
تعداد نشریات | 21 |
تعداد شمارهها | 301 |
تعداد مقالات | 3,173 |
تعداد مشاهده مقاله | 3,211,878 |
تعداد دریافت فایل اصل مقاله | 2,380,325 |
بررسی پاسخ به گزینش مستقیم و غیر مستقیم صفات زراعی و مراحل زایشی در شرایط تنش کمآبی در سویا (.Glycine max L) | ||
تنشهای محیطی در علوم زراعی | ||
مقاله 5، دوره 16، شماره 4، دی 1402، صفحه 931-948 اصل مقاله (1.06 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22077/escs.2023.5191.2118 | ||
نویسنده | ||
حمید رضا بابائی* | ||
استادیار پژوهش بخش تحقیقات علوم زراعی و باغی، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی خراسان رضوی، سازمان تحقیقات، آموزش و ترویج کشاورزی، مشهد | ||
چکیده | ||
کارائی گزینش مستلزم شناخت کامل و دقیق مولفههای ژنتیکی صفات زراعی در جمعیتهای اصلاحی است. با هدف بررسی مولفههای ژنتیکی صفات زراعی و زایشی، در سال 1392 در کرج، 50 ژنوتیپ سویا در دو محیط نرمال و تنش خشکی در قالب دو طرح بلوکهای کامل تصادفی کشت گردید. در طول مراحل رشد، مراحل زایشی و پس از رسیدن محصول صفات زراعی ارزیابی و ثبت گردید. بر اساس نتایج حاصله اغلب مولفههای ژنتیکی در دو محیط نرمال و تنش مشابه بود. اکثر ژنوتیپها زودرس و متعلق به گروه رسیدن 1 بودند. در بین خصوصیات مراحل زایشی بیشترین و کمترین میزان پیشرفت ژنتیکی در محیط نرمال 21.40 و 3.95 درصد و در محیط تنش 21.9 و 7.3 درصد بهترتیب مربوط به روز تا شروع پر شدن دانه و طول نسبی مراحل زایشی بود. در محیط نرمال بیشترین پیشرفت ژنتیکی 0.52 مربوط به تعداد غلاف در بوته و تعداد شاخه فرعی و کمترین پیشرفت ژنتیکی 0.14 مربوط به تعداد گره در ساقه بود. در محیط تنش نیز بیشترین و کمترین پیشرفت ژنتیکی 104/0 و 14/0 بهترتیب مربوط به تعداد غلاف در بوته و تعداد گره در ساقه بود. در بین صفات زراعی در شرایط نرمال بیشترین مقادیر پاسخ به گزینش غیرمستقیم عملکرد دانه به میزان 1.6 و 1.41 گرم به ترتیب از طریق وزن صد دانه و تعداد دانه در بوته و در شرایط تنش به میزان 1.04، 0.89 و 0.87 از طریق تعداد شاخه فرعی، تعداد دانه در بوته و وزن صد دانه بدست آمد. همچنین بر اساس شاخص انتخاب ژنوتیپ ایدهآل، پنج ژنوتیپ در گروه متحمل، هفت ژنوتیپ در گروه نیمه متحمل، 11 ژنوتیپ در گروه نیمه حساس و 27 ژنوتیپ در گروه حساس قرار گرفتند. ژنوتیپهای Roanak، Kabalovskaja و TMS به عنوان متحملترین و AGS 363، Hermen وKuban به عنوان حساسترین ژنوتیپها شناخته شدند. | ||
کلیدواژهها | ||
پیشرفت ژنتیکی؛ شاخص انتخاب ژنوتیپ ایدهآل؛ صفات زراعی؛ صفات مراحل زایشی؛ کارائی گزینش؛ وراثتپذیری | ||
مراجع | ||
Aditya, J.P., Bhartiya, P., Bhartiya, A., 2011. Genetic variability, heritability and character association for yield and component characters in soybean (Glycine. max L.). Journal of Central European Agriculture. 12, 27-34. https://doi.org/10.5513/JCEA01/12.1.877 Babaei, H.R., Zeinali-khaneghah, H., Talei, A.R., 2012. Genetic Analysis of agronomic traits and seed shattering resistance in soybean (Glycine max L.). Seed and Plant Improvement Journal. 28, 593-609. [In Persian]. https://doi.org/10.22092/spij. 2017.111130 Bennani, S., Nsarellah, N., Jibene, M., Tadesse, W., Birouk, A., Ouabbou, H., 2017. Efficiency of drought tolerance indices under different stress severities for bread wheat selection. Australian Journal of Crop Science. 1, 395-405. https://doi.org/10.21475/ajcs.17.11.04.pne272. Board, J.E., Modali, H., 2005. Dry matter accumulation predictors for optimal yield in soybean. Crop Science. 45,1790-1799. https://doi.org/10.2135/cropsci2004.0602 Bouslama, M., Schapaugh, W.T., 1984. Stress tolerance in soybean. Part 1: Evaluation of three screening techniques for heat and drought tolerance. Crop Science. 24, 933-937. https://doi.org/10.2135/cropsci1984.0011183X002400050026x Choukan, R., Taherkhani, T., Channadha, M. R., Khodarahmi, M., 2006. Evaluation of drought tolerance in grain maize inbred lines usines drought tolerance indices. Iranian Journal of Agricaltural Sciences. 8,79-89. [In Persian]. https://doi.org/20.1001.1.15625540.1385.8.1.7.6 Falconer, D.S., 1989. Introduction to Quantitative Genetics. third edition, Langman Scientific and Technical. New York, USA. Farshadfar, M., Farshadfar, E. 2008. Genetic variability and path analysis of chickpea (Cicer arietinum L.) landraces and lines. Journal of Applied Science. 8, 3951-3956. https://doi.org/10.3923/jas.2008.3951.3956 Farshadfar, E., Poursiahbidi, M.M., Safavi, S. M., 2018. Assessment of drought tolerance in land races of bread wheat based on resistance/ tolerance indices. International Journal of Advanced Biological and Biomedical Research. 6, 233-245. Fehr, W.R., Caviness, C.E. 1977., Stages of Soybean Development. Special Report No. 80, Cooperative Extension Service, Agriculture & Home Economics, Experimental Station. Iowa State University, USA. Coden: IWSRBC (80) 1-12 (1977) Fernandez, G.C.J., 1992. Effective selection criteria for assessing plant stress tolerance. In: Kuo CG (eds). Adaptation of Food Crops to Temperature and Water Stress. International symposium. Aug. 13-18. 1992. Shanhua, Taiwan. https://doi.org/10.22001/wvc.72511 Fischer, R.A., Maurer, R., 1978. Drought resistance in spring wheat cultivars. I. Grain yield responses. Australian Journal Agriculture. Research. 29, 897-912. https://doi.org/10.1071/AR9780897. Gavuzzi, P., Rizza, F., Palumbo, M., Campaline, R.G., Ricciardi, G.L., Borghi, B., 1997. Evaluation of field and laboratory of drought and heat stress in winter cereals. Canadian Journal of Plant Science. 77, 523-531. https://doi.org/10.4141/P96-130. Giordani, W., Gonçalves, L.S.A., Moraes, L.A.C.,Ferreira, L.C.,Neumaier, N., Farias, J.R.B., Nepomuceno, A.L., de Oliveira, M.C.N., Mertz-Henning, L.M., 2019. Identification of agronomical and morphological traits contributing to drought stress tolerance in soybean. Australian Journal of Crop Science. 13, 35-44. https://doi.org/10.21475/ajcs.19.13.01.p1109 Iqbal, S., Mahmood, M., Tahira, M., Ali, M., Anwar, M., Sarwar. M., 2003. Path coefficient analysis in different genotypes of soybean (Glycine max L. Merril). Pakistan Journal of Biological Sciences. 6, 1085-1087. https://doi.org/10.3923/pjbs.2003.1085.1087 Jiang, H., Egli. D.B., 1995. Soybean seed number and crop growth rate during flowering. Agronomy Journal. 87, 264-267. https://doi.org/10.2134/agronj1995.00021962008700020020x Johnson, H.W., Robinson, H.F., Comstock, R.E., 1955. Estimates of Genetic and Environmental Variability in Soybeans. Agronomy Journal. 47, 314-318. https://doi.org/10.2134/agronj1955.00021962004700070009x Kahlon, C.S., 2010. Analysis of genetic improvement for soybean from 1950-2000. Doctoral Dissertations Louisiana State University and Agricultural and Mechanical College.USA. https://doi.org/10.31390/gradschool_dissertations.3872. Kobraee, S., Shamsi. K., 2011. Evaluation of soybean yield under drought stress by path analysis. Australian Journal of Basic and Applied Sciences. 5, 890-895. Kokuban, M., Shimada, S., Takahashi. M., 2001. Flower abortion caused by parenthesis water deficit is not attributed to impairment of pollen in soybean. Crop Science. 4, 1517–1521. https://doi.org/10.2135/cropsci2001.4151517x Kuswantoro, H., 2017. The role of heritability and genetic variability in estimated selection response of soybean lines on tidal swamp land. Pertanika Journal of Tropical Agriculture Science. 40, 319 – 328. Liu, Y., 2004. Physiological regulation of pod set in soybean (Glycine max L. Merr.) during drought at early reproductive stages. Ph.D. Dissertation. Department of Agricultural Sciences. The Royal Veterinary and Agricultural University. Copenhagen. Denmark. Machikowa, T., Laosuwan, P., 2011. Path coefficient analysis for yield of early maturing soybean. Songklanakarin Journal of Science Technology. 33, 365-368. Mahbub, M.M., Rahman, M.M., Hossain, M.S., Mahmud, F., Mir Kabir, M.M., 2015. Genetic variability, correlation and path analysis for yield and yield components in soybean. American- Eurasian Journal of Agricultural and Environmental Sciences. 15, 231-236. https://doi.org/10.5829/idosi.aejaes.2015.15.2.12524 Mejaya, M.J., Suhartina, S., Purwantoro, P., Nugrahaeni, N., Sundari, T., 2022. Genetic parameters of agronomic traits in soybean (Glycine max L. Merrill) genotypes tolerant to drought Cite as: AIP Conference Proceedings. 24–25 May 2021. Bogor, Indonesia. Retrieved april 10, 2022. from https://doi.org/10.1063/5.0075159 Mesfin, H.H., 2018. Path analysis, genetic variability and correlation studies for soybean (Glycine max L. Merill) for grain yield and Secondary traits at Asosa. Greener Journal of Plant Breeding and Crop Science. 6, 35-46. https://doi.org/10.15580/GJPBCS.2018.3.111418158 Moosavi, S.S., Yazdi-Samadi, B., Naghavi, M. R., Zali, A.A., Dashti, H., Pourshahbazi, A., 2008. Introduction of new indices to identify relative drought tolerance and resistance in wheat genotypes. DESERT. 12, 165-178. Nakawuka, C. K., Adipala, E., 1999. A path coefficient analysis of some yield component interactions in cowpea. African Crop Science Journal. 7, 327-331. https://doi.org/10.4314/acsj.v7i4.27726 Rosielle, A.A., Hamblin. J., 1981. Theoretical aspects of selection for yield in stress and non-stress environments. Crop Science. 21, 943-946. https://doi.org/10.2135/cropsci1981.0011183X002100060033x. Soares, I.O., Bianchi, M.C., Bruzi, A.T., Gesteira, G.S., Silva, K.B., Guilherme, S.R., Cianzio, S.R., 2020. Genetic and phenotypic parameters associated with soybean progenies in a recurrent selection program. Crop Breeding and Applied Biotechnology. 20,1- 8. https://doi.org/10.1590/1984-70332020v20n4a59 Teixeira, F.G., Hamawaki, O.T., Nogueira, A.P.O., Hamawaki, R.L., Jorge, G.L., Hamawaki, C.L., Machado, B.Q.V., Santana, A.J.O., 2017. Genetic parameters and selection of soybean lines based on selection indexes.Genetic Molecolar Research. 16,1-17. https://doi.org/10.4238/gmr16039750 Varnica, I., Petrovic, S., Reberic, A., Guberac, S., Jukic, K., Jukic, G.,2018. Characterization and interrelationships of soybean (Glycine max L.Merrill) yield components during dry and humid seasons. Journal of Central European Agriculture. 19, 466-481. https://doi.org/ https://doi.org/10.5513/JCEA01/19.2.2148 Vianna, M.S., Nogueira, A.P.O., Hamawaki, O.T., Sousa, L.B., Gomes, G.F., Glasenapp, J.S., Hamawaki, R.L., Silva, C.O., 2019. Selection of lineages, genetiv parameters and correlations between characters. Bioscience Journal.35, 1300-1314. https://doi.org/10.14393/BJ-v35n5a2019-42656 Yan, R. L. C., Song, S., Wang, W., Wang, C., Li, H., Wang, F., Li, S., Sun, X., 2020. Screening diverse soybean genotypes for drought tolerance by membership function value based on multiple traits and drought tolerant coefficient of yield. BMC Plant Biology. Retrieved April 15, 2022. from https://doi.org/10.1186/s12870-020-02519-9. Zali, H., Barati, A., 2020. Evaluation of selection index of ideal genotype (SIIG) in other to selection of barley promising lines with high yield and desirable agronomy traits. Journal of Crop Breeding. 12, 93-104. https://doi.org/ 10.29252/jcb.12.34.93 Zhang, J., Song, Q., Cregan, P. B., Nelson, R. L., Wang, X., Wu, J., Jiang, G. L., 2015. Genome-wide association study for flowering time, maturity dates and plant height in early maturing soybean (Glycine max) germplasm. BMC Genomics.Retrieved april 1, 2022. https://doi.org/10.1186/s12864-015-1441-4. | ||
آمار تعداد مشاهده مقاله: 350 تعداد دریافت فایل اصل مقاله: 268 |