
تعداد نشریات | 21 |
تعداد شمارهها | 301 |
تعداد مقالات | 3,173 |
تعداد مشاهده مقاله | 3,211,898 |
تعداد دریافت فایل اصل مقاله | 2,380,332 |
تأثیر شوری آب آبیاری، اکوتیپ و تراکم گیاهی بر عملکرد و غلظت عناصر معدنی اندام هوایی و ریشه خارشتر (.Alhagi camelorum Fisch) | ||
تنشهای محیطی در علوم زراعی | ||
مقاله 7، دوره 17، شماره 1، فروردین 1403، صفحه 87-104 اصل مقاله (1.12 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22077/escs.2023.5459.2150 | ||
نویسندگان | ||
مصطفی زنگویی1؛ سهیل پارسا* 2، 3؛ مجید جامی الاحمدی4، 3؛ علی ایزانلو2، 3 | ||
1دانشجوی دکتری زراعت، گروه مهندسی تولید و ژنتیک گیاهی، دانشگاه بیرجند | ||
2دانشیار گروه مهندسی تولید و ژنتیک گیاهی، دانشگاه بیرجند | ||
3گروه پژوهشی گیاه و تنشهای محیطی، دانشگاه بیرجند | ||
4استاد گروه مهندسی تولید و ژنتیک گیاهی، دانشگاه بیرجند | ||
چکیده | ||
خارشتر (Alhagi camelorum Fisch) گیاهی از خانواده بقولات با خواص دارویی و قابلیت تولید علوفه است. بهمنظور بررسی تأثیر شوری آب آبیاری، تراکم و اکوتیپ بر غلظت عناصر معدنی اندام هوایی و ریشه خارشتر پژوهشی در دو منطقه، مزرعه دانشکده کشاورزی بیرجند و حجتآباد سربیشه در سال 1399، بهصورت اسپلیت فاکتوریل در قالب طرح بلوکهای کامل تصادفی با سه تکرار انجام شد. سطوح شوری شامل 3.5، 7.5 و 12 دسیزیمنس بر متر بهعنوان کرتهای اصلی و سطوح تراکم (10 و 20 بوته در مترمربع) و اکوتیپ (کرند و وشمگیر) بهعنوان کرتهای فرعی بهصورت فاکتوریل در نظر گرفته شدند. اعمال حداکثر شوری آب آبیاری در مقایسه با شاهد، عملکرد علوفه تر را در بیرجند از 2756 به 1868 و در سربیشه از 2425 به 1931 کیلوگرم در هکتار کاهش داد. همچنین شوری سبب افزایش معنی دار سدیم اندام هوایی در سربیشه از 1.39 به 2.68 درصد و سدیم ریشه در بیرجند از 0.126 به 0.159 درصد و کاهش معنی دار پتاسیم ریشه در سربیشه از 3.94 به 1.78 درصد گردید. با افزایش تراکم منیزیم اندام هوایی در بیرجند از 0.023 به 0.016 و در سربیشه از 0.028 به 0.020 درصد کاهش یافت. همچنین منیزیم ریشه در بیرجند بهطور معنی داری (از 0.015 به 0.011) و پتاسیم ریشه در سربیشه از 5.6 به 4.8 درصد کاهش یافت ولی سدیم اندام هوایی در هر دو مکان بهطور معنی داری افزایش یافت. مقادیر منیزیم اندام هوایی خارشتر کمتر از حد مطلوب برای دام بود و کشت با تراکم 20 بوته در مترمربع این مشکل را تشدید نمود. اکوتیپ کرند در سربیشه پتاسیم کمتری نسبت به اکوتیپ وشمگیر داشت بنابراین کیفیت علوفه بالاتری داشت. علوفه تولیدی در سربیشه نسبت به بیرجند پتاسیم کمتری داشت. با توجه به وسعت اراضی شور کشور، توسعه کشت خارشتر میتواند به رونق تولید علوفه کمک مؤثری نماید. | ||
کلیدواژهها | ||
اکوتیپ کرند و وشمگیر؛ بیرجند؛ ترکیب عناصر؛ سربیشه؛ علوفه خارشتر | ||
مراجع | ||
Aghaalikhani, M., Eshagh Ahmadi, M., Modarres Sanavy, A.M., 2008. Forage yield and quality of pearl millet (Pennisetum americanum) as influenced by plant density and nitrogen rate. Pajouhesh and Sazandegi. 77, 19-27. [In Persian] Ali, S.I., 1977. Flora of West Pakistan No.100 Papilionaceae. University of Karachi, Pakistan, pp. 319-320. Alldredge, M.W., PEEK, J.M., WALL, W.A., 2002. Nutritional quality of forages used by elk in northern Idaho. Journal of Range Management. 55, 253–259. https://doi.org/10.2307/4003131 Ashraf, M., 2004. Some important physiological selection criteria for salt tolerance in plants. Flora- Morphology, Distribution, Functional Ecology of Plants. 199, 361–376. https://doi.org/10.1078/0367-2530-00165 Ashrafi, E., Razmjoo, J., Zahedi, M., 2018. Effect of salt stress on growth and ion accumulation of alfalfa (Medicago sativa L.). Plant Nutrition. 41, 1-14. https://doi.org/10.1080/01904167. 2018.1426017 Baghdadi, A., Halim, A.R., Majidian, M., Daud, W.N.W., Ahmad, I., 2012. Plant density and tillage effects on forage corn quality. Journal of Food, Agriculture and Environment. 10, 366–370. https://doi.org/10.1234/4.2012.2988 Cabot, C., Sibole, J., Barceló, J., Poschenrieder, C., 2009. Abscisic acid decreases leaf Na+ exclusion in salt-treated Phaseolus vulgaris L. Plant Growth Regulation. 28, 187–192. https://doi.org/10.1007/s00344-009-9088-5 Chen, H., Jiang, J.G., 2010. Osmotic adjustment and plant adaptation to environmental changes related to drought and salinity. Environmental Review. 18, 309–319. https://doi.org/10.1139/A10-014 Cornacchione, M.V., Suarez, D.L., 2015. Emergence forage production and ion relations of alfalfa in response to saline water. Crop Science. 55, 444 – 457. https://doi.org/10.2135/cropsci2014.01.0062 Danayi Rad, E., 2016. Laboratory Methods In Agricultural Science And Biology. Tarjoman Kherad Publisher, Tehran, Iran, pp. 102-103. [In Persian] Delfani, M., Akbari, M., Vafa, P., Malek Maleki, F., Masoumi, A., 2022. The effect of plant density and supplementary irrigation on nutritional value of two safflower (Carthamus tincturius L.) Forage crops. Communication in Soil Science and Analysis. 53, 1-24. https://doi.org/10.1080/00103624.2022.2046032 Flowers, T.J., Colmer, T.D., 2008. Salinity tolerance in halophytes. New Phytologist. 179, 945–963. https://www.jstor.org/stable/25150520 Flowers. T.J., Munns, R., Colmer, T.D., 2015. Sodium chloride toxicity and the cellular basis of salt tolerance in halophytes. Annals of Botany. 115, 419-431. https://doi.org/10.1093/aob/mcu217 Goff, J.P., Horst, R.L., 1997. Effects of the addition of potassium or sodium, but not calcium to prepartum ratios on milk fever on dairy cows. Dairy Science. 80, 176–186. https://doi.org/10.3168/jds.S0022-0302(97)75925-3 Gross, C.F., Jung, G.A., 1978. Magnesium, Ca, and K concentration in temperate-origin forage species as affected by temperature and Mg fertilization. Agronomy. 70, 397–403. https://doi.org/10.2134/agronj1978.00021962007000030008x Igartua, E., Gracia, M.P., lasa, J.M., 1995. Field responses of grain sorghum to a salinity gradient. Field Crops Research. 42, 15-25. https://doi.org/10.1016/0378-4290(95)00018-L Jahanzad, E., Jorat, M., Moghadam, H., Sadeghpour, A., Chaichi, M.R., Dashtaki, M., 2013. Response of a new and a commonly grown forage sorghum cultivar to limited irrigation and planting density. Agricultural Water Management. 117, 62-69. https://doi.org/10.1016/j.agwat.2012.11.001 Jekabson, A., Anderson-Ozola, U., Karlsons, A., Romanovs, M.,Ievinsh, g., 2022. Effect of salinity on growth, ion accumulation and mineral nutrition of different accessions of a crop wild relative legume, species, Trifolium fragiferum. Plants. 11, 1-20. https://doi.org/10.3390/plants11060797 Kazemi, M., Ghasemi Bezdi, K. 2021. An investigation of the nutritional value of camelthorn (Alhagi maurorum) at three growth stage and it’s substitution with part of the forage in Afshari ewes diet. Animal Feed Science and Technology. 271, 1-11. https://doi.org/10.1016/j.anifeedsci.2020.114762 Khorshidi, M.B., Yarnia, M., Hassanpanah, D., 2009. Salinity effect on nutrients accumulation in alfalfa shoots in hydroponic condition. Food, Agricultural and Environment. 7, 787–790. https://doi.org/10.1234/4.2009.2778 Kirkby, E., 2012. Introduction, definition and classification of nutrients. In: Marschner, P. (ed.), Mineral Nutrition of Higher Plants (Third Edition). New York, Academic Press. USA. pp.3-5 https://doi.org/10.1016/B978-0-12-819773-8.00016-2 Klute, A., 1986. Methods of Soil Analysis: Part 1 Physical and Mineralogical Methods, 2 eds. Soil Science Society of America, USA, pp. 906-909. https://doi.org/10.2136/sssabookser5.1.2ed Kurban, H., Hirofumi, S., Kunito, N., Rahmutulla, A., Fujita, K. 1998. Effect of salinity on growth and accumulation of organic and inorganic solutes in the leguminous plants Alhagi pseudalhagi and Vigna radiate. Soil Science and Plant Nutrition. 44, 589-597. https://doi.org/10.1080/00380768.1998.10414482 Kurban, H., Saneoka, H., Nehira, K., Adilla, R., Premachandra, G.S., Fujita, K., 1999. Effect of salinity on growth, photosynthesis and mineral composition in leguminous plant Alhagi pseudalhagi. Plant Nutrition and Soil Science. 45, 851–862. https://doi.org/10.1080/00380768.1999.10414334 Kumar, R., Singh, M., Meena, B.S., Kumar, S., Yadav, M.R., Parihar, C.M., Ram, H., Meena, R.K., Meena, V.K., Kumar, U., 2017. Quality characteristics and nutrient yield of fodder maize (Zea mays) as influenced by seeding density and nutrient levels in Indo-Gangetic Plains. Indian Journal of Agricultural Sciences. 87, 1203–1208. https://doi.org/10.56093/ijas.v87i9.74205 Loupassaki, M.H., Chartzoulakis, K.S., Digalaki, N.B., Androulakis, I.I., 2002. Effects of salt stress on concentration of nitrogen, phosphorus, potassium, calcium, magnesium, and sodium in leaves, shoots and roots of six olive cultivars. Plant Nutrition. 25, 2457–2482. https://doi.org/10.1081/PLN-120014707 Marschner, P., 2012. Marschner’s Mineral Nutrition of Higher Plants, 3eds. Academic Press. New York, UAS, pp. 3-460. https://doi.org/10.1016/C2009-0-63043-9 Masters, D., Tiong, M., Vercoe, P., Norman, H., 2010. The nutritive value of river saltbush (Atriplex amnicola) when grown in different concentrations of sodium chloride irrigation solution. Small Ruminant Research. 91, 56-62. https://doi.org/10.1016/j.smallrumres.2009.10.019 Moor, K.J., Collins, M., Nelson, C.J., Redfearn, D.D., 2020. Forages: The Science of Grassland Agriculture, Vol. 2 (7th eds.). Wiley, Croydon, UK, pp. 79-819. Muhammad, G., Muhammad, A.H., Farooq, A., Muhammas, A., Anwar-Hassan, G., 2014. Alhagi: A plant genus rich in bioactive for pharmaceoticals. Phytotherapy Research. 29, 1-13. https://doi.org/10.1002/ptr.5222 Naseri, H., Lashkari Snami, N., Sadeghi Sangdehi, S. A., 2019. Forage quality variation in camelthorn grazing species in Maranjab region. Pasture and Watershed. 71, 1099-1109. [In Persion]. https://doi.org/10.22059/jrwm.2018.264225.1292 National Academies of Sciences, Engineering and Medicine., 2016. Nutrient Requirements of Beef Cattle 8th rev. ed. Washington, DC: National Academy Press. US. https://doi.org/10.17226/19014. Nedjimi, B., 2014. Effects of salinity on growth, membrane permeability and root hydraulic conductivity in three saltbush species. Biochemical Systematics and Ecology. 52, 4–13. https://doi.org/10.1016/j.bse.2013.10.007 Olanite, J.A., Anele, U.Y., Arigbede, O.M., Jolaosho, A.O., Onifade, O.S., 2010. Effect of plant spacing and nitrogen fertilizer levels on the growth, dry-matter yield and nutritive quality of Columbus grass (Sorghum almum stapf.) in southwest Nigeria. Grass and Forage Science. 65, 369-375. https://doi.org/10.1111/j.1365-2494.2010.00755.x Owen, C.P. 1992. Plant Analysis Reference Producers for the Southern Region of the United States. The University of Georgia, USA, pp. 33-45. Piri. A., Palangi, A. and Eivazi, P., 2012. The determination of nutritive value of Alhagi by in situ and gas production techniques. European Journal of Experimental Biology. 2, 846–849. Raymond, F.D., Alley, M.M., Parish, D.J., Thomason, W.E., 2009. Plant density and hybrid impacts on corn grain and forage yield and nutrition uptake. Plant Nutrition. 32, 395-409. https://doi.org/10.1080/01904160802660727 Robbins, C.T., 1993. Wild Life Feeding and Nutrition. 2nd edition, Academic Press, San diego, California, USA, 352p. Saroya, A.S., 2013. Controversial Herbal Drugs of Ayurveda. Scientific Publishers, India, 279p. Seiter, S., Altemose, C.E., Davis, H., 2004. Forage soybean yield and quality responses to plant density and row distance. Agronomy. 96, 966-970. https://doi.org/10.2134/agronj2004.0966 Shabala, L., Cuin, T.A., Newman, I.A., Shabala, S., 2005. Salinity-induced ion flux patterns from the excised roots of Arabidopsis SOS mutants. Planta. 222, 1041–1050. https://doi.org/10.1007/s00425-005-0074-2 Shanon, M.C.,1985. Principle and strategies in breeding for higher salt tolerance. Plant and Soil. 89, 227-241. https://doi.org/10.1007/BF02182244 Sher, A., Khan, A., Ashraf, U., Liu, H. H., Li. J. C., 2018. Characterization of the effect of increased plant density on canopy morphology and stalk lodging risk. Frontiers in Plant Science. 9, 10-47. https://doi.org/10.3389/fpls.2018.01047 Towhidi, A., Zhandi, M., 2007. Chemical composition, in vitro digestibility and palatability of nine plant species for dromedary camels in the province of Semnan, Iran. Egyptian Journal of Biology. 9, 47–52. Ul Haq, T., Akhtar, J., Steele, K.A., Munns, R., Gorham, J., 2013. Reliability of ion accumulation and growth components for selecting salt tolerant lines in large populations of rice. Functional Plant Biology. 41, 379–390. https://doi.org/10.1071/FP13158 Waldron, B.L., Sagers, J.K., Peel, M.D., Rigby, C.W., Bugbee, B., Creech, J.E., 2020. Salinity reduces the forage quality of forage kochia: A halophytic chenopodiaceae shrub. Rangeland Ecology and Management. 73, 384-393. https://doi.org/10.1016/j.rama.2019.12.005 Zang, F., Zhang, B., Lu, Y., Li, C., Liu, B., An, G., Gao, X., 2016. Morpho-physiological response of Alhagi sparsifolia Shap. (Leguminosae) seedlings to progressive drought stress. Pakestan Journal of Botany. 48, 429-438. Zhang, W.J., Wang, T., 2015. Enhanced salt tolerance of alfalfa (Medicago sativa) by rstB gene transformation. Plant Science. 234, 110-118. https://doi.org/10.1016/j.plantsci.2014.11.016 Zhu, J.K., 2003. Regulation of ion homeostasis under salt stress. Current Opinion in Plant Biology. 6, 441–445. https://doi.org/10.1016/S1369-5266(03)00085-2 Zou, G.A., Mansur, S., Hu, S.C., Aisa, H.A., Shakhidoyatov, K.M., 2012. Pyrrole alkaloids from Alhagi sparsifolia. Chemistery Natural Products. 48, 635–637. https://doi.org/10.1007/s10600-012-0330-1 | ||
آمار تعداد مشاهده مقاله: 586 تعداد دریافت فایل اصل مقاله: 348 |