antioxidant, and anti-inflammatory properties (Ardestani et al., 2015). 

Berberis integerrima Bunge, a wild barberry species, is used in Iran for its antioxidant, anti-

diabetic and renal prevention properties. Its pharmacological activity includes antinociceptive, 

anticonvulsant, antiinflammation, antioxidant, anticancer, antihyperglycemic, 

antihypertensive, and antibacterial effects (Moein et al., 2020). In order to identify a natural 

and environmentally friendly anti-fusarium agent, this study investigated the antifungal 

properties of B. vulgaris L. and B. integerrima Bunge fruit extracts against F. graminearum 

and F. solani, as well as their effects on the morphology of these pathogens. 

 

MATERIALS AND METHODS 

 

Chemicals and media  

Potato dextrose agar (PDA), sabouraud dextrose agar (SDA), sabouraud dextrose broth 

(SDB), and absolute methanol were all obtained from Merck (Germany). 
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Plant material and preparation of berberis extracts  

Berberis vulgaris L. from Qain city in South Khorasan province and Berberis integerrima 

Bunge species from Shahr-e-Babak city in Kerman province were collected in 2022 and 

deposited in the herbarium of the Faculty of Natural Resources and Environment of Birjand 

University with voucher numbers 2670 and 2911, respectively. The barberry fruits from 

Birjand were seedless, while those from Kerman had one to three small spindle-shaped seeds. 

The fruits were washed, dried in an oven (CE.FH.151.4, Germany) for two days at 50 °C, 

milled to a fine powder, and stored at -20 °C until extraction. The Berberis spp. powders were 

added in a ratio of 1:10 with 80% methanol (methanol: water, 80:20 vv-1) at 50 °C for 24 h 

with stirring at 150 rpm in a shaking incubator (Lab Tech, South Korea). The extracts were 

filtered twice using Whatman No. 1 filter paper. A rotary evaporator (IKA, RV 10, DS 99. 

Germany) was used to evaporate the solvent from the extracts at 50 °C until the thick syrup 

was collected. The syrups were entirely dried using a freeze-drying device (VaCo 5-D, Zirbus 

Technology, Germany), and the dried extracts were kept at -20 °C to do tests. 

  

Preparation of fungal spore suspension  

Fusarium solani and Fusarium graminearum were obtained from the microorganism 

collection of the Department of Plant Medicine, Faculty of Agriculture, Shiraz University, 

Shiraz, Iran. Spores were prepared by soft scraping and pipetting sterile normal saline 

solution or sterile distilled water onto a seven-day PDA culture at 25–28 °C. The spore 

number was measured using a hemocytometer and adjusted to 2×106 spores per millilitre. 

 

Assessment of antifungal activity of berberis fruit extracts against Fusarium spp. 

Antifungal activity of B. vulgaris and B. integerrima fruit extracts on the growth of F. solani, 

F. graminearum, was determined by the micro-well dilution technique, and growth area in 

agar media. 

 

Micro-well dilution technique  

The minimum inhibitory concentrations (MIC) and minimum fungicidal concentrations 

(MFC) of Berberis vulgaris and Berberis integerrima fruit extracts were determined by the 

micro-well dilution applied by Kumar et al. (2016) with a slight modification. A volume of 

100 µL of concentrations of 400, 300, 200, 150, 100, 75 mg mL-1 of extracts were added to 

the wells of a 96-well plate containing 100 µL of SDB and 10 µl of spore suspension (2×106 

spores mL-1), incubating at 25°C for 5-7 days. Wells containing 200 µl of SDB and 10 µl of 

spore suspension were considered positive controls. The lowest concentration of extracts that 

caused complete inhibition of fungal growth after seven days was considered the MIC. To 

distinguish fungistatic and fungicidal activity and determine the MFC, after reading the MIC, 

20 µl of culture wells with no growth of fungal cells and also a positive control was 

subcultured onto SDA (incubation at 25°C for five days). The lowest concentration without a 

fungal colony was considered MFC. The experiments were performed twice, with three 

replications for each treatment. 

 

Determination of the fungal growth zone  

The inhibitory effect of the extracts by the method of Salem et al. (2021) with minor 

modifications in the 70 mg mL-1 concentration of both plant fruit extracts on agar culture 

medium on the growth of F. solani and F. graminearum spores was investigated by the 

spotting method in SDA medium in three replicates for each treatment inoculated with 10 µl 

spores (2×106 spores mL-1) and incubated at 25°C). The growth area was calculated on 

various days, including 3, 5, 7, 9, 12, 16, 20, 25 and 30. The percentage of growth inhibition 
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(PGI) (%) was calculated by the formula: PGI (%) = [C-T] × 100/C, where C is the diameter 

of the control colony and T is the diameter of the treated colony. Three replicates were carried 

out for all of the treatments.  

 

Scanning electron microscopy (SEM) analysis of the effect of berberis fruit extracts on 

mycelial morphology  

The effect of the B. integerrima and B. vulgaris extracts on the mycelial structure of F. solani 

and F. graminearum was investigated by SEM with some modifications to the Sellamani et 

al. (2016) method. A volume of 20 μ of spores (2×106 spores mL-1) was added to the SDA 

culture at MIC50 amounts of methanolic extracts and incubated at 25 °C. With the 

appearance of mycelium on the culture medium, the blocks of mycelium (1×1), were 

separated and dried with a freeze-dryer to stabilize and prepare for SEM imaging. The 

mycelia were sputter coated with gold (Q150R ES, Quorum Technologies, United Kingdom), 

and the morphological feature was observed by SEM (TESCAN-Vega3, Czech Republic) at 

20.0 kV in environmental mode. Mycelia grown in cultures without extract were considered 

as control. (Sellamani et al., 2016) 

  

Statistical analysis 

The study utilized a generalized linear model (GLM) for ANOVA, the Statistical Analysis 

System (SAS), Version 9.3 for examining the significant differences between species using 

the least significant difference (LSD) test, and Graphpad Prism 8.2.1 for creating graphs. 

 

RESULTS 

 

Assessment of antifungal activity of berberis fruit extracts against Fusarium spp. 

Microdilution method  
The antifungal activity of B. integerrima and B. vulgaris fruit extracts against Fusarium spp. 

was studied using the microdilution method. The results showed that B. vulgaris fruit extract 

had MIC values against F. graminearum and F. solani of 150 and 75mg mL-1, respectively, 

and MFC values of 400 and 300 mg mL-1, respectively. At MIC values of 100 and 75mg mL-1 

and MFC values of 200 and 100 mg mL-1, respectively, B. integerrima fruit extract effectively 

inhibited F. graminearum and F. solani (Fig. 1). The results showed that F. graminearum was 

more resistant fungus and B. integerrima fruit extract had a stronger anti-fusarium effect. 

 

Determination of the fungal growth zone  

The results showed that B. integerrima fruit extract had a stronger antifungal effect than B. 

vulgaris on the growth percentage of F. solani and F. graminearum spores in agar medium 

(Fig. 2B). The fruit extract of B. integerrima effectively inhibited the growth of F. solani until 

the end of the incubation period (day 30) (Fig. 2A). B. vulgaris fruit extract had the highest 

inhibitory effect on F. solani (Fig. 2C). In general, F. graminearum was more resistant fungal 

species (Fig. 2B). The results of the ANOVA analysis of the impact of plant and fungal 

species on the percentage of fungal growth inhibition are presented in Table 1. 

 

SEM analysis of mycelial morphology  

Changes in the structure of hyphae were easily visible without the use of a microscope. In 

contrast to the mycelium mass in the control sample, which was spread out throughout the 

plate, the mycelium mass in the culture medium treated with the extract grew in the center of 

the plate (Fig. 3). 
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Fig. 1. Seven-old day culture of F. solani and F. graminearum spores (2×106 spores mL-1) in SDB medium at 

25°C with 400, 300, 200, 150, and 75 mgmL-1 concentrations of methanolic fruit extracts of B. integerrima. 

Control (C.) positive control of F. graminearum (C. G); positive control of F. solani (C. S); negative control 

(SDB medium without extract and spores) (C. -). 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

Fig. 2. 30-old-day cultures of spore culture of F. solani and F. graminearum at 25 °C in SDA medium 

containing 70 mg mL-1 of B. vulgaris and B. integerrima fruit extracts in three replicates, (A). Comparison of the 

B. vulgaris and B. integerrima fruit extracts' ability to inhibit Fusarium spp. (B). The sensitivity percentage of F. 

solani and F. graminearum to B. vulgaris and B. integerrima fruit extracts, (C). Controls (no extract); Bars with 

different letters differ from each other significantly (P < 0.05). 
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S. O. V df Mean Square 

Plant 1 5148.3*** 

Fungi 2 1569.6*** 

Plant × Fungi 1 142.2 *** 

CV (%)  1.92 
                                 S.O.V: Sources of variations; df: degrees of freedom;  

                                 CV (%): Coefficient of variation. *** Significance at the level of <0.0001 probability. 

 

 

SEM images of the effect of B. vulgaris on F. graminearum mycelia 

The growth rate of F. graminearum mycelia in media containing B. vulgaris fruit extract 

decreased significantly compared to the control sample, and the fungal mass was concentrated 

at the spore inoculation site, unlike in the control sample, which had grown all over the plate 

(Fig. 3B). Unlike the long, slender and smooth mycelium in the control sample (Fig. 4, A1–

A3), the mycelium grown in the extract media was thick, dense, and deformed (Fig. 4, B1–

B3). No spores were observed in the extract-containing culture, while many conidia were 

present in the control sample. 

 

SEM images of the effect of B. vulgaris on F. solani mycelia 

In the medium containing B. vulgaris fruit extract, thick mycelia with denser texture and 

structure could be seen (Fig. 5, B1–B3) in contrast to the long, narrow, and smooth mycelia of 

F. solani grown in control cultures (Fig. 5, A1–A3). In the cultures that contained the extract, 

fewer spores were seen. In comparison to the control sample, the growth rate significantly 

decreased (Fig. 3B). 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. 14 old-day cultures of F. solani and F. graminearum in SDA at 25 °C; medium containing the MIC50 

value of B. integerrima fruit extract with fungus controls, (A); medium containing the MIC50 value of B. 

vulgaris fruit extract, (B). 

Table 1. ANOVA analysis of the impact of plant (B. vulgaris and B. 

integerrima) and fungal species (F. solani and F. graminearum) on the 

percentage of fungal growth inhibition. 
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Fig. 4. SEM image of the effect of B. vulgaris fruit extract on the structure of F. graminearum mycelium in 

SDA. Control sample (without extract), (A1–A3); MIC50 value of B. vulgaris fruit extract, (B1–B3). 

 

 

Fig. 5. SEM image of the effect of B. vulgaris fruit extract on the structure of F. solani mycelium in SDA. 

Control sample (without extract), (A1–A3). MIC50 value of B. vulgaris fruit extract, (B1–B3).  
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SEM images of the effect of B. integerrima on F. graminearum mycelia 

Unlike the control sample's long, thin, and smooth mycelia (Fig. 6, A1–A3), F. graminearum 

mycelia grown in medium containing B. integerrima extract were thick, dense, and deformed. 

The mycelium in the extract-containing medium was networked and interconnected, unlike 

the control sample's filamentous and separate mycelium (Figs. 6, B1–B3, and C1, C2). The 

growth rate was significantly reduced, and the mycelium's mass was concentrated at the spore 

inoculation site (Fig. 3A). No spores were observed in cultures containing the MIC50 value 

extract and very few in the 25 mg mL-1 extract sample, whereas many conidia were present in 

the control sample (Fig. 6). 

 

 
Fig. 6. SEM image of the effect of B. integerrima fruit extract on the structure of F. graminearum mycelium. 

Control sample (without extract), (A1–A3); valume of 25 and 50 mg mL-1 of B. integerrima fruit extract, 

respectively, (B1-B3 and C1-C2). 
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Fig. 7. SEM image of the effect of B. integerrima fruit extract on the structure of F. solani mycelium. Control 

sample (without extract), (A1–A3); MIC 50 value of B. integerrima fruit extract, (B1-B3). 

 

SEM images of the effect of B. integerrima on F. solani mycelia 

The F. solani mycelium grown in a medium containing B. integerrima extract was thicker, 

irregular, and dense than the filamentous, thin, and delicate mycelium of control (Fig. 7). 

Spores were not observed in extract samples. The fungal colony appeared convex and dense, 

in contact with the culture medium. The growth rate was slower than in the control sample 

(Fig. 3A). 

 

DISCUSSION 

 

Plant pathogenic fungi, with over 10,000 species, are the most dangerous plant pathogens that 

cause significant damage to economically important crops (Nazarov et al., 2020). The 

increasing number of Fusarium species exposed to whole-genome sequencing, underscores 

the significant threat Fusarium poses to agriculture and human health (Munkvold, 2017). 

Over the past decades, numerous research studies have focused on developing an efficient and 

eco-friendly method for managing phytopathogens (Seo et al., 2013). Several plant families 

have shown fungicidal activity against Fusarium species, such as Asteraceae (Rongai et al., 

2012), Oleaceae (Korukluoglu et al., 2008), and Lamiaceae (Yazgi et al., 2015). No reports of 

anti-Fusarium effects were found from barberry fruits of the Berberidaceae family. The study 

demonstrated that B. vulgaris and B. integerrima fruit extracts effectively inhibited the growth 

of the studied Fusarium spp., with B. integerrima exhibiting a stronger inhibitory effect. The 

phytochemical analysis of the Berberis fruit revealed the presence of alkaloids, tannins, 

carotenoid, vitamin, protein, lipid, anthocyanin, and phenolic compounds (Salehi et al., 2019). 
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The greater potency of B. integerrima fruit extract compared to B. vulgaris may be related to 

the bioactive compounds present in its seeds. Fatty acids (linolenic, linoleic, and oleic acids, 

as well as omega-3 and omega-6 fatty acids) and phytosterols are also present in the oil found 

in B. integerrima seeds (Tavakoli et al., 2017). This plant is often used in pharmacological 

studies as a rich source of bioactive substances (Moein et al., 2020). In the present study, F. 

graminearum was the most resistant species both in liquid culture and in agar medium. In the 

study of Samie and Mashau (2013), F. graminearum was more resistant to most plant extracts 

than other Fusarium species. Our results agreed with them. B. integerrima fruit extract 

exhibited MIC values of 75–100 mg mL-1, and B. vulgaris fruit extract had MIC values of 

100-150 mg mL-1 for the fungi that were being examined in this study. Piper sarmentosum 

extract at 1-2 mg mL-1 against F. graminearum (Zhou et al., 2023), and Taxus wallichiana 

Zucc extract showed inhibitory effects against F. solani at MIC values of 0.08–200 mg mL-1 

(Nisar et al., 2008). Phytochemicals play a crucial role in plant defense against fungal 

pathogens, either directly by affecting pathogen physiology and morphology (Dang-Minh-

Chanh et al., 2013) or indirectly by inducing plant systemic resistance (Al-Wakeel et al., 

2013). Studies have linked various bioactive compounds in plants, including alkaloids, 

organic acids, flavonoids, etc., with antifungal activity (Daradka et al., 2021). Berberine 

alkaloid, a bioactive compound found in barberry fruit, has been found to have antifungal 

properties due to its ability to inhibit sterol and cell wall biosynthesis and cell damage by 

increasing reactive oxygen species production (Xie et al., 2020).The most separated substance 

from the different parts of B. integerrima is also alkaloids (Moein et al., 2020). Both fruit 

extracts demonstrated inhibitory effects against test microbes, with berberine possibly being 

an effective compound in this activity. SEM and transmission electron microscopy (TEM) 

images have shown that the MIC or MFC of some plant extracts caused fungal ultrastructural 

changes (Dang-Minh-Chanh et al., 2013; Pârvu and Pârvu, 2011). Our study's SEM images 

revealed significant changes in mycelium structure and inhibition of microconidia production 

at the MIC50 value of the extract. The mycelia of F. solani and F. graminearum grown in a 

culture containing B. vulgaris and B. integerrima fruit extracts had thick, amorphous, altered, 

and bulky structures compared to the control mycelium. Bioactive compounds could be 

responsible for the changes in morphology (Perveen et al., 2022). The presence of various 

organic acids in barberry fruit extract, including oxalic, tartaric, ascorbic, acetic, malic, and 

fumaric acids (Ardestani et al., 2015), leads to acidification and lowers the extract's pH. This 

creates unfavorable environmental conditions for microorganisms and increases the 

antimicrobial properties of the extract (Khan et al., 2022). The fungal cell wall is a dynamic 

structure that shields cells from osmotic pressure changes and environmental stress (Gow & 

Lenardon, 2023). Environmental pH fluctuations and antifungal drug treatments impact gene 

expression, alter cell wall enzyme expression, stimulate regeneration mechanisms, and induce 

new cell wall structure changes. A stiffer cell wall, influenced by growth conditions, reduces 

the risk of cell damage, ultimately increasing cell survival and integrity during hyperosmotic 

stress. Less-elastic cell walls protect the plasma membrane from rupture during acute osmotic 

shocks (Ene et al., 2015). These changes were clearly evident when Fuarium culmorum was 

exposed to tebuconazole (a systemic fungicide). Tebuconazole inhibited fungal growth and 

caused swelling, excessive branching, and cell wall thickening (Kang et al., 2001). Our 

findings were in line with Kang et al.'s (2001) study. Along with glucan and various 

glycoproteins, chitin is a vital component in filamentous fungi that contributes to the stiffness, 

mechanical strength, and structural integrity of the cell wall (Hasim & Coleman, 2019). It has 

been reported that a reduction in overall chitin synthesis leads to excessive swelling of hyphae 

and changes in conidiation. The chitin synthase enzyme (ChsE enzyme) is involved in the 

synthesis of bulky chitin (Bowman & Free, 2006). Bulky mycelia and a lack of conidia 
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formation in MIC50 extracts observed in our SEM images can be affected by the change in 

chitin synthesis. The reduction in fungal conidia in the presence of antifungal compounds was 

reported in the studies of Al-Nazwani et al. (2021) and Perveen et al. (2022), and our findings 

are consistent with these studies. Our research added new information to the literature 

regarding the anti-fusarium activity of the fruits of B. vulgaris and B. integerrima and the 

effects of their extract on the morphological changes of F. graminearum and F. solani 

hyphae. (Al-Nazwani et al., 2021)  (Samie & Mashau, 2013) 

CONCLUSION 

 

The study explored the potential of B. integerrima and B. vulgaris fruit extracts as antifungal 

agents against F. graminearum and F. solani. Comparative analysis revealed effective 

inhibitory activities on the mycelial growth of Fusarium spp., particularly for B. integerrima. 

SEM analysis of the studied Fusarium species showed the ability of the methanolic extracts of 

B. integerrima and B. vulgaris fruit to change the structure of mycelia and supported their 

potential as effective agents to control plant pathogenic fungi. The study emphasizes the need 

for exploring natural plant compounds as a sustainable and environmentally friendly 

alternative to synthetic chemicals for disease control. Further research is needed on the 

antimicrobial components of B. integerrima and B. vulgaris, their mechanisms of action, and 

their development into more effective and environmentally friendly solutions. 
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